Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno.
Ilustraciones, tablas, gráficas
- Autores:
-
Martínez López, Luisa María
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85544
- Palabra clave:
- 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales
Microbiomas
Microbiomes
Diversidad microbiana
Microbial diversity
Actividad enzimática
Enzyme activity
Tenebrionidae
EPS
Metabarcoding
Poliestireno
Metagenómica
Biodegradación
Coleópteros
EPS
Metabarcoding
Coleoptera
Metagenomics
Biodegradation
Polystyrene
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ed5d024fdb175b465761663f8fa228e6 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85544 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
dc.title.translated.spa.fl_str_mv |
Study of the intestinal microbiome of Zophobas morio (Coleoptera: Tenebrionidae) as an approach to the potential use for the biodegradation of polystyrene. |
title |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
spellingShingle |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. 570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales Microbiomas Microbiomes Diversidad microbiana Microbial diversity Actividad enzimática Enzyme activity Tenebrionidae EPS Metabarcoding Poliestireno Metagenómica Biodegradación Coleópteros EPS Metabarcoding Coleoptera Metagenomics Biodegradation Polystyrene |
title_short |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
title_full |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
title_fullStr |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
title_full_unstemmed |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
title_sort |
Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno. |
dc.creator.fl_str_mv |
Martínez López, Luisa María |
dc.contributor.advisor.none.fl_str_mv |
López Álvarez, Diana Carolina Rojas Triviño, Edwison Alberto |
dc.contributor.author.none.fl_str_mv |
Martínez López, Luisa María |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Diversidad Biológica |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales |
topic |
570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animales Microbiomas Microbiomes Diversidad microbiana Microbial diversity Actividad enzimática Enzyme activity Tenebrionidae EPS Metabarcoding Poliestireno Metagenómica Biodegradación Coleópteros EPS Metabarcoding Coleoptera Metagenomics Biodegradation Polystyrene |
dc.subject.agrovoc.none.fl_str_mv |
Microbiomas Microbiomes Diversidad microbiana Microbial diversity Actividad enzimática Enzyme activity Tenebrionidae |
dc.subject.proposal.spa.fl_str_mv |
EPS Metabarcoding Poliestireno Metagenómica Biodegradación Coleópteros |
dc.subject.proposal.eng.fl_str_mv |
EPS Metabarcoding Coleoptera Metagenomics Biodegradation Polystyrene |
description |
Ilustraciones, tablas, gráficas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-30T20:58:37Z |
dc.date.available.none.fl_str_mv |
2024-01-30T20:58:37Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85544 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85544 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.1007/s11356-018-1234-9 Alexeeva, I., Elliott, E. J., Rollins, S., Gasparich, G. E., Lazar, J., & Rohwer, R. G. (2006). Absence of Spiroplasma or other bacterial 16S rRNA genes in brain tissue of hamsters with scrapie. Journal of Clinical Microbiology, 44(1), 91–97. https://doi.org/10.1128/JCM.44.1.91-97.2006 Argüello, H., Cortez-Romero, C., Rojas-Martínez, R. I., Segura-León, O. L., Herrera-Haro, J. G., Salazar-Ortiz, J., & Gallegos-Sanchez, J. (2014). Polimorfismos de la proteína 15 morfogénica ósea (BMP15) y su relación con el tipo de parto en la oveja pelibuey. Agrociencia, 48(1), 53–69. Bae, J., Cho, H. woo, Jung, H., Park, J., Yun, S., Ha, S., Lee, Y., & Kim, T. J. (2021). Changes in Intestinal Microbiota Due to the Expanded Polystyrene Diet of Mealworms (Tenebrio molitor). Indian Journal of Microbiology, 61(2), 130–136. https://doi.org/10.1007/s12088-021-00922-w Benson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), 36–42. https://doi.org/10.1093/nar/gks1195 Bhardwaj, H., Gupta, R., & Tiwari, A. (2012). Communities of Microbial Enzymes Associated with Biodegradation of Plastics. Journal of Polymers and the Environment, 21(2), 575–579. doi:10.1007/s10924-012-0456-z Bornscheuer, U. T. (2002). Bornscheuer 2002. 26, 73–81. Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301 Bennet, John; Dolin Raphael; Blaser Martin. (2014). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Churchill Livingstone. ISBN 978-1-455-74801-3. Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176 Calderoli, P. (2016). Análisis de las poblaciones de microorganismos fijadores de nitrógeno del suelo aplicando procedimientos metagenómicos. Universidad Nacional de La Plata. Argentina. Cao, Y., & Wang, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 10(4), 1514–1524. https://doi.org/10.3390/ijms10041514 Cole, J. R. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31(1), 442–443. doi:10.1093/nar/gkg039 Cox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-485 Danso, D., Chow, J., & Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/AEM.01095-19 Daviran Yance, P. (2017). Biodegradación de la Espuma de Poliestireno por la larva del Tenebrio molitor para la producción de Abono, 2017. Universidad César Vallejo. Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604 Farmer, J. J. (2015). Kluyvera . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–18. https://doi.org/10.1002/9781118960608.gbm01151 Fesseha, H., & Abebe, F. (2019). Degradation of Plastic Materials Using Microorganisms: A Review. Public Health – Open Journal, 4(2), 57–63. https://doi.org/10.17140/phoj-4-136 Fuente-Salcido, Norma. (2015). Las Bacteriocinas de Bacillus thuringiensis y la Proteómica como una Herramienta para su Análisis. Fronteras En Microbiologia Aplicada, October, 154–174. México. Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research International, 20(7), 4339–4355. https://doi.org/10.1007/s11356-013-1706-x Gilbert, J. A., & Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3, 347–371. https://doi.org/10.1146/annurev-marine-120709-142811 Goitisolo, I., Eguiazábal, J. I., & Nazábal, J. (2008). Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polymer Degradation and Stability, 93(10), 1747–1752. https://doi.org/10.1016/j.polymdegradstab.2008.07.030 Gómez Serrato, J. G. (2016). Diagnóstico del impacto del plastico (botellas) sobre el medio ambiente: Un estado del arte [en linea]. Universidad Santo Tomas, 81. http://hdl.handle.net/11634/10047 Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, 58(1), 50–62. https://doi.org/10.1002/anie.201805766 Henry, M., & Fouladkhah, A. (2019). Outbreak history, biofilm formation, and preventive measures for control of cronobacter sakazakii in infant formula and infant care settings. Microorganisms, 7(3). https://doi.org/10.3390/microorganisms7030077 Hou, L., & Majumder, E. L. W. (2021). Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials, 14(3), 1–20. https://doi.org/10.3390/ma14030503 Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., & Welch, D. M. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8(7), 1–9. https://doi.org/10.1186/gb-2007-8-7-r143 Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019 Jakubowicz, I., Yarahmadi, N., & Arthurson, V. (2011). Kinetics of abiotic and biotic degradability of low-density polyethylene containing prodegradant additives and its effect on the growth of microbial communities. Polymer Degradation and Stability, 96(5), 919–928. https://doi.org/10.1016/j.polymdegradstab.2011.01.031 Jensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., & Bork, P. (2008). eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 36(SUPPL. 1), 250–254. https://doi.org/10.1093/nar/gkm796 Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of polystyrene by tenebrio molitor, galleria mellonella, and zophobas atratus larvae and comparison of their degradation effects. Polymers, 13(20). https://doi.org/10.3390/polym13203539 Jung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016 K. Meng, T., Y.Y. Beng, D., S. Mohd Kassim, A., H. A. Razak, A., & A. Mohd Fauzi, N. (2019). Optimization of Polystyrene Biodegradation using Response Surface Methodology (RSM) Measured by Simple Colorimetric Method. International Journal of Engineering & Technology, 7(4.14), 216. https://doi.org/10.14419/ijet.v7i4.14.27567 Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: a review Swapnil. Journal of Biochemical Technology, 6(2), 952–961. Kanehisa-The KEGG database - PubMed-2002. (n.d.). Kent, W. J. (2002). BLAT —The BLAST -Like Alignment Tool. Genome Research, 12(4), 656–664. https://doi.org/10.1101/gr.229202 Kotova, I. B., Taktarova, Y. V., Tsavkelova, E. A., Egorova, M. A., Bubnov, I. A., Malakhova, D. V., Shirinkina, L. I., Sokolova, T. G., & Bonch-Osmolovskaya, E. A. (2021). Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Russian Federation), 90(6), 671–701. https://doi.org/10.1134/S0026261721060084 Lorenz P, Eck J.. Metagenomics and industrial applications. (2005). Nature Reviews Microbiology 3(6):510-6. DOI:10.1038/nrmicro1161 Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049. Lovley DR. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol. Oct;1(1):35-44. doi: 10.1038/nrmicro731. PMID: 15040178. Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064 Magrane, M., & Consortium, U. P. (2011). UniProt Knowledgebase: A hub of integrated protein data. Database, 2011, 1–13. https://doi.org/10.1093/database/bar009 Markowitz, V. M., Ivanova, N. N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D., Chen, I. M. A., Grechkin, Y., Dubchak, I., Anderson, I., Lykidis, A., Mavromatis, K., Hugenholtz, P., & Kyrpides, N. C. (2008). IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Research, 36(SUPPL. 1), 534–538. https://doi.org/10.1093/nar/gkm869 Marrero-Coto, J., Díaz-Valdivia, A., & Coto-Pérez, O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. Revista CENIC Ciencias Biológicas, 41(1), 67–78. Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025 Nomura, N., Shigeno-Akutsu, Y., Nakajima-Kambe, T., & Nakahara, T. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86(4), 339–345. https://doi.org/10.1016/S0922-338X(99)89001-1 Nukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28 OpenMP, A. (2011). OpenMP Application Program Interface, v. 3.1. OpenMP Architecture Review Board, July. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenMP+Application+Program+Interface#1 Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., … Vonstein, V. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research, 33(17), 5691–5702. https://doi.org/10.1093/nar/gki866 Peña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/JAVERIANA.SC25-1.TMAI Peng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206 Pérez, M. D., Martínez, C. R., & Zhurbenko, R. (2010). Aspectos fundamentales sobre el género enterococcus como patógeno de elevada importancia en la actualidad. Revista Cubana de Higiene y Epidemiologia, 48(2), 147–161. Posada, B. (2012). La degradación de los plásticos. In Revista Universidad EAFIT (Vol. 30, Issue 94, pp. 67–86). http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1408 Premraj, R., & Doble, M. (2005). Biodegradation of polymers. Indian Journal of Biotechnology, 4(2), 186–193. https://doi.org/10.17516/1997-1389-2015-8-2-113-130 Priyanka, N., & Archana, T. (2011). Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02), 1–4. https://doi.org/10.4172/2161-0525.1000111 Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188–7196. https://doi.org/10.1093/nar/gkm864 Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/10.1016/j.envpol.2019.113265 Ramis, X., Cadenato, A., Salla, J. M., Morancho, J. M., Vallés, A., Contat, L., & Ribes, A. (2004). Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability, 86(3), 483–491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021 Ramos, J; Pino, J; Angeles, Sergio; García, A. 2008. Utilización potencial de la excreta del gusano amarillo de las harinas como abono orgánico. Instituto de Biología UNAM. Ap. Postal 70-153, C.P. 04510 México D.F Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016(10), 1–22. https://doi.org/10.7717/peerj.2584 Rujnić-Sokele, M., & Pilipović, A. (2017). Challenges and opportunities of biodegradable plastics: A mini review. Waste Management and Research, 35(2), 132–140. https://doi.org/10.1177/0734242X16683272 SCHULTE, Rainer. (2006). EL MANEJO DE ZOPHOBAS MORIO (COLEOPTERA: TENEBRIONIDAE) EN CLIMAS TROPICALES HUMEDOS. Folia Amazónica. 8. 47. 10.24841/fa.v8i2.321. SHAMAN: un sitio web fácil de usar para el análisis metataxonómico desde lecturas sin procesar hasta análisis estadístico Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, Kennedy S, Ghozlane A; BMC Bioinformatics 2020 10 de agosto; 21 (1): 345. Shelomi, M., Lin, S. S., & Liu, L. Y. (2019). Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics, 20(1), 1–13. https://doi.org/10.1186/s12864-019-6352-3 Shimao, M. (2001). Biodegradation of plastics Masayuki Shimao. Current Opinion in Biotechnology, 12, 242–247. Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22(3), 422–426. https://doi.org/10.1016/j.copbio.2011.01.013 Skariyachan, S., Taskeen, N., Kishore, A. P., Krishna, B. V., & Naidu, G. (2021). Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284(January), 112030. https://doi.org/10.1016/j.jenvman.2021.112030 Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., & Rubin, E. M. (2007). Genome-wide experimental determination of barriers to horizontal gene transfer. Science, 318(5855), 1449–1452. https://doi.org/10.1126/science.1147112 Sun, J., Prabhu, A., Aroney, S. T. N., & Rinke, C. (2022). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics, 8(6), 1–19. https://doi.org/10.1099/mgen.0.000842 Tang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), 13–17. Téllez, A. (2012). La complejidad de la problemática ambiental de los residuos plásticos : una aproximación al análisis narrativo de política pública en Bogotá. In 2012. Thomas, T., Gilbert, J. & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microb Informatics Exp 2, 3. https://doi.org/10.1186/2042-5783-2-3 Tipney, H. J., Leach, S. M., Feng, W., Spritz, R., Williams, T., & Hunter, L. (2009). Leveraging existing biological knowledge in the identification of candidate genes for facial dysmorphology. BMC Bioinformatics, 10 Suppl 2, 1–10. https://doi.org/10.1186/1471-2105-10-S1-S12 Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669–7678. https://doi.org/10.1007/s00253-018-9195-y Villarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95–130. https://doi.org/10.18781/r.mex.fit.1706-5 Watson, S.W., Bock, E., Valois, F.W. et al. (1986). Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7. https://doi.org/10.1007/BF00454947 White, J. R., Nagarajan, N., & Pop, M. (2009). Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples. PLoS Computational Biology, 5(4). https://doi.org/10.1371/journal.pcbi.1000352 Wilke, A., Harrison, T., Wilkening, J., Field, D., Glass, E. M., Kyrpides, N., Mavrommatis, K., & Meyer, F. (2012). The M5nr: A novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-141 Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS Computational Biology, 6(2). https://doi.org/10.1371/journal.pcbi.1000667 Yang, S. S., Brandon, A. M., Xing, D. F., Yang, J., Pang, J. W., Criddle, C. S., Ren, N. Q., & Wu, W. M. (2018). Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 150(1). https://doi.org/10.1088/1755-1315/150/1/012005 Yang, S. S., Ding, M. Q., Zhang, Z. R., Ding, J., Bai, S. W., Cao, G. L., Zhao, L., Pang, J. W., Xing, D. F., Ren, N. Q., & Wu, W. M. (2021). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789, 147915. https://doi.org/10.1016/j.scitotenv.2021.147915 Yang, S. S., Wu, W. M., Brandon, A. M., Fan, H. Q., Receveur, J. P., Li, Y., Wang, Z. Y., Fan, R., McClellan, R. L., Gao, S. H., Ning, D., Phillips, D. H., Peng, B. Y., Wang, H., Cai, S. Y., Li, P., Cai, W. W., Ding, L. Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262–271. https://doi.org/10.1016/j.chemosphere.2018.08.078 Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233 Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661 Ziganshina, E. E., Mohammed, W. S., Shagimardanova, E. I., Vankov, P. Y., Gogoleva, N. E., & Ziganshin, A. M. (2018). Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (coleoptera). BioMed Research International, 2018. https://doi.org/10.1155/2018/6765438 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 75 + anexos |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Administración |
dc.publisher.place.spa.fl_str_mv |
Palmira, Valle del Cauca, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Palmira |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85544/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85544/2/1144152058.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85544/3/1144152058.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 9576b77e8193ec87994cee05e7d93f18 69ff2a6f4cbc87710a3c414b1bb7ee65 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089211669643264 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Álvarez, Diana Carolina1ab298e9492bfd0c4b69bb243416b257Rojas Triviño, Edwison Alberto99ee15dff8b1405b92a81050bb73569cMartínez López, Luisa María4e6d2322b953004664a5cdf471ca3c71Grupo de Investigación en Diversidad Biológica2024-01-30T20:58:37Z2024-01-30T20:58:37Z2023https://repositorio.unal.edu.co/handle/unal/85544Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablas, gráficasEl Poliestireno expandido (EPS) es un polímero sintético de uso común en diferentes industrias, principalmente en las de embalaje y construcción. Debido a su composición química a base de cadenas largas de hidrocarburos, el EPS posee una estabilidad molecular que le permite permanecer inmodificable por cientos de años lo que genera un impacto negativo sobre el medio ambiente, ya que no es un sustrato nutritivo para ningún microorganismo o se desconocía para cuál. En la actualidad, se ha reportado que larvas de coleópteros de la familia Tenebrionidae pueden biodegradarlo gracias a enzimas producidas por su microbiota intestinal. Considerando lo anterior, el objetivo de esta investigación fue caracterizar la microbiota intestinal de larvas de Zophobas morio como aproximación al uso potencial para la biodegradación del Poliestireno (PS), empleando metabarcoding. Para esto se realizó secuenciación Illumina Miseq de la región V3-4 del gen 16s del ARNr de larvas de Z. morio alimentadas con dos tipos de dietas, EPS y Avena. Adicionalmente, a través de la plataforma de secuenciación Hiseq2500 se obtuvo el metagenoma completo de una de las muestras alimentadas con EPS. Con los resultados de la secuenciación se analizó la composición taxonómica, abundancia relativa de las bacterias y finalmente se realizó un análisis metabólico del microbioma obtenido de las larvas alimentadas con EPS. El análisis metagenómico permitió identificar que el género Spiroplasma presentó una abundancia relativa de 61,6 %, seguido de Pantoea (19,3%), Enterobacter (5%) y Pseudarthrobacter (4,7%). Otros géneros presentes fueron Kluyvera georgiana, Enterococcus sp., Bacillus sp., Clostridium sp., y Romboutsia sp. Se asume a estos géneros como los microorganismos más promisorios que influyen en la biodegradación del EPS. Los resultados obtenidos podrían ser incluidos en trabajos futuros donde se analice la actividad biológica y de biodegradación de microorganismos pertenecientes a los géneros encontrados. (Texto tomadode la fuente)Expanded Polystyrene (EPS) is a synthetic polymer commonly used in different industries, mainly in packaging and construction. Due to its chemical composition based on long hydrocarbon chains, EPS has a molecular stability that allows it to remain unchanged for hundreds of years, which generates a negative impact on the environment, since it is not a nutritious substrate for any microorganism, or it was unknown for which one. Currently, it has been reported that beetle larvae of the Tenebrionidae family can biodegrade it thanks to enzymes produced by their intestinal microbiota. Considering the above, the objective of this research was to characterize the intestinal microbiota of Zophobas morio larvae as an approach to the potential use for the biodegradation of Polystyrene, using metabarcoding. For this, the Illumina Miseq sequence of the V3-4 region of the 16s rRNA gene of Z. morio larvae fed with two types of diets, PE and Oats, was performed. Additionally, through the Hiseq2500 sequencing platform, the complete metagenome of