CO2 Capture by mineral carbonation to obtain a usable material of industrial waste

ilustraciones, graficas, mapas, tablas

Autores:
Pedraza Vega, Jenniffer Iveth
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79464
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79464
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra
660 - Ingeniería química
Carbon Capture and Utilization
Carbon footprint
Industrial waste
Mineral carbonation
Climate change
Cambio climático
Captura y utilización de dióxido de carbono
carbonatación mineral
Huella de carbono
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_ed7e541d5574bed24755eb50042c99f5
oai_identifier_str oai:repositorio.unal.edu.co:unal/79464
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
dc.title.translated.spa.fl_str_mv Captura de CO2 por carbonatación mineral para la obtención de un material aprovechable a partir de residuos industriales
title CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
spellingShingle CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
550 - Ciencias de la tierra
660 - Ingeniería química
Carbon Capture and Utilization
Carbon footprint
Industrial waste
Mineral carbonation
Climate change
Cambio climático
Captura y utilización de dióxido de carbono
carbonatación mineral
Huella de carbono
title_short CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
title_full CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
title_fullStr CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
title_full_unstemmed CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
title_sort CO2 Capture by mineral carbonation to obtain a usable material of industrial waste
dc.creator.fl_str_mv Pedraza Vega, Jenniffer Iveth
dc.contributor.advisor.none.fl_str_mv Rojas Roa, Nestor Y.
Tobón, Jorge Iván
dc.contributor.author.none.fl_str_mv Pedraza Vega, Jenniffer Iveth
dc.contributor.researchgroup.spa.fl_str_mv Calidad del Aire
Grupo de Investigación en Materiales, Catálisis y Medio Ambiente
Grupo del Cemento y Materiales de Construcción
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra
660 - Ingeniería química
topic 550 - Ciencias de la tierra
660 - Ingeniería química
Carbon Capture and Utilization
Carbon footprint
Industrial waste
Mineral carbonation
Climate change
Cambio climático
Captura y utilización de dióxido de carbono
carbonatación mineral
Huella de carbono
dc.subject.proposal.eng.fl_str_mv Carbon Capture and Utilization
Carbon footprint
Industrial waste
Mineral carbonation
Climate change
dc.subject.proposal.spa.fl_str_mv Cambio climático
Captura y utilización de dióxido de carbono
carbonatación mineral
Huella de carbono
description ilustraciones, graficas, mapas, tablas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-05-03T16:54:36Z
dc.date.available.none.fl_str_mv 2021-05-03T16:54:36Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79464
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79464
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv [1] A. Kätelhön, R. Meys, S. Deutz, S. Suh, and A. Bardow, “Climate change mitigation potential of carbon capture and utilization in the chemical industry,” Proc. Natl. Acad. Sci., vol. c, no. 20, p. 201821029, 2019, doi: 10.1073/pnas.1821029116.
[2] International Energy Agency, (IEA), and Cement Sustainability Initiative (CSI), “Technology Roadmap: Low-Carbon Transition in the Cement Industry,” 2017. doi: 10.1007/SpringerReference_7300.
[3] World Business Council for Sustainable Development, “Cement Industry Energy and CO2 Performance: ‘Getting the Numbers Right,’” 2016. doi: ISBN: 978-3-940388-48-3.
[4] O. Edenhofer et al., Climate Change 2014: Mitigation of Climate Change. 2014.
[5] K. Roh, J. H. Lee, and R. Gani, “A methodological framework for the development of feasible CO2 conversion processes,” Int. J. Greenh. Gas Control, vol. 47, pp. 250–265, Apr. 2016, doi: 10.1016/j.ijggc.2016.01.028.
[6] IPCC, “La captación y el almacenamiento de dióxido de carbono - Resumen tecnico,” in IPCC Special Report on Carbon Dioxide Capture and Storage, vol. 17, no. 4, B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. MEyer, Eds. 2005, p. 66.
[7] B. A. F. Bernal and K. A. H. Saavedra, “DIAGNÓSTICO DE LA INDUSTRIA DEL CEMENTO EN COLOMBIA Y EVALUACIÓN DE ALTERNATIVAS TECNOLÓGICAS PARA EL CUMPLIMENTO DE LA NORMA DE EMISIÓN DE FUENTES FIJAS,” Universidad de la Salle, 2008.
[8] A. Favier, C. De-Wolf, K. Scrivener, and G. Habert, “A sustainable future for the european cement and concrete industry. Technology assessment for full decarbonisation of the industry by 2050 The authors,” 2019.
[9] J. Albo, L. A. Alvarez, J. M. Andres, C. Bartolome, S. Burgos, and P. Castro, Usos del CO2: Un camino hacia la sostenibilidad, 1st ed., vol. 1, no. 9. España, 2013.
[10] IDEAM; PNUD; MADS; DNP; CANCILLERÍA, “Primer Informe Bienal de Actualización de Colombia,” p. 252, 2015, doi: 10.1007/s13398-014-0173-7.2.
[11] Ministerio de Industria Comercio y Turismo, “PLAN DE ACCIÓN SECTORIAL DE MITIGACIÓN (PAS SECTOR INDUSTRIA,” 2014. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdf/planes_sectoriales_de_mitigación/PAS_Industria_-_Final.pdf.
[12] E. S. Rubin, “Summary of the IPCC Special Report on Carbon Dioxide Capture and Storage,” pp. 35–41, 2006.
[13] S. Teir, R. Kuusik, C. J. Fogelholm, and R. Zevenhoven, “Production of magnesium carbonates from serpentinite for long-term storage of CO2,” Int. J. Miner. Process., vol. 85, no. 1–3, pp. 1–15, 2007, doi: 10.1016/j.minpro.2007.08.007.
[14] M. S. Ncongwane, J. L. Broadhurst, and J. Petersen, “Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings,” Int. J. Greenh. Gas Control, vol. 77, no. August, pp. 70–81, 2018, doi: 10.1016/j.ijggc.2018.07.019.
[15] A. Azdarpour, M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, and M. A. Karaei, “A review on carbon dioxide mineral carbonation through pH-swing process,” Chem. Eng. J., vol. 279, pp. 615–630, 2015, doi: 10.1016/j.cej.2015.05.064.
[16] Element Energy, Carbon Counts, Process System Enterprise, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement, chemicals, iron and steel and oil refining sectors by 2025: A Techno-economic Study,” Cambridge, 2014. [Online]. Available: http://www.element-energy.co.uk/wordpress/wp-content/uploads/2017/06/Element_Energy_DECC_BIS_Industrial_CCS_and_CCU_final_report_14052014.pdf.
[17] D. N. Huntzinger, J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele, “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles,” J. Hazard. Mater., vol. 168, no. 1, pp. 31–37, 2009, doi: 10.1016/j.jhazmat.2009.01.122.
[18] N. L. Ukwattage, P. G. Ranjith, M. Yellishetty, H. H. Bui, and T. Xu, “A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration,” J. Clean. Prod., vol. 103, pp. 1–10, 2015, doi: 10.1016/j.jclepro.2014.03.005.
[19] A. Polettini, R. Pomi, and A. Stramazzo, “CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects,” J. Environ. Manage., vol. 167, pp. 185–195, 2016, doi: 10.1016/j.jenvman.2015.11.042.
[20] M. Dri, A. Sanna, and M. M. Maroto-Valer, “Mineral carbonation from metal wastes : Effect of solid to liquid ratio on the efficiency and characterization of carbonated products,” Appl. Energy, vol. 113, pp. 515–523, 2014, doi: 10.1016/j.apenergy.2013.07.064.
[21] R. Ducroux and P. Jean-Baptiste, “Is CO2 capture and storage the right way for mitigating climate change?,” Greenh. Gas Control Technol., vol. 3, no. 11, pp. 2463–2466, 2015, doi: 10.1017/CBO9781107415324.004.
[22] E. Chang, C. Chen, Y. Chen, S. Pan, and P. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” vol. 186, pp. 2010–2011, 2011, doi: 10.1016/j.jhazmat.2010.11.038.
[23] S. Gopinath and A. Mehra, Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag, vol. 115. Institution of Chemical Engineers, 2016.
[24] J. L. Galvez-Martos, A. Elhoweris, J. Morrison, and Y. Al-Horr, “Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines,” J. CO2 Util., vol. 27, no. April, pp. 161–169, 2018, doi: 10.1016/j.jcou.2018.07.011.
[25] N. Kemache, L. C. Pasquier, E. Cecchi, I. Mouedhen, J. F. Blais, and G. Mercier, “Aqueous mineral carbonation for CO2sequestration: From laboratory to pilot scale,” Fuel Process. Technol., vol. 166, pp. 209–216, 2017, doi: 10.1016/j.fuproc.2017.06.005.
[26] Element Energy Ltd, Carbon Counts Ltd, PSE Ltd, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement , chemicals , iron and steel and oil refining sectors by 2025 : A Techno-economic Study,” 2014.
[27] D. García-Gusano, D. Garraín, I. Herrera, H. Cabal, and Y. Lechón, “Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production,” J. Clean. Prod., vol. 104, pp. 328–338, 2015, doi: 10.1016/j.jclepro.2013.11.056.
[28] A. W. Zimmermann and R. Schomäcker, “Assessing Early-Stage CO 2 utilization Technologies-Comparing Apples and Oranges?,” Energy Technol., vol. 5, no. 6, pp. 850–860, Jun. 2017, doi: 10.1002/ente.201600805.
[29] C. C. Cormos, A. M. Cormos, and L. Petrescu, “Assessing the CO2 Emissions Reduction from Cement Industry by Carbon Capture Technologies: Conceptual Design, Process Integration and Techno-economic and Environmental Analysis,” in Computer Aided Chemical Engineering, 2017, vol. 40, pp. 2593–2598, doi: 10.1016/B978-0-444-63965-3.50434-7.
[30] A. Monteiro, Juliana Garcia Moretz-Sohn; Goetheer, Earl; Schols, Erin; van Os, Peter; Calvo, José Francisco Pérez; Hoppe, Helmut; Bharadwaj, Hariharan Subrahmaniam; Roussanaly, Simon; Khakharia, Purvil; Feenstra, Maartje; de Jong, “D5.1 Post-capture CO2 management CO2 utilization in cement industry CO2 sequestration,” 2018. doi: 10.5281/zenodo.2597056.
[31] K. B. Najim, Z. S. Mahmod, and A. K. M. Atea, “Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar,” Constr. Build. Mater., vol. 55, pp. 5–12, 2014, doi: 10.1016/j.conbuildmat.2014.01.015.
[32] P. Styring, E. Quadrelli, and K. Armstrong, Carbon Dioxide Utilisation: Closing the Carbon Cycle. 2014.
[33] S. Y. Pan, A. Chiang, E. E. Chang, Y. P. Lin, H. Kim, and P. C. Chiang, “An innovative approach to integrated carbon mineralization and waste utilization: A review,” Aerosol Air Qual. Res., vol. 15, no. 3, pp. 1072–1091, 2015, doi: 10.4209/aaqr.2014.10.0240.
[34] R. Baciocchi, G. Costa, and D. Zingaretti, “Transformation and Utilization of Carbon Dioxide,” in Transformation and Utilization of Carbon Dioxide, B. M. Bhanage and M. Arai, Eds. Springer, 2014, pp. 268–299.
[35] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. M. Maroto-Valer, “A review of mineral carbonation technologies to sequester CO2.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 8049–80, 2014, doi: 10.1039/c4cs00035h.
[36] A. Sanna, “Reduction of CO2 Emissions Through Waste Materials Recycling by Mineral Carbonation,” Handb. Clean Energy Syst., 2015, doi: 10.1002/9781118991978.hces025.
[37] Z. Osmanovic, N. Haračić, and J. Zelić, “Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts,” Cem. Concr. Compos., vol. 91, no. October 2016, pp. 189–197, 2018, doi: 10.1016/j.cemconcomp.2018.05.006.
[38] R. Siddique, “Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview,” Resour. Conserv. Recycl., vol. 48, no. 4, pp. 315–338, 2006, doi: 10.1016/j.resconrec.2006.03.010.
[39] S. Peethamparan, J. Olek, and J. Lovell, “Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization,” Cem. Concr. Res., vol. 38, no. 6, pp. 803–815, 2008, doi: 10.1016/j.cemconres.2008.01.011.
[40] R. Baciocchi, O. Capobianco, G. Costa, M. Morone, and D. Zingaretti, “Carbonation of industrial residues for CO2 storage and utilization as a treatment to achieve multiple environmental benefits,” Energy Procedia, vol. 63, pp. 5879–5886, 2014, doi: 10.1016/j.egypro.2014.11.621.
[41] H. Ghanbari, M. Helle, and H. Saxén, “Optimization of an Integrated Steel Plant with Carbon Capturing and Utilization Processes,” IFAC-PapersOnLine, vol. 48, no. 017, pp. 12–17, 2015, doi: 10.1016/j.ifacol.2015.10.069.
[42] C. Bartolomé, P. M. Peris, and J. D. Recalde, Estado del arte de las tecnologías de captura y almacenamiento de CO2 en la industria del cemento. España: Agrupación de fabricantes de cemento de España, 2011.
[43] M. Mun and H. Cho, “Mineral Carbonation for Carbon Sequestration with Industrial Waste,” Energy Procedia, vol. 37, pp. 6999–7005, 2013, doi: 10.1016/j.egypro.2013.06.633.
[44] E. R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and storage using alkaline industrial wastes,” Prog. Energy Combust. Sci., vol. 38, no. 2, pp. 302–320, 2012, doi: 10.1016/j.pecs.2011.11.002.
[45] F. Grandia, F. Clarens, S. Meca, J. D. E. Pablo, and L. Duro, “Carbonatación Acelerada de Cenizas de Incineradora para su Valorización y Captura,” Macla-Revista La Soc. Española Mineral., vol. 15, pp. 107–108, 2011.
[46] A. a. Olajire, “A review of mineral carbonation technology in sequestration of CO2,” J. Pet. Sci. Eng., vol. 109, pp. 364–392, 2013, doi: 10.1016/j.petrol.2013.03.013.
[47] S. Y. Pan, P. C. Chiang, Y. H. Chen, E. E. Chang, C. Da Chen, and A. L. Shen, “Process intensification of steel slag carbonation via a rotating packed Bed: Reaction kinetics and mass transfer,” Energy Procedia, vol. 63, pp. 2255–2260, 2014, doi: 10.1016/j.egypro.2014.11.244.
[48] M. Ortega, E. D. I. Química, A. Trinidad, E. D. I. Química, and S. Barrera, “Elaboración de Materiales de Construcción a Partir de Secuestración de Carbono,” pp. 29–31, 2015.
[49] M. H. El-Naas, M. El Gamal, S. Hameedi, and A. M. O. Mohamed, “CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust,” J. Environ. Manage., vol. 156, pp. 218–224, 2015, doi: 10.1016/j.jenvman.2015.03.040.
[50] I. G. García, “Carbonatación del hormigón: combinación de CO2 con las fases hidratadas del cemento y frente de cambio de pH,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2011.
[51] C. Goberna and M. Faraldos, Tecnicas de Analisis y Caracterización de Materiales. 2011.
[52] J. F. Carvajal, “Evaluación de escorias de Córdoba para su utilización en la industria del cemento Portland,” 2012.
[53] ANDI, “Informe del Sector Siderúrgico 2016,” Bogotá D.C., 2017. [Online]. Available: http://www.andi.com.co/Uploads/Informe del sector 2016_636536148442404034.pdf.
[54] D. Bonenfant, L. Kharoune, R. Hausler, and P. Niquette, “CO 2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature,” Ind. Eng. Chem Res, vol. 47, no. 20, pp. 7610–7616, 2008.
[55] R. A. Sanchez and H. A. Jakobsen, “Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop,” Particuology, vol. 15, pp. 116–128, 2014, doi: 10.1016/j.partic.2013.07.009.
[56] G. Montes-Hernandez, R. Pérez-López, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash,” J. Hazard. Mater., vol. 161, no. 2–3, pp. 1347–1354, 2009, doi: 10.1016/j.jhazmat.2008.04.104.
[57] IDEAM, “Inventario Nacional de Gases de Efecto Invernadero.” p. 36, 2015.
[58] UPME, “Plan energetico Nacional,” 2015. [Online]. Available: http://www1.upme.gov.co/Documents/PRESENTACION_PLAN_ENERGETICO_2050.pdf.
[59] Unidad de Planeación Minero Energética - UPME, “Plan de referencia: Expansión y Generación, 2016 - 2030,” p. 481, 2016, [Online]. Available: http://www.upme.gov.co/Docs/Plan_Expansion/2016/Plan_GT_2016_2030/Plan_GT_2016_2030_Final_V1_12-12-2016.pdf.
[60] US Geological Survey, “Cement production globally and in the U.S. from 2010 to 2017 (in million metric tons),” Statista - The Statistics Portal, 2018. https://www.statista.com/statistics/219343/cement-production-worldwide/ (accessed Dec. 11, 2018).
[61] DANE, “Estadísticas de cemento gris (ECG),” Bogotá D.C., 2018. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/cemento_gris/cp_cem_gris_mar18.pdf.
[62] CEMEX S.A.B, “Annual Report 2016,” Mexico, 2016. [Online]. Available: https://www.cemex.com/es/home.
[63] DANE, “Boletín técnico. Estadísticas de Cemento Gris (ECG),” 2018. doi: 10.1056/NEJMicm1308004.
[64] D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009, doi: 10.1016/j.jclepro.2008.04.007.
[65] IPCC, “Capítulo 2 emisiones de la industria de los minerales,” 2006, doi: Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero.
[66] Cementos Argos S.A., “Reporte Integrado - 2016,” 2016. [Online]. Available: http://www.reporteintegradoargos.co/.
[67] CEMEX S.A.B, “Reporte integrado,” 2017.
[68] E. A. Martínez, J. I. Tobón, and J. G. Morales, “Coal acid mine drainage treatment using cement kiln dust,” Dyna, vol. 81, no. 186, p. 87, 2014, doi: 10.15446/dyna.v81n186.38834.
[69] E. Maryeni Karina, J. I. Tobon, and J. H. Ramirez, “Use of industrial wastes for the synthesis of belite clinker,” Mater. construcción, vol. 70, no. 339, 2020, doi: https://doi.org/10.3989/mc.2020.14219.
[70] P. Kunal, R. Siddique, and A. Rajor, “Use of cement kiln dust in cement concrete and its leachate characteristics,” Resour. Conserv. Recycl., vol. 61, pp. 59–68, 2012, doi: 10.1016/j.resconrec.2012.01.006.
[71] E. E. Chang, C. H. Chen, Y. H. Chen, S. Y. Pan, and P. C. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” J. Hazard. Mater., vol. 186, no. 1, pp. 558–564, 2011, doi: 10.1016/j.jhazmat.2010.11.038.
[72] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and A. R. M. Daud, “Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review,” Energy Procedia, vol. 61, pp. 2783–2786, 2014, doi: 10.1016/j.egypro.2014.12.311.
[73] W. S. Adaska and D. H. Taubert, “Beneficial uses of cement kiln dust,” IEEE Cem. Ind. Tech. Conf. Rec., pp. 210–228, 2008, doi: 10.1109/CITCON.2008.24.
[74] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk, “Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates,” Constr. Build. Mater., vol. 145, pp. 218–225, 2017, doi: 10.1016/j.conbuildmat.2017.04.007.
[75] A. A. Elbaz, A. M. Aboulfotoh, A. M. Dohdoh, and A. M. Wahba, “Review of beneficial uses of cement kiln dust (CKD ), fly ash ( FA ) and their mixture,” J. Mater. Environ. Sci., vol. 10, no. 11, pp. 1062–1073, 2019.
[76] ISO, “TECHNICAL REPORT ISO / TR 27912:2016 (E) Carbon dioxide capture — Carbon dioxide capture systems , technologies,” Geneva, 2016.
[77] Y. T. Yuen, P. N. Sharratt, and B. Jie, “Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22309–22330, 2016, doi: 10.1007/s11356-016-6512-9.
[78] S. Teir, “Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags,” 2008.
[79] G. Montes-Hernandez, A. Pommerol, F. Renard, P. Beck, E. Quirico, and O. Brissaud, “In situ kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell,” Chem. Eng. J., vol. 161, no. 1–2, pp. 250–256, 2010, doi: 10.1016/j.cej.2010.04.041.
[80] H. Świnder, M. Michalak, and A. Uliasz-Bocheńczyk, “Modeling Kinetics of CO2 (Carbon Dioxide) Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust,” J. Sustain. Min., vol. 12, no. 4, pp. 1–5, 2013, doi: 10.7424/jsm130401.
[81] H. P. Mattila, I. Grigaliu-naite, and R. Zevenhoven, “Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags,” Chem. Eng. J., vol. 192, pp. 77–89, 2012, doi: 10.1016/j.cej.2012.03.068.
[82] V. Nikulshina, M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle,” Chem. Eng. J., vol. 129, no. 1–3, pp. 75–83, 2007, doi: 10.1016/j.cej.2006.11.003.
[83] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and E. Mohammadian, “Direct carbonation of red gypsum to produce solid carbonates,” Fuel Process. Technol., vol. 126, pp. 429–434, 2014, doi: 10.1016/j.fuproc.2014.05.028.
[84] L. Wang, Y. Jin, and Y. Nie, “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca,” J. Hazard. Mater., vol. 174, no. 1–3, pp. 334–343, 2010, doi: 10.1016/j.jhazmat.2009.09.055.
[85] G. Costa, R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey, “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues,” Environ. Monit. Assess., vol. 135, no. 1–3, pp. 55–75, 2007, doi: 10.1007/s10661-007-9704-4.
[86] N. L. Ukwattage, P. G. Ranjith, and X. Li, “Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation,” Meas. J. Int. Meas. Confed., vol. 97, pp. 15–22, 2017, doi: 10.1016/j.measurement.2016.10.057.
[87] M. Fernández Bertos, S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater., vol. 112, no. 3, pp. 193–205, 2004, doi: 10.1016/j.jhazmat.2004.04.019.
[88] M. Naranjo, D. T. Brownlow, and A. Garza, “CO2 capture and sequestration in the cement industry,” Energy Procedia, vol. 4, pp. 2716–2723, 2011, doi: 10.1016/j.egypro.2011.02.173.
[89] R. Baciocchi, G. Costa, A. Polettini, R. Pomi, and V. Prigiobbe, “Comparison of different reaction routes for carbonation of APC residues,” Energy Procedia, vol. 1, no. 1, pp. 4851–4858, 2009, doi: 10.1016/j.egypro.2009.02.313.
[90] A. González, N. Moreno, and R. Navia, “CO2 carbonation under aqueous conditions using petroleum coke combustion fly ash,” Chemosphere, vol. 117, no. 1, pp. 139–143, 2014, doi: 10.1016/j.chemosphere.2014.06.034.
[91] R. Baciocchi, G. Costa, A. Polettini, and R. Pomi, “Influence of particle size on the carbonation of stainless steel slag for CO 2 storage,” Energy Procedia, vol. 1, no. 1, pp. 4859–4866, 2009, doi: 10.1016/j.egypro.2009.02.314.
[92] C. Conde-Mejía, “Desarrollo y aplicación de un sistema jerarquico para el diseño de bio-refinerias,” Instituto Tecnológico de Celaya, 2013.
[93] J. M. Douglas, “A hierarchical decision procedure for process synthesis,” AIChE J., vol. 31, no. 3, pp. 353–362, Mar. 1985, doi: 10.1002/aic.690310302.
[94] WBCSC and International Energy Agency (IEA), “Technology Roadmap Cement,” 2009. doi: 978-3-940388-47-6.
[95] European IPPC Bureau, “Best available techniques (BAT) for the Production of Cement, Lime and Magnesium oxide.,” 2013.
[96] European IPCC Bureau, “Best available techniques (BAT) for the Cement Industry Reference Document,” Brussels, 1999.
[97] N. Meunier, S. Laribi, L. Dubois, D. Thomas, and G. De Weireld, “CO2 capture in cement production and re-use: First step for the optimization of the overall process,” Energy Procedia, vol. 63, pp. 6492–6503, 2014, doi: 10.1016/j.egypro.2014.11.685.
[98] C. D. Cooper and F. C. Alley, Air Pollution Control. Illinois: Waveland Pres, Inc, 2002.
[99] M. John C, “TECHNOLOGY READINESS LEVELS,” J. Vis. Lang. Comput., vol. 11, no. 3, pp. 287–301, 2004.
[100] I. de I. M. y C. IDEAM, DNP - Subidrección de Desarrollo Ambiental Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Unidad Administrativa Especial del Sistema de Parques Nacionales, “Anexos,” in SEGUNDA COMUNICACIÓN NACIONAL ANTE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE CAMBIO CLIMATICO, 2010, p. 28.
[101] B. D. Humbird and L. E. Consulting, “Expanded Technology Readiness Level ( TRL ) Definitions for the Bioeconomy,” pp. 1–7, 2018.
[102] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” in 2018 AACE® INTERNATIONAL TECHNICAL PAPER, 2018, pp. 1–23.
[103] G. A. Buchner, A. W. Zimmermann, A. Marxen, K. J. Stepputat, and R. Schomäcker, “Specifying Technology Readiness Levels for the Chemical Industry,” Unpubl. Work. Pap., 2018, doi: 10.1021/acs.iecr.8b05693.
[104] C. Conde-Mejía, A. Jiménez-Gutiérrez, and M. M. El-Halwagi, “Assessment of combinations between pretreatment and conversion configurations for bioethanol production,” ACS Sustain. Chem. Eng., vol. 1, no. 8, pp. 956–965, 2013, doi: 10.1021/sc4000384.
[105] D. Gómez and J. Watterson, “CAPÍTULO 2. Combustión estacionaria,” Directrices del IPCC 2006 para los Inventar. Nac. gases Ef. invernadero, vol. 2, pp. 1–47, 2006, doi: 10.1157/13083441.
[106] U. S. E. P. Agency, “1.6 Wood Residue Combustion In Boilers,” AP 42, Compil. Air Pollut. Emiss. Factors, Vol. 1 Station. Point Area Sources, pp. 1–20, 2003, doi: 10.1111/j.1365-2109.2010.02488.x.
[107] U.S. Environmental Protection Agency, “1.3 Fuel Oil Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, no. 4, 1999.
[108] U.S. Environmental Protection Agency, “1.4 Natural Gas combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. 112, no. 483, 1966, pp. 211–212.
[109] U.S. Environmental Protection Agency, “1.1 Bituminous And Subbituminous Coal Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, U.S. Environmental Protection Agency, Ed. NC, 1998.
[110] G. A. Buchner, A. W. Zimmermann, A. E. Hohgräve, and R. Schomäcker, “Techno-economic Assessment Framework for the Chemical Industry—Based on Technology Readiness Levels,” Ind. Eng. Chem. Res., vol. 57, no. 25, pp. 8502–8517, Jun. 2018, doi: 10.1021/acs.iecr.8b01248.
[111] U.S. Environmental Protection Agency, “11.6 Portland Cement Manufacturing,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, .
[112] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 5 Chemical Reactors,” in Process Analysis and Simulation in Chemical Engineering, 2016.
[113] G. Chaves, J. Ricardo, L. Garc, Z. A. Leguizam, and R. G. Rodr, “Process Analysis and Simulation in Chemical Engineering,” in Process Analysis and Simulation in Chemical Engineering, 2015, pp. 1–2, 7.
[114] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 9 Solids Operations in process simulators,” in Process Analysis and Simulation in Chemical Engineering, 2016.
[115] OFICEMEN and CONSULNIMA, “Estudio de métodos de emisión, cálculo y estimación para las emisiones de las sustancias PRTR adecuados al sector del cemento en España,” España, 2009.
[116] J. J. Carroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water,” J. Phys. Chem., vol. 20, no. 6, pp. 1201–1209, 1991, doi: 10.1063/1.555900.
[117] A. W. Zimmermann et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization.” University of Michigan Library, Ann Arbor, MI, USA, p. 157, 2018, doi: 10.3998/2027.42/145436.
[118] D. Voldsund, Mari; Anantharaman, Rahul; Berstad, David; De Lena, Edoardo; Fu, Chao; Gardarsdottir, Stefania Osk; Jamali, Armin; Pérez-Calvo, José-Francisco; Romano, Matteo; Roussanaly, Simon; Ruppert, Johannes; Stallmann, Olaf; Sutter, “D4.6 CEMCAP comparative techno-economic analysis of CO2 capture in cement plants,” 2018. doi: 10.5281/zenodo.2597091.
[119] M. Tsagkari, J. L. Couturier, J. L. Dubois, and A. Kokossis, “Heuristics for Capital Cost Estimation: a Case Study on Biorefinery Processes,” 10th Natl. Congr. Chem. Eng., no. August, p. 9, 2015.
[120] American Chemistry Council ACC, “2018 Elements of the BUSINESS OF CHEMISTRY,” 2018. [Online]. Available: https://www.americanchemistry.com/2018-Elements-of-the-Business-of-Chemistry.pdf.
[121] P. Christensen et al., “Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction,” 2016. [Online]. Available: www.tcu.gov.br/autenticidade,%0Ahttps://web.aacei.org/docs/default-source/toc/toc_18r-97.pdf?sfvrsn=4.
[122] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” Unpubl. Work. Pap., pp. 1–23, 2018.
[123] International Standard Organisation - ISO, ISO 14040: Environmental management - Life cycle assessment - Principles and framework. 2006.
[124] Z. Nie, “Life Cycle Modelling of Carbon Dioxide Capture and Geological Storage in Energy Production,” Imperial College London, 2009.
[125] M. Z. Hauschild and M. A. J. Huijbregts, Life Cycle Impact Assessment, vol. 2, no. 2. Springer, 2015.
[126] D. A. Salas, A. D. Ramirez, C. R. Rodríguez, D. M. Petroche, A. J. Boero, and J. Duque-Rivera, “Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review,” J. Clean. Prod., vol. 113, pp. 114–122, 2016, doi: 10.1016/j.jclepro.2015.11.078.
[127] N. Von der Assen, P. Voll, M. Peters, and A. Bardow, “Life cycle assessment of CO2 capture and utilization: a tutorial review.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 7982–94, 2014, doi: 10.1039/c3cs60373c.
[128] International Standard Organisation - ISO, ISO 14044 Environmental management — Life cycle assessment — Requirements and guidelines. 2006.
[129] A. P. Acero, C. Rodriguez, and A. Ciroth, LCIA methods: Impact assessment methods in life cycle assessment and their impact categories. 2017.
[130] D. A. Lane, “Getting the Most out of Technoeconomic Analyses,” no. November. pp. 38–41, 2018, doi: 10.1370/afm.563.INTRODUCTION.
[131] U.S. Department of Energy, “Technology Readiness Assessment Guide,” Washington D.C., 2009. [Online]. Available: https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04/@@images/file.
[132] S. Michailos et al., “Methanol Worked Examples for the TEA and LCA Guidelines for CO2 Utilization,” 2018. doi: 10.3998/2027.42/145723.
[133] National Energy Technology Laboratory - NETL, “Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies,” 2014.
[134] R. Smith, Chemical process design and integration. Chichester: University of Manchester, 2005.
[135] Brown, T.R, “Capital Cost Estimating,” Hydrocarb. Process., pp. 92–100, 2000, doi: 10.1016/B978-0-08-096659-5.00007-9.
[136] E. S. Rubin, J. E. Davison, and H. J. Herzog, “CO2 capture and storage,” Int. J. Greenh. Gas Control, vol. 40, pp. 378–400, 2015, doi: 10.1016/j.ijggc.2015.05.018.
[137] International Energy Agency - IEA and Energy Technology System Analysis Programme - ETSAP, “Cement Production,” 2010.
[138] M. Boyer, J. Ponssard, M. Boyer, J. P. Economic, M. Boyer, and J. P. Ponssard, “Economic analysis of the European cement industry To cite this version : HAL Id : hal-00915646 European cement industry,” 2013.
[139] G. J. Petley, “A method for estimating the capital cost of chemical process plants : fuzzy matching,” Loughborough University, 1997.
[140] J. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977, doi: 10.1016/0377-841X(77)90004-3.
[141] K. D. Peters, M S;Tmmerhaus, Plant design and Economics for Chemical Engineers Principles, Practice and Economics of Plant and Process Design, Fourth Edi. EE.UU: McGraw Hill, 1991.
[142] G. Towler and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. Elsevier, 2008.
[143] G. D. Ulrich and P. T. Vasudevan, “How to Estimate Utility Costs for a number of utilities,” no. April, pp. 66–69, 2006.
[144] Ecoinvent Association, “The ecoinvent Database,” Ecoinvent Centre, 2013. .
[145] E. Moreno Ruiz et al., “Documentation of changes implemented in the ecoinvent database v3.5 (2018.08.23),” Ecoinvent V3, vol. 4, pp. 1–97, 2017.
[146] M. Finkbeiner, Special Types of Life Cycle Assessment. Berlin: Springer, Dordrecht, 2016.
[147] M. Z. Hauschild and M. A. J. Huijbregts, LCA Compendium – The Complete World of Life Cycle Assessment. Life cycle impact assessment, vol. 2, no. 2. Springer, 2015.
[148] Y. Cuéllar, R. Buitrago-Tello, and L. C. Belalcazar-Ceron, “Life Cycle Emissions from a Bus Rapid Transit System and Comparison with other modes of Passenger Transportation,” Ct&F-Ciencia Tecnol. Y Futur., vol. 6, no. 3, pp. 123–134, 2016, doi: 10.29047/01225383.13.
[149] Á. Cadena et al., “Informe 5 – Informe Final: Fichas de las medidas,” 2016. [Online]. Available: https://www.minambiente.gov.co.
[150] UPME, “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016, [Online]. Available: http://www.siel.gov.co/portals/0/generacion/2016/Segui_variables_dic_2016.pdf.
[151] B. Metz, O. Davidson, H. C. De Coninck, M. Loss, and L. A. Meyer, “IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge, UK. New York, USA., 2005. doi: 10.1016/S0022-3476(75)80125-9.
[152] J. I. Tobón, “Rellenos industriales minerales,” Universidad Nacional de Colombia, 2004.
[153] E. A. Martinez, “REMOCIÓN DE SULFATOS DE DRENAJES ÁCIDOS DE MINERÍA DE CARBÓN PARA PRODUCCIÓN DE YESO SINTÉTICO MEDIANTE EL USO DE UN SUBPRODUCTO INDUSTRIAL,” UNIVERSIDAD NACIONAL DE COLOMBIA – SEDE MEDELLÍN, 2010.
[154] ICONTEC, “NTC 5163 Terminologia relacionada con Cal y Caliza,” Bogotá D.C., 2003.
[155] ICONTEC, “NTC 639. Pinturas. Carbonato de calcio,” Bogotá D.C., 1972.
[156] ASTM International, “ASTM C595/C595M-18 Standard Specification for Blended Hydraulic Cements,” 2017. doi: 10.1520/C0595.
[157] M. E. Boesch and S. Hellweg, “Identifying improvement potentials in cement production with life cycle assessment,” Environ. Sci. Technol., vol. 44, no. 23, pp. 9143–9149, 2010, doi: 10.1021/es100771k.
[158] T. Oates, Lime and Limestone. 1960.
[159] V. Ol, M. April, E. Abra, and E. Salvador, Economic Geology, vol. 102, no. April. 2007.
[160] USGS, “2005 Minerals Yearbook: Cement,” 2007. [Online]. Available: https://minerals.usgs.gov/minerals/pubs/commodity/cement/cemenmyb05.pdf.
[161] DANE (Colombia), “National production volume of gray cement in Colombia from 2013 to 2017 (in million metric tons),” Statista - The Statistics Portal. p. 1, [Online]. Available: https://www.statista.com/statistics/811140/production-volume-gray-cement-colombia/.
[162] A. Latorre, “La industrial del cemento en Colombia. Determinantes y comportamiento de la demanda.,” Pontificia Universidad Javeriana, 2008.
[163] M. Cárdenas, C. Mejía, and F. García, “La Industria del Cemento en Colombia,” Bogotá D.C., 2012. [Online]. Available: https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/807/WP_2007_No_33.pdf?sequence=1&isAllowed=y.
[164] D. García-Gusano, I. Herrera, D. Garraín, Y. Lechón, and H. Cabal, “Life cycle assessment of the Spanish cement industry: implementation of environmental-friendly solutions,” Clean Technol. Environ. Policy, vol. 17, no. 1, pp. 59–73, 2014, doi: 10.1007/s10098-014-0757-0.
[165] Unidad de Planeación Minero Energética - UPME, “Boletín estadístico de Minas y Energía 2012 – 2016,” 2016. doi: 10.1017/CBO9781107415324.004.
[166] International Energy Agency, “Renewables 2018,” 2018. doi: 10.1787/re_mar-2018-en.
[167] S. Szima and C. C. Cormos, “Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation,” J. CO2 Util., vol. 24, no. January, pp. 555–563, 2018, doi: 10.1016/j.jcou.2018.02.007.
[168] US Geological Survey, “Cement prices in the United States from 2007 to 2017 (in U.S. dollars per metric ton),” Statista - The Statistics Portal. https://www.statista.com/statistics/219339/us-prices-of-cement/. (accessed Dec. 11, 2018).
[169] U.S. Geological Survey, “Mineral commodity summaries 2018: U.S. Geological Survey,” 2018. doi: https://doi.org/10.3133/70194932.
[170] Agencia Nacional de Minería, “Ficha: Calizas,” 2016. [Online]. Available: https://www.anm.gov.co/sites/default/files/ficha_calizas_es.pdf.
[171] Unidad de Planeación Minero Energética - UPME, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” Bogota, 2017. [Online]. Available: http://www1.upme.gov.co/simco/PlaneacionSector/Documents/PNDM_Dic2017.pdf.
[172] Agencia Nacional de Minería, “Producción de caliza en Colombia, Agosto de 2017,” 2017. [Online]. Available: https://www.minminas.gov.co/analisis-minero.
[173] Unidad de Planeación Minero Energética - UPME, “Boletin estadístico de minas y energía,” Bogota, 2018. [Online]. Available: www.upme.gov.co.
[174] Unidad de Planeación Minero Energética UPME, “Proyección De Precios De Los Energéticos Para Generación Eléctrica 2016-2035,” 2016. [Online]. Available: http://www1.upme.gov.co/Hidrocarburos/publicaciones/Proyeccion_de_los_precios_de_los_combustibles_junio_2016.pdf.
[175] Instituto para la Diversificación y Ahorro de la Energía and ESCAN S.A., “Biomasa: Industria,” 2008. [Online]. Available: https://www.idae.es/uploads/documentos/documentos_10980_Biomasa_industria_A2008_A_402485e2.pdf.
[176] L. Guillermo, V. Álvarez, and D. U. Eafit, “El precio de la electricidad en Colombia y comparación con referentes internacionales,” 2015.
[177] “IRENA_Renewable_Power_Generation_Costs_in_2017_01.” .
[178] D. Leeson, P. Fennell, N. Shah, C. Petit, and N. Mac Dowell, “A Techno-economic Analysis and Systematic Review of Carbon Capture and Storage (CCS) Applied to the Iron and Steel, Cement, Oil Refining and Pulp and Paper Industries,” Energy Procedia, vol. 114, no. November 2016, pp. 6297–6302, 2017, doi: 10.1016/j.egypro.2017.03.1766.
[179] H. Naims, “Economics of carbon dioxide capture and utilization—a supply and demand perspective,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22226–22241, 2016, doi: 10.1007/s11356-016-6810-2.
[180] S. M. N. Hassan, P. Douglas, and E. Croiset, “Techno-economic study of CO2 capture from an existing cement plant using MEA scrubbing,” Int. J. Green Energy, vol. 4, no. 2, pp. 197–220, 2007, doi: 10.1080/01971520600873418.
[181] A. M. Cormos and C. C. Cormos, “Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania,” Chem. Eng. Res. Des., vol. 123, pp. 230–239, 2017, doi: 10.1016/j.cherd.2017.05.013.
[182] J. Li, P. Tharakan, D. Macdonald, and X. Liang, “Technological, economic and financial prospects of carbon dioxide capture in the cement industry,” Energy Policy, vol. 61, pp. 1377–1387, 2013, doi: 10.1016/j.enpol.2013.05.082.
[183] Corporación Nacional de Investigación y Fomento Forestal-CONIF, “Estudio de Costos de las Especies Forestales beneficiarias del CIF, de acuerdo con la Resolución 080 de 2013 Informe Final,” 2013.
[184] IEA, “Electricity Information 2018 overview,” Int. Energy Agency, 2019, [Online]. Available: https://www.iea.org/statistics/electricity/.
[185] L. Ji et al., “Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO2 Sequestration,” Energy and Fuels, vol. 32, no. 4, pp. 4569–4578, 2018, doi: 10.1021/acs.energyfuels.7b03137.
[186] M. I. Yakub, S. Mohamed, and S. U. Danladi, “Technical and Economic Considerations of Post-Combustion Carbon Capture in a Coal Fired Power Plant,” Int. J. Adv. Eng. Technol., vol. 7, no. 5, pp. 1549–1581, 2014.
[187] IPCC, IPCC Special Report on Carbon dioxide Capture and Storage. Canada: Intergovernmental Panel on Climate Change, 2005.
[188] A. Zimmerman et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization,” 2018, doi: 10.3998/2027.42/145436.
[189] M. Voldsund et al., “Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030559.
[190] S. O. Gardarsdottir et al., “Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030542.
[191] J. H. Leie, J. H. Lee, I. K. Park, and C. H. Lee, “Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments,” J. CO2 Util., vol. 26, no. June, pp. 522–536, 2018, doi: 10.1016/j.jcou.2018.06.007.
[192] Y. Jeong, C. W. Hargis, S. Chun, and J. Moon, “Effect of calcium carbonate fineness on calcium sulfoaluminate-belite cement,” Materials (Basel)., vol. 10, no. 8, pp. 6–10, 2017, doi: 10.3390/ma10080900.
[193] M. Baghriche, S. Achour, and O. Baghriche, “Combined effect of cement kiln dust and calcined dolomite raw on the properties of performance magnesium phosphate cement,” Case Stud. Constr. Mater., vol. 13, 2020, doi: 10.1016/j.cscm.2020.e00386.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 1 recurso en linea (213 paginas)
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79464/1/1032392675.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79464/2/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79464/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79464/4/1032392675.2021.pdf.jpg
bitstream.checksum.fl_str_mv 8579ac9a67a616d4469782f07aed5783
cccfe52f796b7c63423298c2d3365fc6
4460e5956bc1d1639be9ae6146a50347
574c1d9cdbd3ff87c066e0ebe01bd8d7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090228547190784
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojas Roa, Nestor Y.a9d674e629eeca0644247b609992011dTobón, Jorge Ivánbfb9bdf72e2b2fed1fb614b88d646838Pedraza Vega, Jenniffer Iveth5fce666cf1d9afcd83988248447a3135Calidad del AireGrupo de Investigación en Materiales, Catálisis y Medio AmbienteGrupo del Cemento y Materiales de Construcción2021-05-03T16:54:36Z2021-05-03T16:54:36Z2021https://repositorio.unal.edu.co/handle/unal/79464Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficas, mapas, tablasCarbon dioxide capture and utilization (CCU) technologies are being developed to reduce carbon dioxide emissions from the cement sector and to obtain by-products with high added value. The cement sector is the second-largest industrial emitter of carbon dioxide (CO2), contributing to 5-8 % of anthropogenic global emissions in 2015-217. Cement production consists of raw material preparation, clinker production, blending/grinding, and packaging. A major emission source of CO2 is the de-carbonation of limestone during the calcination process, which constitutes 60 % of the total clinker kiln CO2 emissions and the remaining 40 % comes from the combustion of fuels (liquid fuels, gas, coal, wastes, and biomass). The CO2 emissions from limestone calcination are inherent to chemical reactions of the raw material and cannot be avoided unless other sources of CaO would be used. Mineral carbonation (MCAP-CO2) is one of the CCU technologies that recover CO2 contained in flue gases coming from clinker kiln to obtain synthetic carbonate from the reaction between CO2 and industrial wastes rich in calcium oxide, and using these synthetic carbonates either as a final product or as an input to the cement industry. Prior studies have noted the importance of combined economic and environmental aspects to evaluate the performance of CCU technologies applied to the cement sector. In this research, it was addressed this need using technological, economic, and environmental criteria for an initial assessment (at pre-feasibility level) of implementing the MCAP-CO2 within a conventional cement plant from a net-zero emissions perspective. The analysis goes from extractive processes to blended cement production including the capture process. It is considered that flue gas (rich in CO2) and CKD streams from clinker production are directed to the MCAP-CO2 process as main inputs. This thesis provides a better understanding of the capture technologies focused on the mitigation of CO2 emissions in the cement Colombian sector. This novel approach, integrating technological, economic and environmental criteria following LCA standardized metrics, allows to establish the cost–benefit relation of implementing CCU within the cement industry. In addition, hotspots were identified and evaluated at prefeasibility level in the assessment of CCU from a sustainability perspective such as: energy costs, CO2 abatement costs and plant capacity. Furthermore, we can extend these methods to others CCU technologies if we align the goal, scope, boundaries, inventory and indicators, so they must fit to the research question.El sector del cemento es el segundo mayor emisor industrial de dióxido de carbono (CO2), contribuyendo al 5-8 % de las emisiones globales de origen antrópico entre 2015-2017. La producción de cemento consiste en la preparación de materia prima (explotación, trituración y transporte), la producción de Clinker, y la mezcla, molienda y empaque final. Una fuente importante de emisión de CO2 es la descarbonatación de la piedra caliza o calcita durante el proceso de calcinación, que constituye el 60 % de las emisiones totales de CO2 en el horno de Clinker; el 40 % restante proviene de la combustión de combustibles (combustibles líquidos, gas, carbón, desechos ordinarios e industriales y biomasa). Las emisiones de CO2 de la calcinación de la piedra caliza son inherentes a las reacciones químicas de la materia prima y no se pueden evitar a menos que se utilicen otras fuentes de CaO. El estudio de tecnologías de captura y utilización de dióxido de carbono (CCU) permite reducir las emisiones de gases de efecto invernadero (GEI) del sector cementero y obtener subproductos con alto valor agregado. La carbonatación mineral en fase acuosa (MCAP-CO2) es una de las tecnologías CCU que utiliza el CO2 proveniente los gases de combustión del horno de Clinker para obtener carbonatos sintéticos productos de la reacción entre CO2 y compuestos de óxido de calcio o magnesio, presentes en los desechos industriales, y utilizando estos carbonatos como producto final o como insumo para la industria del cemento. Investigaciones previas han señalado la importancia de la integración de los aspectos económicos y ambientales para evaluar el desempeño de las tecnologías CCU aplicadas al sector industrial en general. En esta investigación, se ha abordado esta necesidad eligiendo criterios tecnológicos, económicos y ambientales para una evaluación inicial (a nivel de pre-factibilidad) de la implementación del proceso de MCAP-CO2 en una planta de cemento bajo una perspectiva de cero emisiones de CO2. El alcance del análisis abarca desde los procesos de extracción hasta la producción de cemento teniendo en cuenta el proceso de captura de CO2 por carbonatación mineral de CKD (MCAP-CO2). Esta tesis brinda una mejor comprensión de las tecnologías de captura enfocadas a la mitigación de las emisiones de CO2 en el sector cementero colombiano. Este enfoque, que integra criterios tecnológicos, económicos y ambientales siguiendo las métricas estandarizadas del análisis de ciclo de vida -ACV-, permite establecer la relación costo-beneficio de implementar la captura y utilización dentro de la industria cementera. Además, se identificaron y evaluaron hotspots a nivel de prefactibilidad en la evaluación de CCU desde una perspectiva de sostenibilidad, tales como: costos de energía, costos de reducción de CO2 y capacidad de la planta. Asì mismo, este enfoque pueden extenderse a otras tecnologías de CCU si se alinea el objetivo, el alcance, los límites del sistema, el inventario y los indicadores, para que se ajusten a la pregunta epecìfica de investigación a resolver.DoctoradoProceso ambiental1 recurso en linea (213 paginas)application/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotáUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra660 - Ingeniería químicaCarbon Capture and UtilizationCarbon footprintIndustrial wasteMineral carbonationClimate changeCambio climáticoCaptura y utilización de dióxido de carbonocarbonatación mineralHuella de carbonoCO2 Capture by mineral carbonation to obtain a usable material of industrial wasteCaptura de CO2 por carbonatación mineral para la obtención de un material aprovechable a partir de residuos industrialesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTexthttp://purl.org/redcol/resource_type/TD[1] A. Kätelhön, R. Meys, S. Deutz, S. Suh, and A. Bardow, “Climate change mitigation potential of carbon capture and utilization in the chemical industry,” Proc. Natl. Acad. Sci., vol. c, no. 20, p. 201821029, 2019, doi: 10.1073/pnas.1821029116.[2] International Energy Agency, (IEA), and Cement Sustainability Initiative (CSI), “Technology Roadmap: Low-Carbon Transition in the Cement Industry,” 2017. doi: 10.1007/SpringerReference_7300.[3] World Business Council for Sustainable Development, “Cement Industry Energy and CO2 Performance: ‘Getting the Numbers Right,’” 2016. doi: ISBN: 978-3-940388-48-3.[4] O. Edenhofer et al., Climate Change 2014: Mitigation of Climate Change. 2014.[5] K. Roh, J. H. Lee, and R. Gani, “A methodological framework for the development of feasible CO2 conversion processes,” Int. J. Greenh. Gas Control, vol. 47, pp. 250–265, Apr. 2016, doi: 10.1016/j.ijggc.2016.01.028.[6] IPCC, “La captación y el almacenamiento de dióxido de carbono - Resumen tecnico,” in IPCC Special Report on Carbon Dioxide Capture and Storage, vol. 17, no. 4, B. Metz, O. Davidson, H. de Coninck, M. Loos, and L. MEyer, Eds. 2005, p. 66.[7] B. A. F. Bernal and K. A. H. Saavedra, “DIAGNÓSTICO DE LA INDUSTRIA DEL CEMENTO EN COLOMBIA Y EVALUACIÓN DE ALTERNATIVAS TECNOLÓGICAS PARA EL CUMPLIMENTO DE LA NORMA DE EMISIÓN DE FUENTES FIJAS,” Universidad de la Salle, 2008.[8] A. Favier, C. De-Wolf, K. Scrivener, and G. Habert, “A sustainable future for the european cement and concrete industry. Technology assessment for full decarbonisation of the industry by 2050 The authors,” 2019.[9] J. Albo, L. A. Alvarez, J. M. Andres, C. Bartolome, S. Burgos, and P. Castro, Usos del CO2: Un camino hacia la sostenibilidad, 1st ed., vol. 1, no. 9. España, 2013.[10] IDEAM; PNUD; MADS; DNP; CANCILLERÍA, “Primer Informe Bienal de Actualización de Colombia,” p. 252, 2015, doi: 10.1007/s13398-014-0173-7.2.[11] Ministerio de Industria Comercio y Turismo, “PLAN DE ACCIÓN SECTORIAL DE MITIGACIÓN (PAS SECTOR INDUSTRIA,” 2014. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdf/planes_sectoriales_de_mitigación/PAS_Industria_-_Final.pdf.[12] E. S. Rubin, “Summary of the IPCC Special Report on Carbon Dioxide Capture and Storage,” pp. 35–41, 2006.[13] S. Teir, R. Kuusik, C. J. Fogelholm, and R. Zevenhoven, “Production of magnesium carbonates from serpentinite for long-term storage of CO2,” Int. J. Miner. Process., vol. 85, no. 1–3, pp. 1–15, 2007, doi: 10.1016/j.minpro.2007.08.007.[14] M. S. Ncongwane, J. L. Broadhurst, and J. Petersen, “Assessment of the potential carbon footprint of engineered processes for the mineral carbonation of PGM tailings,” Int. J. Greenh. Gas Control, vol. 77, no. August, pp. 70–81, 2018, doi: 10.1016/j.ijggc.2018.07.019.[15] A. Azdarpour, M. Asadullah, E. Mohammadian, H. Hamidi, R. Junin, and M. A. Karaei, “A review on carbon dioxide mineral carbonation through pH-swing process,” Chem. Eng. J., vol. 279, pp. 615–630, 2015, doi: 10.1016/j.cej.2015.05.064.[16] Element Energy, Carbon Counts, Process System Enterprise, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement, chemicals, iron and steel and oil refining sectors by 2025: A Techno-economic Study,” Cambridge, 2014. [Online]. Available: http://www.element-energy.co.uk/wordpress/wp-content/uploads/2017/06/Element_Energy_DECC_BIS_Industrial_CCS_and_CCU_final_report_14052014.pdf.[17] D. N. Huntzinger, J. S. Gierke, L. L. Sutter, S. K. Kawatra, and T. C. Eisele, “Mineral carbonation for carbon sequestration in cement kiln dust from waste piles,” J. Hazard. Mater., vol. 168, no. 1, pp. 31–37, 2009, doi: 10.1016/j.jhazmat.2009.01.122.[18] N. L. Ukwattage, P. G. Ranjith, M. Yellishetty, H. H. Bui, and T. Xu, “A laboratory-scale study of the aqueous mineral carbonation of coal fly ash for CO2 sequestration,” J. Clean. Prod., vol. 103, pp. 1–10, 2015, doi: 10.1016/j.jclepro.2014.03.005.[19] A. Polettini, R. Pomi, and A. Stramazzo, “CO2 sequestration through aqueous accelerated carbonation of BOF slag: A factorial study of parameters effects,” J. Environ. Manage., vol. 167, pp. 185–195, 2016, doi: 10.1016/j.jenvman.2015.11.042.[20] M. Dri, A. Sanna, and M. M. Maroto-Valer, “Mineral carbonation from metal wastes : Effect of solid to liquid ratio on the efficiency and characterization of carbonated products,” Appl. Energy, vol. 113, pp. 515–523, 2014, doi: 10.1016/j.apenergy.2013.07.064.[21] R. Ducroux and P. Jean-Baptiste, “Is CO2 capture and storage the right way for mitigating climate change?,” Greenh. Gas Control Technol., vol. 3, no. 11, pp. 2463–2466, 2015, doi: 10.1017/CBO9781107415324.004.[22] E. Chang, C. Chen, Y. Chen, S. Pan, and P. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” vol. 186, pp. 2010–2011, 2011, doi: 10.1016/j.jhazmat.2010.11.038.[23] S. Gopinath and A. Mehra, Carbon sequestration during steel production: Modelling the dynamics of aqueous carbonation of steel slag, vol. 115. Institution of Chemical Engineers, 2016.[24] J. L. Galvez-Martos, A. Elhoweris, J. Morrison, and Y. Al-Horr, “Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines,” J. CO2 Util., vol. 27, no. April, pp. 161–169, 2018, doi: 10.1016/j.jcou.2018.07.011.[25] N. Kemache, L. C. Pasquier, E. Cecchi, I. Mouedhen, J. F. Blais, and G. Mercier, “Aqueous mineral carbonation for CO2sequestration: From laboratory to pilot scale,” Fuel Process. Technol., vol. 166, pp. 209–216, 2017, doi: 10.1016/j.fuproc.2017.06.005.[26] Element Energy Ltd, Carbon Counts Ltd, PSE Ltd, Imperial College, and University of Sheffield, “Demonstrating CO2 capture in the UK cement , chemicals , iron and steel and oil refining sectors by 2025 : A Techno-economic Study,” 2014.[27] D. García-Gusano, D. Garraín, I. Herrera, H. Cabal, and Y. Lechón, “Life Cycle Assessment of applying CO2 post-combustion capture to the Spanish cement production,” J. Clean. Prod., vol. 104, pp. 328–338, 2015, doi: 10.1016/j.jclepro.2013.11.056.[28] A. W. Zimmermann and R. Schomäcker, “Assessing Early-Stage CO 2 utilization Technologies-Comparing Apples and Oranges?,” Energy Technol., vol. 5, no. 6, pp. 850–860, Jun. 2017, doi: 10.1002/ente.201600805.[29] C. C. Cormos, A. M. Cormos, and L. Petrescu, “Assessing the CO2 Emissions Reduction from Cement Industry by Carbon Capture Technologies: Conceptual Design, Process Integration and Techno-economic and Environmental Analysis,” in Computer Aided Chemical Engineering, 2017, vol. 40, pp. 2593–2598, doi: 10.1016/B978-0-444-63965-3.50434-7.[30] A. Monteiro, Juliana Garcia Moretz-Sohn; Goetheer, Earl; Schols, Erin; van Os, Peter; Calvo, José Francisco Pérez; Hoppe, Helmut; Bharadwaj, Hariharan Subrahmaniam; Roussanaly, Simon; Khakharia, Purvil; Feenstra, Maartje; de Jong, “D5.1 Post-capture CO2 management CO2 utilization in cement industry CO2 sequestration,” 2018. doi: 10.5281/zenodo.2597056.[31] K. B. Najim, Z. S. Mahmod, and A. K. M. Atea, “Experimental investigation on using Cement Kiln Dust (CKD) as a cement replacement material in producing modified cement mortar,” Constr. Build. Mater., vol. 55, pp. 5–12, 2014, doi: 10.1016/j.conbuildmat.2014.01.015.[32] P. Styring, E. Quadrelli, and K. Armstrong, Carbon Dioxide Utilisation: Closing the Carbon Cycle. 2014.[33] S. Y. Pan, A. Chiang, E. E. Chang, Y. P. Lin, H. Kim, and P. C. Chiang, “An innovative approach to integrated carbon mineralization and waste utilization: A review,” Aerosol Air Qual. Res., vol. 15, no. 3, pp. 1072–1091, 2015, doi: 10.4209/aaqr.2014.10.0240.[34] R. Baciocchi, G. Costa, and D. Zingaretti, “Transformation and Utilization of Carbon Dioxide,” in Transformation and Utilization of Carbon Dioxide, B. M. Bhanage and M. Arai, Eds. Springer, 2014, pp. 268–299.[35] A. Sanna, M. Uibu, G. Caramanna, R. Kuusik, and M. M. Maroto-Valer, “A review of mineral carbonation technologies to sequester CO2.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 8049–80, 2014, doi: 10.1039/c4cs00035h.[36] A. Sanna, “Reduction of CO2 Emissions Through Waste Materials Recycling by Mineral Carbonation,” Handb. Clean Energy Syst., 2015, doi: 10.1002/9781118991978.hces025.[37] Z. Osmanovic, N. Haračić, and J. Zelić, “Properties of blastfurnace cements (CEM III/A, B, C) based on Portland cement clinker, blastfurnace slag and cement kiln dusts,” Cem. Concr. Compos., vol. 91, no. October 2016, pp. 189–197, 2018, doi: 10.1016/j.cemconcomp.2018.05.006.[38] R. Siddique, “Utilization of cement kiln dust (CKD) in cement mortar and concrete-an overview,” Resour. Conserv. Recycl., vol. 48, no. 4, pp. 315–338, 2006, doi: 10.1016/j.resconrec.2006.03.010.[39] S. Peethamparan, J. Olek, and J. Lovell, “Influence of chemical and physical characteristics of cement kiln dusts (CKDs) on their hydration behavior and potential suitability for soil stabilization,” Cem. Concr. Res., vol. 38, no. 6, pp. 803–815, 2008, doi: 10.1016/j.cemconres.2008.01.011.[40] R. Baciocchi, O. Capobianco, G. Costa, M. Morone, and D. Zingaretti, “Carbonation of industrial residues for CO2 storage and utilization as a treatment to achieve multiple environmental benefits,” Energy Procedia, vol. 63, pp. 5879–5886, 2014, doi: 10.1016/j.egypro.2014.11.621.[41] H. Ghanbari, M. Helle, and H. Saxén, “Optimization of an Integrated Steel Plant with Carbon Capturing and Utilization Processes,” IFAC-PapersOnLine, vol. 48, no. 017, pp. 12–17, 2015, doi: 10.1016/j.ifacol.2015.10.069.[42] C. Bartolomé, P. M. Peris, and J. D. Recalde, Estado del arte de las tecnologías de captura y almacenamiento de CO2 en la industria del cemento. España: Agrupación de fabricantes de cemento de España, 2011.[43] M. Mun and H. Cho, “Mineral Carbonation for Carbon Sequestration with Industrial Waste,” Energy Procedia, vol. 37, pp. 6999–7005, 2013, doi: 10.1016/j.egypro.2013.06.633.[44] E. R. Bobicki, Q. Liu, Z. Xu, and H. Zeng, “Carbon capture and storage using alkaline industrial wastes,” Prog. Energy Combust. Sci., vol. 38, no. 2, pp. 302–320, 2012, doi: 10.1016/j.pecs.2011.11.002.[45] F. Grandia, F. Clarens, S. Meca, J. D. E. Pablo, and L. Duro, “Carbonatación Acelerada de Cenizas de Incineradora para su Valorización y Captura,” Macla-Revista La Soc. Española Mineral., vol. 15, pp. 107–108, 2011.[46] A. a. Olajire, “A review of mineral carbonation technology in sequestration of CO2,” J. Pet. Sci. Eng., vol. 109, pp. 364–392, 2013, doi: 10.1016/j.petrol.2013.03.013.[47] S. Y. Pan, P. C. Chiang, Y. H. Chen, E. E. Chang, C. Da Chen, and A. L. Shen, “Process intensification of steel slag carbonation via a rotating packed Bed: Reaction kinetics and mass transfer,” Energy Procedia, vol. 63, pp. 2255–2260, 2014, doi: 10.1016/j.egypro.2014.11.244.[48] M. Ortega, E. D. I. Química, A. Trinidad, E. D. I. Química, and S. Barrera, “Elaboración de Materiales de Construcción a Partir de Secuestración de Carbono,” pp. 29–31, 2015.[49] M. H. El-Naas, M. El Gamal, S. Hameedi, and A. M. O. Mohamed, “CO2 sequestration using accelerated gas-solid carbonation of pre-treated EAF steel-making bag house dust,” J. Environ. Manage., vol. 156, pp. 218–224, 2015, doi: 10.1016/j.jenvman.2015.03.040.[50] I. G. García, “Carbonatación del hormigón: combinación de CO2 con las fases hidratadas del cemento y frente de cambio de pH,” UNIVERSIDAD COMPLUTENSE DE MADRID, 2011.[51] C. Goberna and M. Faraldos, Tecnicas de Analisis y Caracterización de Materiales. 2011.[52] J. F. Carvajal, “Evaluación de escorias de Córdoba para su utilización en la industria del cemento Portland,” 2012.[53] ANDI, “Informe del Sector Siderúrgico 2016,” Bogotá D.C., 2017. [Online]. Available: http://www.andi.com.co/Uploads/Informe del sector 2016_636536148442404034.pdf.[54] D. Bonenfant, L. Kharoune, R. Hausler, and P. Niquette, “CO 2 Sequestration Potential of Steel Slags at Ambient Pressure and Temperature,” Ind. Eng. Chem Res, vol. 47, no. 20, pp. 7610–7616, 2008.[55] R. A. Sanchez and H. A. Jakobsen, “Modeling and simulation of circulating fluidized bed reactors applied to a carbonation/calcination loop,” Particuology, vol. 15, pp. 116–128, 2014, doi: 10.1016/j.partic.2013.07.009.[56] G. Montes-Hernandez, R. Pérez-López, F. Renard, J. M. Nieto, and L. Charlet, “Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash,” J. Hazard. Mater., vol. 161, no. 2–3, pp. 1347–1354, 2009, doi: 10.1016/j.jhazmat.2008.04.104.[57] IDEAM, “Inventario Nacional de Gases de Efecto Invernadero.” p. 36, 2015.[58] UPME, “Plan energetico Nacional,” 2015. [Online]. Available: http://www1.upme.gov.co/Documents/PRESENTACION_PLAN_ENERGETICO_2050.pdf.[59] Unidad de Planeación Minero Energética - UPME, “Plan de referencia: Expansión y Generación, 2016 - 2030,” p. 481, 2016, [Online]. Available: http://www.upme.gov.co/Docs/Plan_Expansion/2016/Plan_GT_2016_2030/Plan_GT_2016_2030_Final_V1_12-12-2016.pdf.[60] US Geological Survey, “Cement production globally and in the U.S. from 2010 to 2017 (in million metric tons),” Statista - The Statistics Portal, 2018. https://www.statista.com/statistics/219343/cement-production-worldwide/ (accessed Dec. 11, 2018).[61] DANE, “Estadísticas de cemento gris (ECG),” Bogotá D.C., 2018. [Online]. Available: https://www.dane.gov.co/files/investigaciones/boletines/cemento_gris/cp_cem_gris_mar18.pdf.[62] CEMEX S.A.B, “Annual Report 2016,” Mexico, 2016. [Online]. Available: https://www.cemex.com/es/home.[63] DANE, “Boletín técnico. Estadísticas de Cemento Gris (ECG),” 2018. doi: 10.1056/NEJMicm1308004.[64] D. N. Huntzinger and T. D. Eatmon, “A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies,” J. Clean. Prod., vol. 17, no. 7, pp. 668–675, 2009, doi: 10.1016/j.jclepro.2008.04.007.[65] IPCC, “Capítulo 2 emisiones de la industria de los minerales,” 2006, doi: Directrices del IPCC de 2006 para los inventarios nacionales de gases de efecto invernadero.[66] Cementos Argos S.A., “Reporte Integrado - 2016,” 2016. [Online]. Available: http://www.reporteintegradoargos.co/.[67] CEMEX S.A.B, “Reporte integrado,” 2017.[68] E. A. Martínez, J. I. Tobón, and J. G. Morales, “Coal acid mine drainage treatment using cement kiln dust,” Dyna, vol. 81, no. 186, p. 87, 2014, doi: 10.15446/dyna.v81n186.38834.[69] E. Maryeni Karina, J. I. Tobon, and J. H. Ramirez, “Use of industrial wastes for the synthesis of belite clinker,” Mater. construcción, vol. 70, no. 339, 2020, doi: https://doi.org/10.3989/mc.2020.14219.[70] P. Kunal, R. Siddique, and A. Rajor, “Use of cement kiln dust in cement concrete and its leachate characteristics,” Resour. Conserv. Recycl., vol. 61, pp. 59–68, 2012, doi: 10.1016/j.resconrec.2012.01.006.[71] E. E. Chang, C. H. Chen, Y. H. Chen, S. Y. Pan, and P. C. Chiang, “Performance evaluation for carbonation of steel-making slags in a slurry reactor,” J. Hazard. Mater., vol. 186, no. 1, pp. 558–564, 2011, doi: 10.1016/j.jhazmat.2010.11.038.[72] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and A. R. M. Daud, “Carbon Dioxide Mineral Carbonation Through pH-swing Process: A Review,” Energy Procedia, vol. 61, pp. 2783–2786, 2014, doi: 10.1016/j.egypro.2014.12.311.[73] W. S. Adaska and D. H. Taubert, “Beneficial uses of cement kiln dust,” IEEE Cem. Ind. Tech. Conf. Rec., pp. 210–228, 2008, doi: 10.1109/CITCON.2008.24.[74] A. Arulrajah, A. Mohammadinia, A. D’Amico, and S. Horpibulsuk, “Cement kiln dust and fly ash blends as an alternative binder for the stabilization of demolition aggregates,” Constr. Build. Mater., vol. 145, pp. 218–225, 2017, doi: 10.1016/j.conbuildmat.2017.04.007.[75] A. A. Elbaz, A. M. Aboulfotoh, A. M. Dohdoh, and A. M. Wahba, “Review of beneficial uses of cement kiln dust (CKD ), fly ash ( FA ) and their mixture,” J. Mater. Environ. Sci., vol. 10, no. 11, pp. 1062–1073, 2019.[76] ISO, “TECHNICAL REPORT ISO / TR 27912:2016 (E) Carbon dioxide capture — Carbon dioxide capture systems , technologies,” Geneva, 2016.[77] Y. T. Yuen, P. N. Sharratt, and B. Jie, “Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22309–22330, 2016, doi: 10.1007/s11356-016-6512-9.[78] S. Teir, “Fixation of carbon dioxide by producting carbonates from minerals and steelmakingslags,” 2008.[79] G. Montes-Hernandez, A. Pommerol, F. Renard, P. Beck, E. Quirico, and O. Brissaud, “In situ kinetic measurements of gas-solid carbonation of Ca(OH)2 by using an infrared microscope coupled to a reaction cell,” Chem. Eng. J., vol. 161, no. 1–2, pp. 250–256, 2010, doi: 10.1016/j.cej.2010.04.041.[80] H. Świnder, M. Michalak, and A. Uliasz-Bocheńczyk, “Modeling Kinetics of CO2 (Carbon Dioxide) Mineral Sequestration in Heterogeneous Aqueous Suspensions Systems of Cement Dust,” J. Sustain. Min., vol. 12, no. 4, pp. 1–5, 2013, doi: 10.7424/jsm130401.[81] H. P. Mattila, I. Grigaliu-naite, and R. Zevenhoven, “Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags,” Chem. Eng. J., vol. 192, pp. 77–89, 2012, doi: 10.1016/j.cej.2012.03.068.[82] V. Nikulshina, M. E. Gálvez, and A. Steinfeld, “Kinetic analysis of the carbonation reactions for the capture of CO2 from air via the Ca(OH)2-CaCO3-CaO solar thermochemical cycle,” Chem. Eng. J., vol. 129, no. 1–3, pp. 75–83, 2007, doi: 10.1016/j.cej.2006.11.003.[83] A. Azdarpour, M. Asadullah, R. Junin, M. Manan, H. Hamidi, and E. Mohammadian, “Direct carbonation of red gypsum to produce solid carbonates,” Fuel Process. Technol., vol. 126, pp. 429–434, 2014, doi: 10.1016/j.fuproc.2014.05.028.