one of the samples fed with EPS was obtained. With the results of the sequencing, the taxonomic composition, the relative abundance of the bacteria was analyzed and finally a metabolic analysis of the microbiome obtained from the larvae fed with EPS was carried out. The metagenomic analysis allowed us to identify that the genus Spiroplasma presented a relative abundance of 61.6%, followed by Pantoea (19.3%), Enterobacter (5%) and Pseudarthrobacter (4.7%). Other genera present were Kluyvera georgiana, Enterococcus sp., Bacillus sp., Clostridium sp., and Romboutsia sp. These genera are assumed to be the most promising microorganisms that influence the biodegradation of EPS. The results obtained could be included in future works where the biological activity and biodegradation of microorganisms belonging to the found genera are analyzed. Keywords: Polystyrene, EPS, metagenomics, metabarcoding, biodegradation, Coleoptera.Convocatoria de la Universidad Nacional de Colombia sede Palmira por medio de la plataforma Hermes.contiene material didáctico, ilustraciones y tablasMaestríaMagíster en Ingeniería - Ingeniería AmbientalExtracción de ADN total. Secuenciación masiva empleando amplificaciones y genomas completos. Análisis bioinformáticos. Composición taxonómica y abundancia relativa de bacterias. Análisis metabólico del microbioma obtenido del Metagenoma del tracto digestivo de larvas de Z. morio alimentadas con poliestireno expandido. Control de calidad de las secuencias y remoción de artefactos. Extracción de características. Anotación de características. Filtrado de proteínas, Agrupando AA, Identificación de proteínas, Agrupación de ARNr, Identificación de ARNr, Generación de perfiles.Ciencias omicas y BioinformaticaIngeniería.Sede Palmiraxv, 75 + anexosapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería AmbientalFacultad de Ingeniería y AdministraciónPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesMicrobiomasMicrobiomesDiversidad microbianaMicrobial diversityActividad enzimáticaEnzyme activityTenebrionidaeEPSMetabarcodingPoliestirenoMetagenómicaBiodegradaciónColeópterosEPSMetabarcodingColeopteraMetagenomicsBiodegradationPolystyreneEstudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestireno.Study of the intestinal microbiome of Zophobas morio (Coleoptera: Tenebrionidae) as an approach to the potential use for the biodegradation of polystyrene.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. Environmental Science and Pollution Research, 25(8), 7287–7298. https://doi.org/10.1007/s11356-018-1234-9Alexeeva, I., Elliott, E. J., Rollins, S., Gasparich, G. E., Lazar, J., & Rohwer, R. G. (2006). Absence of Spiroplasma or other bacterial 16S rRNA genes in brain tissue of hamsters with scrapie. Journal of Clinical Microbiology, 44(1), 91–97. https://doi.org/10.1128/JCM.44.1.91-97.2006Argüello, H., Cortez-Romero, C., Rojas-Martínez, R. I., Segura-León, O. L., Herrera-Haro, J. G., Salazar-Ortiz, J., & Gallegos-Sanchez, J. (2014). Polimorfismos de la proteína 15 morfogénica ósea (BMP15) y su relación con el tipo de parto en la oveja pelibuey. Agrociencia, 48(1), 53–69.Bae, J., Cho, H. woo, Jung, H., Park, J., Yun, S., Ha, S., Lee, Y., & Kim, T. J. (2021). Changes in Intestinal Microbiota Due to the Expanded Polystyrene Diet of Mealworms (Tenebrio molitor). Indian Journal of Microbiology, 61(2), 130–136. https://doi.org/10.1007/s12088-021-00922-wBenson, D. A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2013). GenBank. Nucleic Acids Research, 41(D1), 36–42. https://doi.org/10.1093/nar/gks1195Bhardwaj, H., Gupta, R., & Tiwari, A. (2012). Communities of Microbial Enzymes Associated with Biodegradation of Plastics. Journal of Polymers and the Environment, 21(2), 575–579. doi:10.1007/s10924-012-0456-zBornscheuer, U. T. (2002). Bornscheuer 2002. 26, 73–81.Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301Bennet, John; Dolin Raphael; Blaser Martin. (2014). Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases. Churchill Livingstone. ISBN 978-1-455-74801-3.Buchfink, B., Xie, C., & Huson, D. H. (2014). Fast and sensitive protein alignment using DIAMOND. Nature Methods, 12(1), 59–60. https://doi.org/10.1038/nmeth.3176Calderoli, P. (2016). Análisis de las poblaciones de microorganismos fijadores de nitrógeno del suelo aplicando procedimientos metagenómicos. Universidad Nacional de La Plata. Argentina.Cao, Y., & Wang, B. (2009). Biodegradation of silk biomaterials. International Journal of Molecular Sciences, 10(4), 1514–1524. https://doi.org/10.3390/ijms10041514Cole, J. R. (2003). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Research, 31(1), 442–443. doi:10.1093/nar/gkg039Cox, M. P., Peterson, D. A., & Biggs, P. J. (2010). SolexaQA: At-a-glance quality assessment of Illumina second-generation sequencing data. BMC Bioinformatics, 11. https://doi.org/10.1186/1471-2105-11-485Danso, D., Chow, J., & Streita, W. R. (2019). Plastics: Environmental and biotechnological perspectives on microbial degradation. Applied and Environmental Microbiology, 85(19). https://doi.org/10.1128/AEM.01095-19Daviran Yance, P. (2017). Biodegradación de la Espuma de Poliestireno por la larva del Tenebrio molitor para la producción de Abono, 2017. Universidad César Vallejo.Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10(10), 996–998. https://doi.org/10.1038/nmeth.2604Farmer, J. J. (2015). Kluyvera . Bergey’s Manual of Systematics of Archaea and Bacteria, 1–18. https://doi.org/10.1002/9781118960608.gbm01151Fesseha, H., & Abebe, F. (2019). Degradation of Plastic Materials Using Microorganisms: A Review. Public Health – Open Journal, 4(2), 57–63. https://doi.org/10.17140/phoj-4-136Fuente-Salcido, Norma. (2015). Las Bacteriocinas de Bacillus thuringiensis y la Proteómica como una Herramienta para su Análisis. Fronteras En Microbiologia Aplicada, October, 154–174. México.Ghosh, S. K., Pal, S., & Ray, S. (2013). Study of microbes having potentiality for biodegradation of plastics. Environmental Science and Pollution Research International, 20(7), 4339–4355. https://doi.org/10.1007/s11356-013-1706-xGilbert, J. A., & Dupont, C. L. (2011). Microbial metagenomics: Beyond the genome. Annual Review of Marine Science, 3, 347–371. https://doi.org/10.1146/annurev-marine-120709-142811Goitisolo, I., Eguiazábal, J. I., & Nazábal, J. (2008). Effects of reprocessing on the structure and properties of polyamide 6 nanocomposites. Polymer Degradation and Stability, 93(10), 1747–1752. https://doi.org/10.1016/j.polymdegradstab.2008.07.030Gómez Serrato, J. G. (2016). Diagnóstico del impacto del plastico (botellas) sobre el medio ambiente: Un estado del arte [en linea]. Universidad Santo Tomas, 81. http://hdl.handle.net/11634/10047Haider, T. P., Völker, C., Kramm, J., Landfester, K., & Wurm, F. R. (2019). Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angewandte Chemie - International Edition, 58(1), 50–62. https://doi.org/10.1002/anie.201805766Henry, M., & Fouladkhah, A. (2019). Outbreak history, biofilm formation, and preventive measures for control of cronobacter sakazakii in infant formula and infant care settings. Microorganisms, 7(3). https://doi.org/10.3390/microorganisms7030077Hou, L., & Majumder, E. L. W. (2021). Potential for and distribution of enzymatic biodegradation of polystyrene by environmental microorganisms. Materials, 14(3), 1–20. https://doi.org/10.3390/ma14030503Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L., & Welch, D. M. (2007). Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biology, 8(7), 1–9. https://doi.org/10.1186/gb-2007-8-7-r143Imre, B., & Pukánszky, B. (2013). Compatibilization in bio-based and biodegradable polymer blends. European Polymer Journal, 49(6), 1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019Jakubowicz, I., Yarahmadi, N., & Arthurson, V. (2011). Kinetics of abiotic and biotic degradability of low-density polyethylene containing prodegradant additives and its effect on the growth of microbial communities. Polymer Degradation and Stability, 96(5), 919–928. https://doi.org/10.1016/j.polymdegradstab.2011.01.031Jensen, L. J., Julien, P., Kuhn, M., von Mering, C., Muller, J., Doerks, T., & Bork, P. (2008). eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Research, 36(SUPPL. 1), 250–254. https://doi.org/10.1093/nar/gkm796Jiang, S., Su, T., Zhao, J., & Wang, Z. (2021). Biodegradation of polystyrene by tenebrio molitor, galleria mellonella, and zophobas atratus larvae and comparison of their degradation effects. Polymers, 13(20). https://doi.org/10.3390/polym13203539Jung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016K. Meng, T., Y.Y. Beng, D., S. Mohd Kassim, A., H. A. Razak, A., & A. Mohd Fauzi, N. (2019). Optimization of Polystyrene Biodegradation using Response Surface Methodology (RSM) Measured by Simple Colorimetric Method. International Journal of Engineering & Technology, 7(4.14), 216. https://doi.org/10.14419/ijet.v7i4.14.27567Kale, S. K., Deshmukh, A. G., Dudhare, M. S., & Patil, V. B. (2015). Microbial degradation of plastic: a review Swapnil. Journal of Biochemical Technology, 6(2), 952–961.Kanehisa-The KEGG database - PubMed-2002. (n.d.).Kent, W. J. (2002). BLAT —The BLAST -Like Alignment Tool. Genome Research, 12(4), 656–664. https://doi.org/10.1101/gr.229202Kotova, I. B., Taktarova, Y. V., Tsavkelova, E. A., Egorova, M. A., Bubnov, I. A., Malakhova, D. V., Shirinkina, L. I., Sokolova, T. G., & Bonch-Osmolovskaya, E. A. (2021). Microbial Degradation of Plastics and Approaches to Make it More Efficient. Microbiology (Russian Federation), 90(6), 671–701. https://doi.org/10.1134/S0026261721060084Lorenz P, Eck J.. Metagenomics and industrial applications. (2005). Nature Reviews Microbiology 3(6):510-6. DOI:10.1038/nrmicro1161Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8. PMID: 25516281; PMCID: PMC4302049.Lovley DR. (2003). Cleaning up with genomics: applying molecular biology to bioremediation. Nat Rev Microbiol. Oct;1(1):35-44. doi: 10.1038/nrmicro731. PMID: 15040178.Lucas, N., Bienaime, C., Belloy, C., Queneudec, M., Silvestre, F., & Nava-Saucedo, J. E. (2008). Polymer biodegradation: Mechanisms and estimation techniques - A review. Chemosphere, 73(4), 429–442. https://doi.org/10.1016/j.chemosphere.2008.06.064Magrane, M., & Consortium, U. P. (2011). UniProt Knowledgebase: A hub of integrated protein data. Database, 2011, 1–13. https://doi.org/10.1093/database/bar009Markowitz, V. M., Ivanova, N. N., Szeto, E., Palaniappan, K., Chu, K., Dalevi, D., Chen, I. M. A., Grechkin, Y., Dubchak, I., Anderson, I., Lykidis, A., Mavromatis, K., Hugenholtz, P., & Kyrpides, N. C. (2008). IMG/M: A data management and analysis system for metagenomes. Nucleic Acids Research, 36(SUPPL. 