[84] L. Wang, Y. Jin, and Y. Nie, “Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca,” J. Hazard. Mater., vol. 174, no. 1–3, pp. 334–343, 2010, doi: 10.1016/j.jhazmat.2009.09.055.[85] G. Costa, R. Baciocchi, A. Polettini, R. Pomi, C. D. Hills, and P. J. Carey, “Current status and perspectives of accelerated carbonation processes on municipal waste combustion residues,” Environ. Monit. Assess., vol. 135, no. 1–3, pp. 55–75, 2007, doi: 10.1007/s10661-007-9704-4.[86] N. L. Ukwattage, P. G. Ranjith, and X. Li, “Steel-making slag for mineral sequestration of carbon dioxide by accelerated carbonation,” Meas. J. Int. Meas. Confed., vol. 97, pp. 15–22, 2017, doi: 10.1016/j.measurement.2016.10.057.[87] M. Fernández Bertos, S. J. R. Simons, C. D. Hills, and P. J. Carey, “A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of CO2,” J. Hazard. Mater., vol. 112, no. 3, pp. 193–205, 2004, doi: 10.1016/j.jhazmat.2004.04.019.[88] M. Naranjo, D. T. Brownlow, and A. Garza, “CO2 capture and sequestration in the cement industry,” Energy Procedia, vol. 4, pp. 2716–2723, 2011, doi: 10.1016/j.egypro.2011.02.173.[89] R. Baciocchi, G. Costa, A. Polettini, R. Pomi, and V. Prigiobbe, “Comparison of different reaction routes for carbonation of APC residues,” Energy Procedia, vol. 1, no. 1, pp. 4851–4858, 2009, doi: 10.1016/j.egypro.2009.02.313.[90] A. González, N. Moreno, and R. Navia, “CO2 carbonation under aqueous conditions using petroleum coke combustion fly ash,” Chemosphere, vol. 117, no. 1, pp. 139–143, 2014, doi: 10.1016/j.chemosphere.2014.06.034.[91] R. Baciocchi, G. Costa, A. Polettini, and R. Pomi, “Influence of particle size on the carbonation of stainless steel slag for CO 2 storage,” Energy Procedia, vol. 1, no. 1, pp. 4859–4866, 2009, doi: 10.1016/j.egypro.2009.02.314.[92] C. Conde-Mejía, “Desarrollo y aplicación de un sistema jerarquico para el diseño de bio-refinerias,” Instituto Tecnológico de Celaya, 2013.[93] J. M. Douglas, “A hierarchical decision procedure for process synthesis,” AIChE J., vol. 31, no. 3, pp. 353–362, Mar. 1985, doi: 10.1002/aic.690310302.[94] WBCSC and International Energy Agency (IEA), “Technology Roadmap Cement,” 2009. doi: 978-3-940388-47-6.[95] European IPPC Bureau, “Best available techniques (BAT) for the Production of Cement, Lime and Magnesium oxide.,” 2013.[96] European IPCC Bureau, “Best available techniques (BAT) for the Cement Industry Reference Document,” Brussels, 1999.[97] N. Meunier, S. Laribi, L. Dubois, D. Thomas, and G. De Weireld, “CO2 capture in cement production and re-use: First step for the optimization of the overall process,” Energy Procedia, vol. 63, pp. 6492–6503, 2014, doi: 10.1016/j.egypro.2014.11.685.[98] C. D. Cooper and F. C. Alley, Air Pollution Control. Illinois: Waveland Pres, Inc, 2002.[99] M. John C, “TECHNOLOGY READINESS LEVELS,” J. Vis. Lang. Comput., vol. 11, no. 3, pp. 287–301, 2004.[100] I. de I. M. y C. IDEAM, DNP - Subidrección de Desarrollo Ambiental Sostenible, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Unidad Administrativa Especial del Sistema de Parques Nacionales, “Anexos,” in SEGUNDA COMUNICACIÓN NACIONAL ANTE LA CONVENCIÓN MARCO DE LAS NACIONES UNIDAS SOBRE CAMBIO CLIMATICO, 2010, p. 28.[101] B. D. Humbird and L. E. Consulting, “Expanded Technology Readiness Level ( TRL ) Definitions for the Bioeconomy,” pp. 1–7, 2018.[102] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” in 2018 AACE® INTERNATIONAL TECHNICAL PAPER, 2018, pp. 1–23.[103] G. A. Buchner, A. W. Zimmermann, A. Marxen, K. J. Stepputat, and R. Schomäcker, “Specifying Technology Readiness Levels for the Chemical Industry,” Unpubl. Work. Pap., 2018, doi: 10.1021/acs.iecr.8b05693.[104] C. Conde-Mejía, A. Jiménez-Gutiérrez, and M. M. El-Halwagi, “Assessment of combinations between pretreatment and conversion configurations for bioethanol production,” ACS Sustain. Chem. Eng., vol. 1, no. 8, pp. 956–965, 2013, doi: 10.1021/sc4000384.[105] D. Gómez and J. Watterson, “CAPÍTULO 2. Combustión estacionaria,” Directrices del IPCC 2006 para los Inventar. Nac. gases Ef. invernadero, vol. 2, pp. 1–47, 2006, doi: 10.1157/13083441.[106] U. S. E. P. Agency, “1.6 Wood Residue Combustion In Boilers,” AP 42, Compil. Air Pollut. Emiss. Factors, Vol. 1 Station. Point Area Sources, pp. 1–20, 2003, doi: 10.1111/j.1365-2109.2010.02488.x.[107] U.S. Environmental Protection Agency, “1.3 Fuel Oil Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, no. 4, 1999.[108] U.S. Environmental Protection Agency, “1.4 Natural Gas combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. 112, no. 483, 1966, pp. 211–212.[109] U.S. Environmental Protection Agency, “1.1 Bituminous And Subbituminous Coal Combustion,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, Volume I: Stationary Point and Area Sources., vol. I, U.S. Environmental Protection Agency, Ed. NC, 1998.[110] G. A. Buchner, A. W. Zimmermann, A. E. Hohgräve, and R. Schomäcker, “Techno-economic Assessment Framework for the Chemical Industry—Based on Technology Readiness Levels,” Ind. Eng. Chem. Res., vol. 57, no. 25, pp. 8502–8517, Jun. 2018, doi: 10.1021/acs.iecr.8b01248.[111] U.S. Environmental Protection Agency, “11.6 Portland Cement Manufacturing,” in Compilation of Air Pollutant Emission Factors AP-42, Fifth Edition, .[112] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 5 Chemical Reactors,” in Process Analysis and Simulation in Chemical Engineering, 2016.[113] G. Chaves, J. Ricardo, L. Garc, Z. A. Leguizam, and R. G. Rodr, “Process Analysis and Simulation in Chemical Engineering,” in Process Analysis and Simulation in Chemical Engineering, 2015, pp. 1–2, 7.[114] I. D. Gil Chaves, J. R. G. López, J. L. García Zapata, A. Leguizamón Robayo, and G. Rodríguez Niño, “Chapter 9 Solids Operations in process simulators,” in Process Analysis and Simulation in Chemical Engineering, 2016.[115] OFICEMEN and CONSULNIMA, “Estudio de métodos de emisión, cálculo y estimación para las emisiones de las sustancias PRTR adecuados al sector del cemento en España,” España, 2009.[116] J. J. Carroll, J. D. Slupsky, and A. E. Mather, “The solubility of carbon dioxide in water,” J. Phys. Chem., vol. 20, no. 6, pp. 1201–1209, 1991, doi: 10.1063/1.555900.[117] A. W. Zimmermann et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization.” University of Michigan Library, Ann Arbor, MI, USA, p. 157, 2018, doi: 10.3998/2027.42/145436.[118] D. Voldsund, Mari; Anantharaman, Rahul; Berstad, David; De Lena, Edoardo; Fu, Chao; Gardarsdottir, Stefania Osk; Jamali, Armin; Pérez-Calvo, José-Francisco; Romano, Matteo; Roussanaly, Simon; Ruppert, Johannes; Stallmann, Olaf; Sutter, “D4.6 CEMCAP comparative techno-economic analysis of CO2 capture in cement plants,” 2018. doi: 10.5281/zenodo.2597091.[119] M. Tsagkari, J. L. Couturier, J. L. Dubois, and A. Kokossis, “Heuristics for Capital Cost Estimation: a Case Study on Biorefinery Processes,” 10th Natl. Congr. Chem. Eng., no. August, p. 9, 2015.[120] American Chemistry Council ACC, “2018 Elements of the BUSINESS OF CHEMISTRY,” 2018. [Online]. Available: https://www.americanchemistry.com/2018-Elements-of-the-Business-of-Chemistry.pdf.[121] P. Christensen et al., “Cost Estimate Classification System – As Applied in Engineering, Procurement, and Construction,” 2016. [Online]. Available: www.tcu.gov.br/autenticidade,%0Ahttps://web.aacei.org/docs/default-source/toc/toc_18r-97.pdf?sfvrsn=4.[122] G. A. Buchner, J. Wunderlich, and R. Schomäcker, “Technology readiness levels guiding cost estimation in the chemical industry,” Unpubl. Work. Pap., pp. 1–23, 2018.[123] International Standard Organisation - ISO, ISO 14040: Environmental management - Life cycle assessment - Principles and framework. 2006.[124] Z. Nie, “Life Cycle Modelling of Carbon Dioxide Capture and Geological Storage in Energy Production,” Imperial College London, 2009.[125] M. Z. Hauschild and M. A. J. Huijbregts, Life Cycle Impact Assessment, vol. 2, no. 2. Springer, 2015.[126] D. A. Salas, A. D. Ramirez, C. R. Rodríguez, D. M. Petroche, A. J. Boero, and J. Duque-Rivera, “Environmental impacts, life cycle assessment and potential improvement measures for cement production: a literature review,” J. Clean. Prod., vol. 113, pp. 114–122, 2016, doi: 10.1016/j.jclepro.2015.11.078.[127] N. Von der Assen, P. Voll, M. Peters, and A. Bardow, “Life cycle assessment of CO2 capture and utilization: a tutorial review.,” Chem. Soc. Rev., vol. 43, no. 23, pp. 7982–94, 2014, doi: 10.1039/c3cs60373c.[128] International Standard Organisation - ISO, ISO 14044 Environmental management — Life cycle assessment — Requirements and guidelines. 2006.[129] A. P. Acero, C. Rodriguez, and A. Ciroth, LCIA methods: Impact assessment methods in life cycle assessment and their impact categories. 2017.[130] D. A. Lane, “Getting the Most out of Technoeconomic Analyses,” no. November. pp. 38–41, 2018, doi: 10.1370/afm.563.INTRODUCTION.[131] U.S. Department of Energy, “Technology Readiness Assessment Guide,” Washington D.C., 2009. [Online]. Available: https://www.directives.doe.gov/directives-documents/400-series/0413.3-EGuide-04/@@images/file.[132] S. Michailos et al., “Methanol Worked Examples for the TEA and LCA Guidelines for CO2 Utilization,” 2018. doi: 10.3998/2027.42/145723.[133] National Energy Technology Laboratory - NETL, “Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies,” 2014.[134] R. Smith, Chemical process design and integration. Chichester: University of Manchester, 2005.[135] Brown, T.R, “Capital Cost Estimating,” Hydrocarb. Process., pp. 92–100, 2000, doi: 10.1016/B978-0-08-096659-5.00007-9.[136] E. S. Rubin, J. E. Davison, and H. J. Herzog, “CO2 capture and storage,” Int. J. Greenh. Gas Control, vol. 40, pp. 378–400, 2015, doi: 10.1016/j.ijggc.2015.05.018.[137] International Energy Agency - IEA and Energy Technology System Analysis Programme - ETSAP, “Cement Production,” 2010.[138] M. Boyer, J. Ponssard, M. Boyer, J. P. Economic, M. Boyer, and J. P. Ponssard, “Economic analysis of the European cement industry To cite this version : HAL Id : hal-00915646 European cement industry,” 2013.[139] G. J. Petley, “A method for estimating the capital cost of chemical process plants : fuzzy matching,” Loughborough University, 1997.[140] J. H. Taylor, “The ‘process step scoring’ method for making quick capital estimates,” Eng. Process Econ., vol. 2, no. 4, pp. 259–267, 1977, doi: 10.1016/0377-841X(77)90004-3.[141] K. D. Peters, M S;Tmmerhaus, Plant design and Economics for Chemical Engineers Principles, Practice and Economics of Plant and Process Design, Fourth Edi. EE.UU: McGraw Hill, 1991.[142] G. Towler and R. Sinnott, Chemical Engineering Design. Principles, practice and economics of plant and process design. Elsevier, 2008.[143] G. D. Ulrich and P. T. Vasudevan, “How to Estimate Utility Costs for a number of utilities,” no. April, pp. 66–69, 2006.[144] Ecoinvent Association, “The ecoinvent Database,” Ecoinvent Centre, 2013. .[145] E. Moreno Ruiz et al., “Documentation of changes implemented in the ecoinvent database v3.5 (2018.08.23),” Ecoinvent V3, vol. 4, pp. 1–97, 2017.[146] M. Finkbeiner, Special Types of Life Cycle Assessment. Berlin: Springer, Dordrecht, 2016.[147] M. Z. Hauschild and M. A. J. Huijbregts, LCA Compendium – The Complete World of Life Cycle Assessment. Life cycle impact assessment, vol. 2, no. 2. Springer, 2015.[148] Y. Cuéllar, R. Buitrago-Tello, and L. C. Belalcazar-Ceron, “Life Cycle Emissions from a Bus Rapid Transit System and Comparison with other modes of Passenger Transportation,” Ct&F-Ciencia Tecnol. Y Futur., vol. 6, no. 3, pp. 123–134, 2016, doi: 10.29047/01225383.13.[149] Á. Cadena et al., “Informe 5 – Informe Final: Fichas de las medidas,” 2016. [Online]. Available: https://www.minambiente.gov.co.[150] UPME, “Informe Mensual de Variables de Generación y del Mercado Eléctrico Colombiano - Diciembre de 2016,” Subdirección Energía Eléctrica - Grup. Generación, no. 69, p. 15, 2016, [Online]. Available: http://www.siel.gov.co/portals/0/generacion/2016/Segui_variables_dic_2016.pdf.[151] B. Metz, O. Davidson, H. C. De Coninck, M. Loss, and L. A. Meyer, “IPCC, 2005: IPCC Special Report on Carbon Dioxide Capture and Storage,” Cambridge, UK. New York, USA., 2005. doi: 10.1016/S0022-3476(75)80125-9.[152] J. I. Tobón, “Rellenos industriales minerales,” Universidad Nacional de Colombia, 2004.[153] E. A. Martinez, “REMOCIÓN DE SULFATOS DE DRENAJES ÁCIDOS DE MINERÍA DE CARBÓN PARA PRODUCCIÓN DE YESO SINTÉTICO MEDIANTE EL USO DE UN SUBPRODUCTO INDUSTRIAL,” UNIVERSIDAD NACIONAL DE COLOMBIA – SEDE MEDELLÍN, 2010.[154] ICONTEC, “NTC 5163 Terminologia relacionada con Cal y Caliza,” Bogotá D.C., 2003.[155] ICONTEC, “NTC 639. Pinturas. Carbonato de calcio,” Bogotá D.C., 1972.[156] ASTM International, “ASTM C595/C595M-18 Standard Specification for Blended Hydraulic Cements,” 2017. doi: 10.1520/C0595.[157] M. E. Boesch and S. Hellweg, “Identifying improvement potentials in cement production with life cycle assessment,” Environ. Sci. Technol., vol. 44, no. 23, pp. 9143–9149, 2010, doi: 10.1021/es100771k.[158] T. Oates, Lime and Limestone. 1960.[159] V. Ol, M. April, E. Abra, and E. Salvador, Economic Geology, vol. 102, no. April. 2007.[160] USGS, “2005 Minerals Yearbook: Cement,” 2007. [Online]. Available: https://minerals.usgs.gov/minerals/pubs/commodity/cement/cemenmyb05.pdf.[161] DANE (Colombia), “National production volume of gray cement in Colombia from 2013 to 2017 (in million metric tons),” Statista - The Statistics Portal. p. 1, [Online]. Available: https://www.statista.com/statistics/811140/production-volume-gray-cement-colombia/.[162] A. Latorre, “La industrial del cemento en Colombia. Determinantes y comportamiento de la demanda.,” Pontificia Universidad Javeriana, 2008.[163] M. Cárdenas, C. Mejía, and F. García, “La Industria del Cemento en Colombia,” Bogotá D.C., 2012. [Online]. Available: https://www.repository.fedesarrollo.org.co/bitstream/handle/11445/807/WP_2007_No_33.pdf?sequence=1&isAllowed=y.[164] D. García-Gusano, I. Herrera, D. Garraín, Y. Lechón, and H. Cabal, “Life cycle assessment of the Spanish cement industry: implementation of environmental-friendly solutions,” Clean Technol. Environ. Policy, vol. 17, no. 1, pp. 59–73, 2014, doi: 10.1007/s10098-014-0757-0.[165] Unidad de Planeación Minero Energética - UPME, “Boletín estadístico de Minas y Energía 2012 – 2016,” 2016. doi: 10.1017/CBO9781107415324.004.[166] International Energy Agency, “Renewables 2018,” 2018. doi: 10.1787/re_mar-2018-en.[167] S. Szima and C. C. Cormos, “Improving methanol synthesis from carbon-free H2 and captured CO2: A techno-economic and environmental evaluation,” J. CO2 Util., vol. 24, no. January, pp. 555–563, 2018, doi: 10.1016/j.jcou.2018.02.007.[168] US Geological Survey, “Cement prices in the United States from 2007 to 2017 (in U.S. dollars per metric ton),” Statista - The Statistics Portal. https://www.statista.com/statistics/219339/us-prices-of-cement/. (accessed Dec. 11, 2018).[169] U.S. Geological Survey, “Mineral commodity summaries 2018: U.S. Geological Survey,” 2018. doi: https://doi.org/10.3133/70194932.[170] Agencia Nacional de Minería, “Ficha: Calizas,” 2016. [Online]. Available: https://www.anm.gov.co/sites/default/files/ficha_calizas_es.pdf.[171] Unidad de Planeación Minero Energética - UPME, “Plan nacional de desarrollo minero con horizonte a 2025: Minería responsable con el territorio,” Bogota, 2017. [Online]. Available: http://www1.upme.gov.co/simco/PlaneacionSector/Documents/PNDM_Dic2017.pdf.[172] Agencia Nacional de Minería, “Producción de caliza en Colombia, Agosto de 2017,” 2017. [Online]. Available: https://www.minminas.gov.co/analisis-minero.[173] Unidad de Planeación Minero Energética - UPME, “Boletin estadístico de minas y energía,” Bogota, 2018. [Online]. Available: www.upme.gov.co.[174] Unidad de Planeación Minero Energética UPME, “Proyección De Precios De Los Energéticos Para Generación Eléctrica 2016-2035,” 2016. [Online]. Available: http://www1.upme.gov.co/Hidrocarburos/publicaciones/Proyeccion_de_los_precios_de_los_combustibles_junio_2016.pdf.[175] Instituto para la Diversificación y Ahorro de la Energía and ESCAN S.A., “Biomasa: Industria,” 2008. [Online]. Available: https://www.idae.es/uploads/documentos/documentos_10980_Biomasa_industria_A2008_A_402485e2.pdf.[176] L. Guillermo, V. Álvarez, and D. U. Eafit, “El precio de la electricidad en Colombia y comparación con referentes internacionales,” 2015.[177] “IRENA_Renewable_Power_Generation_Costs_in_2017_01.” .[178] D. Leeson, P. Fennell, N. Shah, C. Petit, and N. Mac Dowell, “A Techno-economic Analysis and Systematic Review of Carbon Capture and Storage (CCS) Applied to the Iron and Steel, Cement, Oil Refining and Pulp and Paper Industries,” Energy Procedia, vol. 114, no. November 2016, pp. 6297–6302, 2017, doi: 10.1016/j.egypro.2017.03.1766.[179] H. Naims, “Economics of carbon dioxide capture and utilization—a supply and demand perspective,” Environ. Sci. Pollut. Res., vol. 23, no. 22, pp. 22226–22241, 2016, doi: 10.1007/s11356-016-6810-2.[180] S. M. N. Hassan, P. Douglas, and E. Croiset, “Techno-economic study of CO2 capture from an existing cement plant using MEA scrubbing,” Int. J. Green Energy, vol. 4, no. 2, pp. 197–220, 2007, doi: 10.1080/01971520600873418.[181] A. M. Cormos and C. C. Cormos, “Reducing the carbon footprint of cement industry by post-combustion CO2 capture: Techno-economic and environmental assessment of a CCS project in Romania,” Chem. Eng. Res. Des., vol. 123, pp. 230–239, 2017, doi: 10.1016/j.cherd.2017.05.013.[182] J. Li, P. Tharakan, D. Macdonald, and X. Liang, “Technological, economic and financial prospects of carbon dioxide capture in the cement industry,” Energy Policy, vol. 61, pp. 1377–1387, 2013, doi: 10.1016/j.enpol.2013.05.082.[183] Corporación Nacional de Investigación y Fomento Forestal-CONIF, “Estudio de Costos de las Especies Forestales beneficiarias del CIF, de acuerdo con la Resolución 080 de 2013 Informe Final,” 2013.[184] IEA, “Electricity Information 2018 overview,” Int. Energy Agency, 2019, [Online]. Available: https://www.iea.org/statistics/electricity/.[185] L. Ji et al., “Insights into Carbonation Kinetics of Fly Ash from Victorian Lignite for CO2 Sequestration,” Energy and Fuels, vol. 32, no. 4, pp. 4569–4578, 2018, doi: 10.1021/acs.energyfuels.7b03137.[186] M. I. Yakub, S. Mohamed, and S. U. Danladi, “Technical and Economic Considerations of Post-Combustion Carbon Capture in a Coal Fired Power Plant,” Int. J. Adv. Eng. Technol., vol. 7, no. 5, pp. 1549–1581, 2014.[187] IPCC, IPCC Special Report on Carbon dioxide Capture and Storage. Canada: Intergovernmental Panel on Climate Change, 2005.[188] A. Zimmerman et al., “Techno-Economic Assessment & Life-Cycle Assessment Guidelines for CO2 Utilization,” 2018, doi: 10.3998/2027.42/145436.[189] M. Voldsund et al., “Comparison of technologies for CO2 capture from cement production—Part 1: Technical evaluation,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030559.[190] S. O. Gardarsdottir et al., “Comparison of technologies for CO2 capture from cement production—Part 2: Cost analysis,” Energies, vol. 12, no. 3, 2019, doi: 10.3390/en12030542.[191] J. H. Leie, J. H. Lee, I. K. Park, and C. H. Lee, “Techno-economic and environmental evaluation of CO2 mineralization technology based on bench-scale experiments,” J. CO2 Util., vol. 26, no. June, pp. 522–536, 2018, doi: 10.1016/j.jcou.2018.06.007.[192] Y. Jeong, C. W. Hargis, S. Chun, and J. Moon, “Effect of calcium carbonate fineness on calcium sulfoaluminate-belite cement,” Materials (Basel)., vol. 10, no. 8, pp. 6–10, 2017, doi: 10.3390/ma10080900.[193] M. Baghriche, S. Achour, and O. Baghriche, “Combined effect of cement kiln dust and calcined dolomite raw on the properties of performance magnesium phosphate cement,” Case Stud. Constr. Mater., vol. 13, 2020, doi: 10.1016/j.cscm.2020.e00386.ColcienciasDAADORIGINAL1032392675.2021.pdf1032392675.2021.pdfTesis de Doctorado en Ingeniería Químicaapplication/pdf5857908https://repositorio.unal.edu.co/bitstream/unal/79464/1/1032392675.2021.pdf8579ac9a67a616d4469782f07aed5783MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79464/2/license.txtcccfe52f796b7c63423298c2d3365fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/79464/3/license_rdf4460e5956bc1d1639be9ae6146a50347MD53THUMBNAIL1032392675.2021.pdf.jpg1032392675.2021.pdf.jpgGenerated Thumbnailimage/jpeg4988https://repositorio.unal.edu.co/bitstream/unal/79464/4/1032392675.2021.pdf.jpg574c1d9cdbd3ff87c066e0ebe01bd8d7MD54unal/79464oai:repositorio.unal.edu.co:unal/794642023-07-23 23:04:05.986Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==