1), 534–538. https://doi.org/10.1093/nar/gkm869Marrero-Coto, J., Díaz-Valdivia, A., & Coto-Pérez, O. (2010). Mecanismos moleculares de resistencia a metales pesados en las bacterias y sus aplicaciones en la biorremediación. Revista CENIC Ciencias Biológicas, 41(1), 67–78.Moore, C. J. (2008). Synthetic polymers in the marine environment: A rapidly increasing, long-term threat. Environmental Research, 108(2), 131–139. https://doi.org/10.1016/j.envres.2008.07.025Nomura, N., Shigeno-Akutsu, Y., Nakajima-Kambe, T., & Nakahara, T. (1998). Cloning and sequence analysis of a polyurethane esterase of Comamonas acidovorans TB-35. Journal of Fermentation and Bioengineering, 86(4), 339–345. https://doi.org/10.1016/S0922-338X(99)89001-1Nukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28OpenMP, A. (2011). OpenMP Application Program Interface, v. 3.1. OpenMP Architecture Review Board, July. http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenMP+Application+Program+Interface#1Overbeek, R., Begley, T., Butler, R. M., Choudhuri, J. V., Chuang, H. Y., Cohoon, M., de Crécy-Lagard, V., Diaz, N., Disz, T., Edwards, R., Fonstein, M., Frank, E. D., Gerdes, S., Glass, E. M., Goesmann, A., Hanson, A., Iwata-Reuyl, D., Jensen, R., Jamshidi, N., … Vonstein, V. (2005). The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Research, 33(17), 5691–5702. https://doi.org/10.1093/nar/gki866Peña-Pascagaza, P. M., López-Ramírez, N. A., & Ballen-Segura, M. A. (2020). Tenebrio molitor and its gut bacteria growth in polystyrene (PS) presence as the sole source carbon. Universitas Scientiarum, 25(1), 37–53. https://doi.org/10.11144/JAVERIANA.SC25-1.TMAIPeng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266, 115206. https://doi.org/10.1016/j.envpol.2020.115206Pérez, M. D., Martínez, C. R., & Zhurbenko, R. (2010). Aspectos fundamentales sobre el género enterococcus como patógeno de elevada importancia en la actualidad. Revista Cubana de Higiene y Epidemiologia, 48(2), 147–161.Posada, B. (2012). La degradación de los plásticos. In Revista Universidad EAFIT (Vol. 30, Issue 94, pp. 67–86). http://publicaciones.eafit.edu.co/index.php/revista-universidad-eafit/article/view/1408Premraj, R., & Doble, M. (2005). Biodegradation of polymers. Indian Journal of Biotechnology, 4(2), 186–193. https://doi.org/10.17516/1997-1389-2015-8-2-113-130Priyanka, N., & Archana, T. (2011). Biodegradability of Polythene and Plastic By The Help of Microorganism: A Way for Brighter Future. Journal of Environmental & Analytical Toxicology, 01(02), 1–4. https://doi.org/10.4172/2161-0525.1000111Pruesse, E., Quast, C., Knittel, K., Fuchs, B. M., Ludwig, W., Peplies, J., & Glöckner, F. O. (2007). SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35(21), 7188–7196. https://doi.org/10.1093/nar/gkm864Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256, 113265. https://doi.org/10.1016/j.envpol.2019.113265Ramis, X., Cadenato, A., Salla, J. M., Morancho, J. M., Vallés, A., Contat, L., & Ribes, A. (2004). Thermal degradation of polypropylene/starch-based materials with enhanced biodegradability. Polymer Degradation and Stability, 86(3), 483–491. https://doi.org/10.1016/j.polymdegradstab.2004.05.021Ramos, J; Pino, J; Angeles, Sergio; García, A. 2008. Utilización potencial de la excreta del gusano amarillo de las harinas como abono orgánico. Instituto de Biología UNAM. Ap. Postal 70-153, C.P. 04510 México D.FRognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: A versatile open source tool for metagenomics. PeerJ, 2016(10), 1–22. https://doi.org/10.7717/peerj.2584Rujnić-Sokele, M., & Pilipović, A. (2017). Challenges and opportunities of biodegradable plastics: A mini review. Waste Management and Research, 35(2), 132–140. https://doi.org/10.1177/0734242X16683272SCHULTE, Rainer. (2006). EL MANEJO DE ZOPHOBAS MORIO (COLEOPTERA: TENEBRIONIDAE) EN CLIMAS TROPICALES HUMEDOS. Folia Amazónica. 8. 47. 10.24841/fa.v8i2.321.SHAMAN: un sitio web fácil de usar para el análisis metataxonómico desde lecturas sin procesar hasta análisis estadístico Volant S, Lechat P, Woringer P, Motreff L, Campagne P, Malabat C, Kennedy S, Ghozlane A; BMC Bioinformatics 2020 10 de agosto; 21 (1): 345.Shelomi, M., Lin, S. S., & Liu, L. Y. (2019). Transcriptome and microbiome of coconut rhinoceros beetle (Oryctes rhinoceros) larvae. BMC Genomics, 20(1), 1–13. https://doi.org/10.1186/s12864-019-6352-3Shimao, M. (2001). Biodegradation of plastics Masayuki Shimao. Current Opinion in Biotechnology, 12, 242–247.Sivan, A. (2011). New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22(3), 422–426. https://doi.org/10.1016/j.copbio.2011.01.013Skariyachan, S., Taskeen, N., Kishore, A. P., Krishna, B. V., & Naidu, G. (2021). Novel consortia of enterobacter and pseudomonas formulated from cow dung exhibited enhanced biodegradation of polyethylene and polypropylene. Journal of Environmental Management, 284(January), 112030. https://doi.org/10.1016/j.jenvman.2021.112030Sorek, R., Zhu, Y., Creevey, C. J., Francino, M. P., Bork, P., & Rubin, E. M. (2007). Genome-wide experimental determination of barriers to horizontal gene transfer. Science, 318(5855), 1449–1452. https://doi.org/10.1126/science.1147112Sun, J., Prabhu, A., Aroney, S. T. N., & Rinke, C. (2022). Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials. Microbial Genomics, 8(6), 1–19. https://doi.org/10.1099/mgen.0.000842Tang, Z.-L., Kuo, T.-A., & Liu, H.-H. (2017). The Study of the Microbes Degraded Polystyrene. Advances in Technology Innovation, 2(1), 13–17.Téllez, A. (2012). La complejidad de la problemática ambiental de los residuos plásticos : una aproximación al análisis narrativo de política pública en Bogotá. In 2012.Thomas, T., Gilbert, J. & Meyer, F. (2012). Metagenomics - a guide from sampling to data analysis. Microb Informatics Exp 2, 3. https://doi.org/10.1186/2042-5783-2-3Tipney, H. J., Leach, S. M., Feng, W., Spritz, R., Williams, T., & Hunter, L. (2009). Leveraging existing biological knowledge in the identification of candidate genes for facial dysmorphology. BMC Bioinformatics, 10 Suppl 2, 1–10. https://doi.org/10.1186/1471-2105-10-S1-S12Urbanek, A. K., Rymowicz, W., & Mirończuk, A. M. (2018). Degradation of plastics and plastic-degrading bacteria in cold marine habitats. Applied Microbiology and Biotechnology, 102(18), 7669–7678. https://doi.org/10.1007/s00253-018-9195-yVillarreal-Delgado, M. F., Villa-Rodríguez, E. D., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Parra-Cota, F. I., & De los Santos-Villalobos, S. (2018). El género Bacillus como agente de control biológico y sus implicaciones en la bioseguridad agrícola. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 36(1), 95–130. https://doi.org/10.18781/r.mex.fit.1706-5Watson, S.W., Bock, E., Valois, F.W. et al. (1986). Nitrospira marina gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7. https://doi.org/10.1007/BF00454947White, J. R., Nagarajan, N., & Pop, M. (2009). Statistical Methods for Detecting Differentially Abundant Features in Clinical Metagenomic Samples. PLoS Computational Biology, 5(4). https://doi.org/10.1371/journal.pcbi.1000352Wilke, A., Harrison, T., Wilkening, J., Field, D., Glass, E. M., Kyrpides, N., Mavrommatis, K., & Meyer, F. (2012). The M5nr: A novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics, 13(1). https://doi.org/10.1186/1471-2105-13-141Wooley, J. C., Godzik, A., & Friedberg, I. (2010). A primer on metagenomics. PLoS Computational Biology, 6(2). https://doi.org/10.1371/journal.pcbi.1000667Yang, S. S., Brandon, A. M., Xing, D. F., Yang, J., Pang, J. W., Criddle, C. S., Ren, N. Q., & Wu, W. M. (2018). Progresses in Polystyrene Biodegradation and Prospects for Solutions to Plastic Waste Pollution. IOP Conference Series: Earth and Environmental Science, 150(1). https://doi.org/10.1088/1755-1315/150/1/012005Yang, S. S., Ding, M. Q., Zhang, Z. R., Ding, J., Bai, S. W., Cao, G. L., Zhao, L., Pang, J. W., Xing, D. F., Ren, N. Q., & Wu, W. M. (2021). Confirmation of biodegradation of low-density polyethylene in dark- versus yellow- mealworms (larvae of Tenebrio obscurus versus Tenebrio molitor) via. gut microbe-independent depolymerization. Science of the Total Environment, 789, 147915. https://doi.org/10.1016/j.scitotenv.2021.147915Yang, S. S., Wu, W. M., Brandon, A. M., Fan, H. Q., Receveur, J. P., Li, Y., Wang, Z. Y., Fan, R., McClellan, R. L., Gao, S. H., Ning, D., Phillips, D. H., Peng, B. Y., Wang, H., Cai, S. Y., Li, P., Cai, W. W., Ding, L. Y., Yang, J., … Criddle, C. S. (2018). Ubiquity of polystyrene digestion and biodegradation within yellow mealworms, larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Chemosphere, 212, 262–271. https://doi.org/10.1016/j.chemosphere.2018.08.078Yang, Y., Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708, 135233. https://doi.org/10.1016/j.scitotenv.2019.135233Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661Ziganshina, E. E., Mohammed, W. S., Shagimardanova, E. I., Vankov, P. Y., Gogoleva, N. E., & Ziganshin, A. M. (2018). Fungal, bacterial, and archaeal diversity in the digestive tract of several beetle larvae (coleoptera). BioMed Research International, 2018. https://doi.org/10.1155/2018/6765438Estudio del microbioma intestinal de Zophobas morio (Coleóptera: Tenebrionidae) como aproximación al uso potencial para la biodegradación del poliestirenoUniversidad Nacional de ColombiaEstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85544/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1144152058.2023.pdf1144152058.2023.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf3132369https://repositorio.unal.edu.co/bitstream/unal/85544/2/1144152058.2023.pdf9576b77e8193ec87994cee05e7d93f18MD52THUMBNAIL1144152058.2023.pdf.jpg1144152058.2023.pdf.jpgGenerated Thumbnailimage/jpeg5357https://repositorio.unal.edu.co/bitstream/unal/85544/3/1144152058.2023.pdf.jpg69ff2a6f4cbc87710a3c414b1bb7ee65MD53unal/85544oai:repositorio.unal.edu.co:unal/855442024-08-21 23:14:16.184Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |