Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B
ilustraciones
- Autores:
-
Torres Llanos, Yulieth Ximena
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84105
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Neoplasias
Insuficiencia del tratamiento
Neoplasms
Treatment Failure
Leucemia linfoide aguda
Expresión génica
Metilación de DNA
Biomarcadores predictivos
Acute lymphoid leukemia
Gene expression
DNA methylation
Predictive biomarkers
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ecf274b0fd7724a07179f6b71efb503f |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84105 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
dc.title.translated.eng.fl_str_mv |
Identification of changes in DNA methylation and gene expression profiles associated with clinical response to chemotherapeutic treatment in pediatric patients with type B acute lymphoid leukemia |
title |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
spellingShingle |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B 610 - Medicina y salud::616 - Enfermedades Neoplasias Insuficiencia del tratamiento Neoplasms Treatment Failure Leucemia linfoide aguda Expresión génica Metilación de DNA Biomarcadores predictivos Acute lymphoid leukemia Gene expression DNA methylation Predictive biomarkers |
title_short |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
title_full |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
title_fullStr |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
title_full_unstemmed |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
title_sort |
Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo B |
dc.creator.fl_str_mv |
Torres Llanos, Yulieth Ximena |
dc.contributor.advisor.none.fl_str_mv |
Combita Rojas, Alba Lucia Lopez Kleine, Liliana |
dc.contributor.author.none.fl_str_mv |
Torres Llanos, Yulieth Ximena |
dc.contributor.researchgroup.spa.fl_str_mv |
Biología del cáncer. Instituto Nacional de Cancerología |
dc.contributor.orcid.spa.fl_str_mv |
0000-0002-2859-6980 |
dc.contributor.cvlac.spa.fl_str_mv |
Yulieth Ximena Torres Llanos |
dc.contributor.googlescholar.spa.fl_str_mv |
YULIETH XIMENA TORRES LLANOS |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Neoplasias Insuficiencia del tratamiento Neoplasms Treatment Failure Leucemia linfoide aguda Expresión génica Metilación de DNA Biomarcadores predictivos Acute lymphoid leukemia Gene expression DNA methylation Predictive biomarkers |
dc.subject.decs.spa.fl_str_mv |
Neoplasias Insuficiencia del tratamiento |
dc.subject.decs.eng.fl_str_mv |
Neoplasms Treatment Failure |
dc.subject.proposal.spa.fl_str_mv |
Leucemia linfoide aguda Expresión génica Metilación de DNA Biomarcadores predictivos |
dc.subject.proposal.eng.fl_str_mv |
Acute lymphoid leukemia Gene expression DNA methylation |
dc.subject.proposal.none.fl_str_mv |
Predictive biomarkers |
description |
ilustraciones |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-29T14:29:58Z |
dc.date.available.none.fl_str_mv |
2023-06-29T14:29:58Z |
dc.date.issued.none.fl_str_mv |
2023-03 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84105 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84105 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ching-Hon Pui, Leslie L Robison, A. T. L. Acute Lymphoblastic Leukaemia. Lancet 371, 1030–1043 (2008). Inaba, H. & Mullighan, C. G. Pediatric acute lymphoblastic leukemia. Haematologica 105, 2524–2539 (2020). Belson, M., Kingsley, B. & Holmes, A. Risk Factors for Acute Leukemia in Children: A Review. Environ Health Perspect 115, 138–145 (2006). Miranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol 5, e14–e24 (2018). Pardo, C., de Vries, E., Buitrago, L. & Gamboa, O. Atlas de mortalidad por cancer en Colombia. (2017). Kadan-Lottick, N. S., Ness, K. K., Bhatia, S. & Gurney, J. G. Survival Variability by Race and Ethnicity in Childhood Acute Lymphoblastic Leukemia. American Medical Association 2008–2014 (2003). Walsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia vol. 27 2416–2419 Preprint at https://doi.org/10.1038/leu.2013.130 (2013). Walsh, K. M. et al. Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with B-cell acute lymphoblastic leukemia. Am J Hematol 89, 721–725 (2014). Linares, A. et al. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Centro Nacional de Investigacion en Evidencia y Tecnologia en Salud CINETS (2013). Alaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia vol. 36 1720–1748 Preprint at https://doi.org/10.1038/s41375-022-01620-2 (2022). Stary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014). Pagna Sok et al. Disparities in relapse among a large multi-ethnic population of children diagnosed with acute lymphoblastic leukemia (ALL): A report from the Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. (2022). Nordlund, J. & Syvänen, A. C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 51, 129–138 (2018). Bhojwani, D., Yang, J. J. & Pui, C. H. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am 62, 47–60 (2015). Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010). Trowbridge, J., Snow, J., Kim, J. & Orkin, S. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009). Scala, G., Federico, A., Palumbo, D., Cocozza, S. & Greco, D. DNA sequence context as a marker of CpG methylation instability in normal and cancer tissues. Sci Rep 10, 1–11 (2020). Hogan, L. E. et al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 118, 5218–5227 (2015). Pui, C., Mullighan, C. G., Evans, W. E. & Relling, M. v. Pediatric acute lymphoblastic leukemia : where are we going and how do we get there ? Blood 120, 1–3 (2017). Dominique J. P. M. Stumpel,1 Pauline Schneider, Eddy H. J. van Roon, Judith M. Boer, Paola de Lorenzo, Maria G. Valsecchi, Renee X. de Menezes, Rob Pieters, and R. W. S. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490–5498 (2009). Katz, A. J., Chia, V. M., Schoonen, W. M. & Kelsh, M. A. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes & Control 26, 1627–1642 (2015). Acuña, L., Sánchez, P., Uribe, D., Pulido, D. & Valencia, O. Situación del cáncer en Colombia 2015. (2015). Trujillo, Á. M., Linares, A. & Sarmiento, I. C. Intensive chemotherapy in children with acute lymphoblastic leukemia. Interim analysis in a referral center in Colombia. Revista Facultad de Medicina 64, 417–425 (2016). Vera, A. M., Pardo, C., Duarte, M. C. & Suárez, A. Experiencia en el análisis de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología. Biomédica 32, 355–364 (2012). Miguel Ángel Castro Jiménez, Luis Carlos Orozco Vargas, Ernesto Rueda Arenas, A. S. M., Jiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 57, 116–123 (2010). Amaranto Suarez, MD, 1 Martha Pina, MD, 1 Diana X. Nichols-Vinueza, MD, 3 John Lopera, MD, 1 Lyda Rengifo, MD, 1 Mauricio Mesa, MD, 1 Marcela Cardenas, RN, 1 Lisa Morrissey, RN, 3 Galo Veintemilla, MD, 2 Martha Vizcaino, MD, 1 Ligia Del Toro, MD, 1 Victo, M. & 3, 4*. A Strategy to Improve Treatment-Related Mortality and Abandonment of Therapy for Childhood ALL in a Developing Country Reveals the Impact of Treatment Delays. Pediatr Blood Cancer 62, 1395–1402 (2015). Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 43, 237–241 (2011). Matasar, M. J., Ritchie, E. K., Consedine, N., Magai, C. & Neugut, A. I. Incidence rates of the major leukemia subtypes among U.S. Hispanics, Blacks, and non-Hispanic Whites. Leuk Lymphoma 47, 2365–2370 (2006). Walsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia 27, 2416–2419 (2013). van Dongen, J. J. M., van der Velden, V. H. J., Brüggemann, M. & Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 125, 3996–4009 (2015). Vardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood vol. 114 937–951 Preprint at https://doi.org/10.1182/blood-2009-03-209262 (2009). McGregor, S., McNeer, J. & Gurbuxani, S. Beyond the 2008 World Health Organization classification: The role of the hematopathology laboratory in the diagnosis and management of acute lymphoblastic leukemia. Semin Diagn Pathol 29, 2–11 (2012). Onciu, M. Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am 23, 655–674 (2009). Redaelli, A., Laskin, B. L., Stephens, J. M., Botteman, M. F. & Pashos, C. L. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl) 14, 53–62 (2005). Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. The Lancet 381, 1943–1955 (2013). van Dongen, J. J. M. et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26, 1908–1975 (2012). Coustan-smith, E. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. 117, 1–3 (2011). Bhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14, e205–e217 (2013). Pui, C. H. et al. Childhood acute lymphoblastic leukemia: Progress through collaboration. Journal of Clinical Oncology 33, 2938–2948 (2015). Jiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 39, 116–123 (2007). The Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine 368, 2059–2074 (2013). Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012). Rodolphe Taby, M. & ; Jean-Pierre J. Issa, M. A. Cancer epigenetics. CACANCER J CLIN 60, 376–392 (2010). Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013). Burke, M. J. & Bhatla, T. Epigenetic Modifications in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2, 1–7 (2014). Navada, S. C., Steinmann, J., Lübbert, M. & Silverman, L. R. Clinical development of demethylating agents in hematology. Journal of Clinical Investigation 124, 40–46 (2014). Bhatla, T. et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 119, 5201–5210 (2012). Benton, C. B. et al. Safety and clinical activity of 5-aza-2’-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 167, 356–365 (2014). Garcia-manero, G., Yang, H., Kuang, S., Brien, S. O. & Thomas, D. Epigenetics of acute lymphocytic leukemia. Semin Hematol 46, 1–14 (2009). Black, J. C., Van Rechem, C. & Whetstine, J. R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell 48, 491–507 (2012). Yoshimi, A. & Kurokawa, M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem 112, 415–424 (2011). Varier, R. A. & Timmers, H. T. M. Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta Rev Cancer 1815, 75–89 (2011). Dou, Y. & Hess, J. L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int J Hematol 87, 10–18 (2008). Eguchi, M., Eguchi-Ishimae, M. & Greaves, M. Molecular pathogenesis of MLL-associated leukemias. Int J Hematol 82, 9–20 (2005). Pieters, R. Infant acute lymphoblastic leukemia: Lessons learned and future directions. Curr Hematol Malig Rep 4, 167–174 (2009). Deaton, A. & Bird, A. CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022 (2011). Jones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484–492 (2012). Zhang, W. & Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 5, 1 (2017). Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry 279, 48350–48359 (2004). Dean, W. et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences 98, 13734–13738 (2001). Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011). Ito, S. et al. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010). Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (1979) 324, 930–935 (2009). Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011). Heidari, N. et al. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. Cell J 19, 9–26 (2017). You, J. S. & Jones, P. A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell 22, 9–20 (2012). Roman-Gomez, J. et al. The role of DNA hypermethylation in the pathogenesis and prognosis of acute lymphoblastic leukemia. Leuk Lymphoma 44, 1855–64 (2003). Nordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 14, (2013). Figueroa, M. & Chen, S. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. The Journal of … 123, 3099–3111 (2013). Chatterton, Z. et al. Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic leukemia. Clin Chem 60, 995–1003 (2014). Terwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7, e577 (2017). Yánez, L., Bermúdez, A., Richard, C., Bureo, E. & Iriondo, A. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 23, 1342–1343 (2009). Michael J. Burke, MD1,*, Jatinder K Lamba, PhD2,*, Stanley Pounds, PhD3, Xueyuan Cao, PhD3, Yogita Ghodke-Puranaik, PhD2, Bruce R. Lindgren, MS4, Brenda J. Weigel, M. & Michael R. Verneris, MD6, and Jeffrey S. Miller, M. A Therapeutic Trial of Decitabine and Vorinostat in Combination with Chemotherapy for Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Am J Hematol 89, 889–895 (2014). Mullighan, C. G. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 2012, 389–96 (2012). San Jose-Eneriz, E., Agirre, X., Rodriguez-Otero, P. & Prosper, F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 5, 525–538 (2013). Agirre, X. et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25, 1862–1870 (2006). Roman-gomez, J. et al. 5’ CpG island hypermethylation is associated with transcriptional silencing of the p21 CIP1 / WAF1 / SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99, 2291–2296 (2002). Paixão, V. A. et al. Hypermethylation of CpG island in the promoter region of CALCA in acute lymphoblastic leukemia with central nervous system (CNS) infiltration correlates with poorer prognosis. Leuk Res 30, 891–894 (2006). Roman-Gomez, J. et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 48, 1269–1282 (2007). Borssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018). Uyen, T. N. et al. Aberrant methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 64, e26259 (2017). Gopeshwar Narayan, 1† Allen J. Freddy, 1 Dongxu Xie, 2 Hema Liyanage, 3 Lorraine Clark, 1 Sergey Kisselev, 1 Ji Un Kang, 1 Subhadra V. Nandula, 1, 2 Catherine McGuinn, 4 Shivakumar Subramaniyam, 1‡ Bachir Alobeid, 1 Prakash Satwani, 4 David Savage, 5 Govi, 6* & 1Departmentof. Promoter Methylation-Mediated Inactivation of PCDH10 in Acute Lymphoblastic Leukemia Contributes to Chemotherapy Resistance. Genes Chromosomes Cancer 50, 1043–1053 (2011). Abdullah, M. et al. ADAMTSL5 and CDH11: putative epigenetic markers for therapeutic resistance in acute lymphoblastic leukemia. Hematology 22, 386–391 (2017). Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet 47, 607–614 (2015). Thathia, S. H. et al. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 97, 371–378 (2012). Stary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014). van Dongen Jacques J M et al. Prognostic value of minimal residual disease in acutelymphoblastic leukaemia in childhood. The Lancet 352, 1731–1738 (1998). Cruz-Rodriguez, N. et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research 35, 1–14 (2016). Goldman, M. et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. BioRxiv (2019) doi:10.1101/326470. Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38, (2010). Cheok, M. H. et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34, 85–90 (2003). Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, (2015). Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38, 675–678 (2020). Lejman, M., Chałupnik, A., Chilimoniuk, Z. & Dobosz, M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. International Journal of Molecular Sciences vol. 23 Preprint at https://doi.org/10.3390/ijms23052755 (2022). McCabe, M. T., Brandes, J. C. & Vertino, P. M. Cancer DNA methylation: Molecular mechanisms and clinical implications. Clinical Cancer Research vol. 15 3927–3937 Preprint at https://doi.org/10.1158/1078-0432.CCR-08-2784 (2009). Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discovery vol. 12 31–46 Preprint at https://doi.org/10.1158/2159-8290.CD-21-1059 (2022). Borssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018). Tsellou, E. et al. Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 41, 584–589 (2005). Mai, H. et al. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142, 497–504 (2016). Kuang, S. Q. et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529–1538 (2008). Musialik, E. et al. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 50, 26–32 (2015). Ghasemian, M. et al. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell International vol. 22 Preprint at https://doi.org/10.1186/s12935-022-02633-8 (2022). Movahhed, P. et al. The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol Biol Rep 49, 4959–4964 (2022). Qin, Y. et al. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line. Int J Clin Exp Pathol vol. 7 www.ijcep.com/ (2014). Gasimli, K., Raab, M., Becker, S., Sanhaji, M. & Strebhardt, K. The Role of DAPK1 in the Cell Cycle Regulation of Cervical Cancer Cells and in Response to Topotecan. J Cancer 13, 728–743 (2022). Lake, S. L. et al. Single nucleotide polymorphism array analysis of uveal melanomas reveals that amplification of CNKSR3 is correlated with improved patient survival. American Journal of Pathology 182, 678–687 (2013). Sørensen, K. D. et al. Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clinical Cancer Research 15, 1400–1410 (2009). Lebedev, T. D. et al. Two receptors, two isoforms, two cancers: Comprehensive analysis of kit and trka expression in neuroblastoma and acute myeloid leukemia. Front Oncol 9, (2019). Meng, C., Zhang, Y., Jiang, D. & Wang, J. CTHRC1 is a prognosis-related biomarker correlated with immune infiltrates in colon adenocarcinoma. World J Surg Oncol 20, (2022). Sial, N. et al. CTHRC1 expression is a novel shared diagnostic and prognostic biomarker of survival in six different human cancer subtypes. Sci Rep 11, (2021). Nguyen, C. H. et al. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Sci Rep 9, (2019). Fattahi, S., Nikbakhsh, N., Ranaei, M., Sabour, D. & Akhavan-Niaki, H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep 11, (2021). Mathew, E. et al. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by Hedgehog signaling. Cell Rep 9, 484–494 (2014). Hu, X. G. et al. Elevated expression of ASCL2 is an independent prognostic indicator in lung squamous cell carcinoma. J Clin Pathol 69, 313–318 (2016). Wu, L. et al. ASCL2 Affects the Efficacy of Immunotherapy in Colon Adenocarcinoma Based on Single-Cell RNA Sequencing Analysis. Front Immunol 13, (2022). Esgueva, R. et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Modern Pathology 23, 539–546 (2010). Pin, E. et al. Identification of a Novel Autoimmune Peptide Epitope of Prostein in Prostate Cancer. J Proteome Res 16, 204–216 (2017). Song, S. et al. Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. Br J Cancer 124, 1843–1853 (2021). Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. & Morishita, K. The increased expression of integrin α6 (itga6) enhances drug resistance in evi1 high leukemia. PLoS One 7, (2012). Ouyang, W., Ren, L., Liu, G., Chi, X. & Wei, H. Lncrna mir4435-2hg predicts poor prognosis in patients with colorectal cancer. PeerJ 2019, (2019). Zhong, C., Xie, Z., Zeng, L. H., Yuan, C. & Duan, S. MIR4435-2HG Is a Potential Pan-Cancer Biomarker for Diagnosis and Prognosis. Frontiers in Immunology vol. 13 Preprint at https://doi.org/10.3389/fimmu.2022.855078 (2022). Zhu, L., Wang, A., Gao, M., Duan, X. & Li, Z. LncRNA MIR4435-2HG triggers ovarian cancer progression by regulating miR-128-3p/CKD14 axis. Cancer Cell Int 20, (2020). Shen, H. et al. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 108, 553–559 (2020). Navarrete-Meneses, M. del P. & Pérez-Vera, P. Alteraciones epigenéticas en leucemia linfoblástica aguda. Bol Med Hosp Infant Mex 74, 243–264 (2017). Zhou, Z. H. et al. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 18, 511–522 (2019). Li, X., Song, F. & Sun, H. Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncol Lett 20, (2020). Greco, M. et al. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol Dis 45, 181–185 (2010). Dong, R. et al. Models for Predicting Response to Immunotherapy and Prognosis in Patients with Gastric Cancer: DNA Damage Response Genes. Biomed Res Int 2022, 4909544 (2022). Tong, C.-W. et al. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. Gene 515, 62–70 (2013). Bloomston, M. et al. Identification of Molecular Markers Specific for Pancreatic Neuroendocrine Tumors by Genetic Profiling of Core Biopsies. Ann Surg Oncol 11, 413–419 (2004). Potter, C. et al. Maternal Red Blood Cell Folate and Infant Vitamin B12 Status Influence Methylation of Genes Associated with Childhood Acute Lymphoblastic Leukemia. Mol Nutr Food Res 62, 1800411 (2018). Sandoval, J. et al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia. Br J Haematol 160, 404–418 (2012). Nordlund, J. et al. Dna methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 7, 1–12 (2015). Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute. Childhood A Global Journal Of Child Research 115, 1214–1225 (2010). Gabriel, A. S. et al. Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics 10, 717–726 (2015). Iacobucci, I. & Mullighan, C. G. Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology 35, 975–983 (2017). Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature (2018) doi:10.1038/nature25480. Thol, F. ALL is not the same in the era of genetics. Blood vol. 138 915–916 Preprint at https://doi.org/10.1182/blood.2021011934 (2021). Guru, S. A. et al. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 22, (2022). Yuan, W. et al. Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: A systematic review and meta-analysis. PLoS One 12, (2017). Calmon, M. F. et al. Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. Cancer Genet Cytogenet 173, 31–37 (2007). Wei, J. et al. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med 8, 678–678 (2020). Singh, P., Ravanan, P. & Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Frontiers in Molecular Neuroscience vol. 9 Preprint at https://doi.org/10.3389/fnmol.2016.00046 (2016). Wang, L. Q. et al. Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med 12, (2014). Eben Massari, M. & Murre, C. Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. MOLECULAR AND CELLULAR BIOLOGY vol. 20 (2000). van der Flier, L. G. et al. Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell 136, 903–912 (2009). Zuo, Q. et al. ASCL2 expression contributes to gastric tumor migration and invasion by downregulating miR223 and inducing EMT. Mol Med Rep 18, 3751–3759 (2018). Kwon, O. H. et al. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 104, 391–397 (2013). Jubb, A. M. et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25, 3445–3457 (2006). Samra, E. B., Klein, B., Commes, T. & Moreaux, J. Development of gene expression-based risk score in cytogenetically normal acute myeloid leukemia patients. Oncotarget vol. 3 www.impactjournals.com/oncotargetwww.impactjournals.com/oncotarget/ (2012). Kiyotani, K. et al. A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet Genomics 22, 229–235 (2012). |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
132 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Doctorado en Ciencias Biomédicas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84105/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84105/3/1020747366%202023.pdf https://repositorio.unal.edu.co/bitstream/unal/84105/4/1020747366%202023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c78af98461965885da1f529703e40c30 b92feeac56e231f5b7d9a2b9dd560221 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090128381968384 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Combita Rojas, Alba Luciaf71c0a5830cfca8e639fccacbd97c6f9Lopez Kleine, Lilianaf2bb1a1acaac486ce40887caf52c3794Torres Llanos, Yulieth Ximena721410845127187dff156e39a802bba8Biología del cáncer. Instituto Nacional de Cancerología0000-0002-2859-6980Yulieth Ximena Torres LlanosYULIETH XIMENA TORRES LLANOS2023-06-29T14:29:58Z2023-06-29T14:29:58Z2023-03https://repositorio.unal.edu.co/handle/unal/84105Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLas leucemias linfoides agudas de células B (LLA-B) son las enfermedades neoplásicas más comunes en niños. Las tasas de supervivencia en la población pediátrica hispana son más bajas en comparación con la supervivencia en niños no hispanos. Por tanto, es necesario encontrar biomarcadores predictivos de respuesta al tratamiento y de pronóstico de recaída y muerte en esta población. El objetivo de este estudio fue identificar biomarcadores de respuesta al tratamiento de inducción, que también pudiesen predecir la recaída y la muerte, a través de la identificación de genes diferencialmente metilados y expresados entre pacientes que respondieron o no a la quimioterapia de inducción. Se extrajeron muestras de DNA y RNA de 46 muestras de médula ósea de niños hispanos recién diagnosticados con LLA-B. Treinta y dos muestras fueron utilizadas como cohorte descriptiva (27 de diagnóstico y 5 post quimioterapia), en la cual se hicieron los análisis de secuencia de RNA y metilación de DNA para elegir los genes candidatos a biomarcadores de respuesta al tratamiento. Por su parte, 18 muestras se utilizaron para validar el set de genes seleccionados del anterior análisis. El mRNA fue secuenciado en el equipo NextSeq500 de Illumina. El DNA fue previamente tratado con bisulfito de sodio y posteriormente se hibridó a los chips de metilación Illumina Infinium EPIC. Los análisis de expresión y metilación diferencial se hicieron a través de la comparación de los perfiles entre respondedores y no respondedores al día 15, al final de la quimioterapia de inducción. Se encontró que DAPK1, CNKSR3, MIR4435-HG2, CTHRC1, NPDC1, SLC45A3, ITGA6 y ASCL2 se sobreexpresaban en los pacientes no respondedores, y también se evidenció que tenían CpGs hipometiladas, dichos hallazgos fueron comunes en todos los grupos analizados. Se hicieron análisis de regresión logística y curvas ROC, se determinó que la sobreexpresión de MIR4435-2HG, DAPK1, ASCL2, SCL45A3, CNKSR3 y NPDC1 puede predecir la falla en la respuesta al día 15 y la refractariedad. Además, con alta sensibilidad y especificidad se evidenció que una mayor expresión de MIR4435-2HG aumenta la probabilidad de falla terapéutica y el riesgo de fallecer. A su vez, se observó que DAPK1, CNKSR3 y MIR4435-2HG también se sobreexpresan en muestras de recaída. Finalmente, la sobreexpresión de MIR4435-2HG en conjunto con la detección de la enfermedad mínima residual positiva se asocian con una menor supervivencia, y la alta expresión de MIR4435-2HG, DAPK1 y ASCL2 mejoran la clasificación de riesgo de los pacientes con cariotipo normal. En conclusión, en este estudio se observó que la expresión de MIR4435-2HG es un potencial biomarcador predictivo y pronóstico en niños hispanos con LLA-B, y su detección en el momento del diagnóstico podría mejorar las tasas de supervivencia en nuestros pacientes. (Texto tomado de la fuente)Aunque las tasas de supervivencia de la leucemia linfoblástica aguda de células B (LLAB) han mejorado en los últimos años, los niños hispanos siguen teniendo peores tasas de supervivencia. El objetivo de este proyecto fue identificar biomarcadores de respuesta al tratamiento, que también pueden predecir la recaída y la muerte, mediante la identificación de genes metilados y expresados diferencialmente entre los pacientes que respondieron o no respondieron al tratamiento de inducción. Se realizaron ensayos de metilación de DNA y secuenciación de mRNA en 27 médulas óseas de niños hispanos con LLA-B. Se compararon la expresión génica y la metilación diferencial entre los pacientes que respondieron y los que no respondieron el día 15 y al final de la quimioterapia de inducción. DAPK1, CNKSR3, MIR4435-HG2, CTHRC1, NPDC1, SLC45A3, ITGA6 y ASCL2 estaban sobreexpresados e hipometilados en los pacientes no respondedores. La sobreexpresión de DAPK1, ASCL2, SCL45A3, NPDC1 e ITGA6 puede predecir la falla de respuesta al día 15 y la refractariedad. Además, una mayor expresión de MIR4435-2HG aumenta la probabilidad de no respuesta, muerte y riesgo de muerte. MIR4435-2HG también se sobreexpresa en muestras de recaída. Por último, la sobreexpresión de MIR4435-2HG, junto con la enfermedad mínima residual positiva, se asocian a una peor supervivencia, y junto con la sobreexpresión de DAPK1 y ASCL2, podría mejorar la clasificación del riesgo de los pacientes con cariotipo normal. MIR4435-2HG es un biomarcador predictivo potencial en niños con LLA-BDoctoradoDoctor en Ciencias BiomédicasEstudio descriptivo analítico en paciente con diagnóstico de novo de leucemia linfoide B. Se extrajeron muestras de DNA y RNA de 46 muestras de médula ósea de niños hispanos recién diagnosticados con LLA-B. Treinta y dos muestras fueron utilizadas como cohorte descriptiva (27 de diagnóstico y 5 post quimioterapia), en la cual se hicieron los análisis de secuencia de RNA y metilación de DNA para elegir los genes candidatos a biomarcadores de respuesta al tratamiento. Por su parte, 18 muestras se utilizaron para validar el set de genes seleccionados del anterior análisis. El mRNA fue secuenciado en el equipo NextSeq500 de Illumina. El DNA fue previamente tratado con bisulfito de sodio y posteriormente se hibridó a los chips de metilación Illumina Infinium EPIC. Los análisis de expresión y metilación diferencial se hicieron a través de la comparación de los perfiles entre respondedores y no respondedores al día 15, al final de la quimioterapia de inducción. Los genes seleccionados fueron validados por RT-qPCR. Posteriormente, se hicieron regresiones logísticas y regresiones de Cox para determinar la capacidad predicitiva de cada gen, así como su asociación con el aumento del riesgo de muerte.Biomarcadores predictivos de respuesta al tratamiento en leucemias linfoides agudas132 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Doctorado en Ciencias BiomédicasFacultad de MedicinaBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesNeoplasiasInsuficiencia del tratamientoNeoplasmsTreatment FailureLeucemia linfoide agudaExpresión génicaMetilación de DNABiomarcadores predictivosAcute lymphoid leukemiaGene expressionDNA methylationPredictive biomarkersIdentificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo BIdentification of changes in DNA methylation and gene expression profiles associated with clinical response to chemotherapeutic treatment in pediatric patients with type B acute lymphoid leukemiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMChing-Hon Pui, Leslie L Robison, A. T. L. Acute Lymphoblastic Leukaemia. Lancet 371, 1030–1043 (2008).Inaba, H. & Mullighan, C. G. Pediatric acute lymphoblastic leukemia. Haematologica 105, 2524–2539 (2020).Belson, M., Kingsley, B. & Holmes, A. Risk Factors for Acute Leukemia in Children: A Review. Environ Health Perspect 115, 138–145 (2006).Miranda-Filho, A. et al. Epidemiological patterns of leukaemia in 184 countries: a population-based study. Lancet Haematol 5, e14–e24 (2018).Pardo, C., de Vries, E., Buitrago, L. & Gamboa, O. Atlas de mortalidad por cancer en Colombia. (2017).Kadan-Lottick, N. S., Ness, K. K., Bhatia, S. & Gurney, J. G. Survival Variability by Race and Ethnicity in Childhood Acute Lymphoblastic Leukemia. American Medical Association 2008–2014 (2003).Walsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia vol. 27 2416–2419 Preprint at https://doi.org/10.1038/leu.2013.130 (2013).Walsh, K. M. et al. Genomic ancestry and somatic alterations correlate with age at diagnosis in Hispanic children with B-cell acute lymphoblastic leukemia. Am J Hematol 89, 721–725 (2014).Linares, A. et al. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Centro Nacional de Investigacion en Evidencia y Tecnologia en Salud CINETS (2013).Alaggio, R. et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Lymphoid Neoplasms. Leukemia vol. 36 1720–1748 Preprint at https://doi.org/10.1038/s41375-022-01620-2 (2022).Stary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014).Pagna Sok et al. Disparities in relapse among a large multi-ethnic population of children diagnosed with acute lymphoblastic leukemia (ALL): A report from the Reducing Ethnic Disparities in Acute Leukemia (REDIAL) Consortium. (2022).Nordlund, J. & Syvänen, A. C. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 51, 129–138 (2018).Bhojwani, D., Yang, J. J. & Pui, C. H. Biology of childhood acute lymphoblastic leukemia. Pediatr Clin North Am 62, 47–60 (2015).Ji, H. et al. Comprehensive methylome map of lineage commitment from haematopoietic progenitors. Nature 467, 338–342 (2010).Trowbridge, J., Snow, J., Kim, J. & Orkin, S. DNA methyltransferase 1 is essential for and uniquely regulates hematopoietic stem and progenitor cells. Cell Stem Cell 5, 442–449 (2009).Scala, G., Federico, A., Palumbo, D., Cocozza, S. & Greco, D. DNA sequence context as a marker of CpG methylation instability in normal and cancer tissues. Sci Rep 10, 1–11 (2020).Hogan, L. E. et al. Integrated genomic analysis of relapsed childhood acute lymphoblastic leukemia reveals therapeutic strategies. Blood 118, 5218–5227 (2015).Pui, C., Mullighan, C. G., Evans, W. E. & Relling, M. v. Pediatric acute lymphoblastic leukemia : where are we going and how do we get there ? Blood 120, 1–3 (2017).Dominique J. P. M. Stumpel,1 Pauline Schneider, Eddy H. J. van Roon, Judith M. Boer, Paola de Lorenzo, Maria G. Valsecchi, Renee X. de Menezes, Rob Pieters, and R. W. S. Specific promoter methylation identifies different subgroups of MLL-rearranged infant acute lymphoblastic leukemia, influences clinical outcome, and provides therapeutic options. Blood 114, 5490–5498 (2009).Katz, A. J., Chia, V. M., Schoonen, W. M. & Kelsh, M. A. Acute lymphoblastic leukemia: an assessment of international incidence, survival, and disease burden. Cancer Causes & Control 26, 1627–1642 (2015).Acuña, L., Sánchez, P., Uribe, D., Pulido, D. & Valencia, O. Situación del cáncer en Colombia 2015. (2015).Trujillo, Á. M., Linares, A. & Sarmiento, I. C. Intensive chemotherapy in children with acute lymphoblastic leukemia. Interim analysis in a referral center in Colombia. Revista Facultad de Medicina 64, 417–425 (2016).Vera, A. M., Pardo, C., Duarte, M. C. & Suárez, A. Experiencia en el análisis de la mortalidad por leucemia aguda pediátrica en el Instituto Nacional de Cancerología. Biomédica 32, 355–364 (2012).Miguel Ángel Castro Jiménez, Luis Carlos Orozco Vargas, Ernesto Rueda Arenas, A. S. M., Jiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 57, 116–123 (2010).Amaranto Suarez, MD, 1 Martha Pina, MD, 1 Diana X. Nichols-Vinueza, MD, 3 John Lopera, MD, 1 Lyda Rengifo, MD, 1 Mauricio Mesa, MD, 1 Marcela Cardenas, RN, 1 Lisa Morrissey, RN, 3 Galo Veintemilla, MD, 2 Martha Vizcaino, MD, 1 Ligia Del Toro, MD, 1 Victo, M. & 3, 4*. A Strategy to Improve Treatment-Related Mortality and Abandonment of Therapy for Childhood ALL in a Developing Country Reveals the Impact of Treatment Delays. Pediatr Blood Cancer 62, 1395–1402 (2015).Yang, J. J. et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet 43, 237–241 (2011).Matasar, M. J., Ritchie, E. K., Consedine, N., Magai, C. & Neugut, A. I. Incidence rates of the major leukemia subtypes among U.S. Hispanics, Blacks, and non-Hispanic Whites. Leuk Lymphoma 47, 2365–2370 (2006).Walsh, K. M. et al. Associations between genome-wide Native American ancestry, known risk alleles and B-cell ALL risk in Hispanic children. Leukemia 27, 2416–2419 (2013).van Dongen, J. J. M., van der Velden, V. H. J., Brüggemann, M. & Orfao, A. Minimal residual disease diagnostics in acute lymphoblastic leukemia: Need for sensitive, fast, and standardized technologies. Blood 125, 3996–4009 (2015).Vardiman, J. W. et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: Rationale and important changes. Blood vol. 114 937–951 Preprint at https://doi.org/10.1182/blood-2009-03-209262 (2009).McGregor, S., McNeer, J. & Gurbuxani, S. Beyond the 2008 World Health Organization classification: The role of the hematopathology laboratory in the diagnosis and management of acute lymphoblastic leukemia. Semin Diagn Pathol 29, 2–11 (2012).Onciu, M. Acute Lymphoblastic Leukemia. Hematol Oncol Clin North Am 23, 655–674 (2009).Redaelli, A., Laskin, B. L., Stephens, J. M., Botteman, M. F. & Pashos, C. L. A systematic literature review of the clinical and epidemiological burden of acute lymphoblastic leukaemia (ALL). Eur J Cancer Care (Engl) 14, 53–62 (2005).Inaba, H., Greaves, M. & Mullighan, C. G. Acute lymphoblastic leukaemia. The Lancet 381, 1943–1955 (2013).van Dongen, J. J. M. et al. EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 26, 1908–1975 (2012).Coustan-smith, E. et al. New markers for minimal residual disease detection in acute lymphoblastic leukemia. 117, 1–3 (2011).Bhojwani, D. & Pui, C. H. Relapsed childhood acute lymphoblastic leukaemia. Lancet Oncol 14, e205–e217 (2013).Pui, C. H. et al. Childhood acute lymphoblastic leukemia: Progress through collaboration. Journal of Clinical Oncology 33, 2938–2948 (2015).Jiménez, M. Á. C., Vargas, L. C. O., Arenas, E. R. & Mattos, A. S. Epidemiología de la leucemia linfoblástica aguda en pediatría: incidencia, mortalidad y asociaciones causales. Revista de la Universidad Industrial de Santander. Salud 39, 116–123 (2007).The Cancer Genome Atlas Research Network. Genomic and Epigenomic Landscapes of Adult De Novo Acute Myeloid Leukemia. New England Journal of Medicine 368, 2059–2074 (2013).Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).Rodolphe Taby, M. & ; Jean-Pierre J. Issa, M. A. Cancer epigenetics. CACANCER J CLIN 60, 376–392 (2010).Moore, L. D., Le, T. & Fan, G. DNA methylation and its basic function. Neuropsychopharmacology 38, 23–38 (2013).Burke, M. J. & Bhatla, T. Epigenetic Modifications in Pediatric Acute Lymphoblastic Leukemia. Front Pediatr 2, 1–7 (2014).Navada, S. C., Steinmann, J., Lübbert, M. & Silverman, L. R. Clinical development of demethylating agents in hematology. Journal of Clinical Investigation 124, 40–46 (2014).Bhatla, T. et al. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood 119, 5201–5210 (2012).Benton, C. B. et al. Safety and clinical activity of 5-aza-2’-deoxycytidine (decitabine) with or without Hyper-CVAD in relapsed/refractory acute lymphocytic leukaemia. Br J Haematol 167, 356–365 (2014).Garcia-manero, G., Yang, H., Kuang, S., Brien, S. O. & Thomas, D. Epigenetics of acute lymphocytic leukemia. Semin Hematol 46, 1–14 (2009).Black, J. C., Van Rechem, C. & Whetstine, J. R. Histone Lysine Methylation Dynamics: Establishment, Regulation, and Biological Impact. Mol Cell 48, 491–507 (2012).Yoshimi, A. & Kurokawa, M. Key roles of histone methyltransferase and demethylase in leukemogenesis. J Cell Biochem 112, 415–424 (2011).Varier, R. A. & Timmers, H. T. M. Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta Rev Cancer 1815, 75–89 (2011).Dou, Y. & Hess, J. L. Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia. Int J Hematol 87, 10–18 (2008).Eguchi, M., Eguchi-Ishimae, M. & Greaves, M. Molecular pathogenesis of MLL-associated leukemias. Int J Hematol 82, 9–20 (2005).Pieters, R. Infant acute lymphoblastic leukemia: Lessons learned and future directions. Curr Hematol Malig Rep 4, 167–174 (2009).Deaton, A. & Bird, A. CpG islands and the regulation of transcription. Genes Dev 25, 1010–1022 (2011).Jones, P. A. Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet 13, 484–492 (2012).Zhang, W. & Xu, J. DNA methyltransferases and their roles in tumorigenesis. Biomark Res 5, 1 (2017).Hermann, A., Goyal, R. & Jeltsch, A. The Dnmt1 DNA-(cytosine-C5)-methyltransferase methylates DNA processively with high preference for hemimethylated target sites. Journal of Biological Chemistry 279, 48350–48359 (2004).Dean, W. et al. Conservation of methylation reprogramming in mammalian development: Aberrant reprogramming in cloned embryos. Proceedings of the National Academy of Sciences 98, 13734–13738 (2001).Guo, J. U., Su, Y., Zhong, C., Ming, G. L. & Song, H. Hydroxylation of 5-methylcytosine by TET1 promotes active DNA demethylation in the adult brain. Cell 145, 423–434 (2011).Ito, S. et al. Role of tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466, 1129–1133 (2010).Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science (1979) 324, 930–935 (2009).Cortellino, S. et al. Thymine DNA glycosylase is essential for active DNA demethylation by linked deamination-base excision repair. Cell 146, 67–79 (2011).Heidari, N. et al. Significance of Inactivated Genes in Leukemia: Pathogenesis and Prognosis. Cell J 19, 9–26 (2017).You, J. S. & Jones, P. A. Cancer Genetics and Epigenetics: Two Sides of the Same Coin? Cancer Cell 22, 9–20 (2012).Roman-Gomez, J. et al. The role of DNA hypermethylation in the pathogenesis and prognosis of acute lymphoblastic leukemia. Leuk Lymphoma 44, 1855–64 (2003).Nordlund, J. et al. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 14, (2013).Figueroa, M. & Chen, S. Integrated genetic and epigenetic analysis of childhood acute lymphoblastic leukemia. The Journal of … 123, 3099–3111 (2013).Chatterton, Z. et al. Validation of DNA methylation biomarkers for diagnosis of acute lymphoblastic leukemia. Clin Chem 60, 995–1003 (2014).Terwilliger, T. & Abdul-Hay, M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J 7, e577 (2017).Yánez, L., Bermúdez, A., Richard, C., Bureo, E. & Iriondo, A. Successful induction therapy with decitabine in refractory childhood acute lymphoblastic leukemia. Leukemia 23, 1342–1343 (2009).Michael J. Burke, MD1,*, Jatinder K Lamba, PhD2,*, Stanley Pounds, PhD3, Xueyuan Cao, PhD3, Yogita Ghodke-Puranaik, PhD2, Bruce R. Lindgren, MS4, Brenda J. Weigel, M. & Michael R. Verneris, MD6, and Jeffrey S. Miller, M. A Therapeutic Trial of Decitabine and Vorinostat in Combination with Chemotherapy for Relapsed/Refractory Acute Lymphoblastic Leukemia (ALL). Am J Hematol 89, 889–895 (2014).Mullighan, C. G. The molecular genetic makeup of acute lymphoblastic leukemia. Hematology / the Education Program of the American Society of Hematology. American Society of Hematology. Education Program 2012, 389–96 (2012).San Jose-Eneriz, E., Agirre, X., Rodriguez-Otero, P. & Prosper, F. Epigenetic regulation of cell signaling pathways in acute lymphoblastic leukemia. Epigenomics 5, 525–538 (2013).Agirre, X. et al. ASPP1, a common activator of TP53, is inactivated by aberrant methylation of its promoter in acute lymphoblastic leukemia. Oncogene 25, 1862–1870 (2006).Roman-gomez, J. et al. 5’ CpG island hypermethylation is associated with transcriptional silencing of the p21 CIP1 / WAF1 / SDI1 gene and confers poor prognosis in acute lymphoblastic leukemia. Blood 99, 2291–2296 (2002).Paixão, V. A. et al. Hypermethylation of CpG island in the promoter region of CALCA in acute lymphoblastic leukemia with central nervous system (CNS) infiltration correlates with poorer prognosis. Leuk Res 30, 891–894 (2006).Roman-Gomez, J. et al. Poor prognosis in acute lymphoblastic leukemia may relate to promoter hypermethylation of cancer-related genes. Leuk Lymphoma 48, 1269–1282 (2007).Borssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018).Uyen, T. N. et al. Aberrant methylation of protocadherin 17 and its prognostic value in pediatric acute lymphoblastic leukemia. Pediatr Blood Cancer 64, e26259 (2017).Gopeshwar Narayan, 1† Allen J. Freddy, 1 Dongxu Xie, 2 Hema Liyanage, 3 Lorraine Clark, 1 Sergey Kisselev, 1 Ji Un Kang, 1 Subhadra V. Nandula, 1, 2 Catherine McGuinn, 4 Shivakumar Subramaniyam, 1‡ Bachir Alobeid, 1 Prakash Satwani, 4 David Savage, 5 Govi, 6* & 1Departmentof. Promoter Methylation-Mediated Inactivation of PCDH10 in Acute Lymphoblastic Leukemia Contributes to Chemotherapy Resistance. Genes Chromosomes Cancer 50, 1043–1053 (2011).Abdullah, M. et al. ADAMTSL5 and CDH11: putative epigenetic markers for therapeutic resistance in acute lymphoblastic leukemia. Hematology 22, 386–391 (2017).Paugh, S. W. et al. NALP3 inflammasome upregulation and CASP1 cleavage of the glucocorticoid receptor cause glucocorticoid resistance in leukemia cells. Nat Genet 47, 607–614 (2015).Thathia, S. H. et al. Epigenetic inactivation of TWIST2 in acute lymphoblastic leukemia modulates proliferation, cell survival and chemosensitivity. Haematologica 97, 371–378 (2012).Stary, J. et al. Intensive chemotherapy for childhood acute lymphoblastic leukemia: Results of the randomized intercontinental trial ALL IC-BFM 2002. Journal of Clinical Oncology 32, 174–184 (2014).van Dongen Jacques J M et al. Prognostic value of minimal residual disease in acutelymphoblastic leukaemia in childhood. The Lancet 352, 1731–1738 (1998).Cruz-Rodriguez, N. et al. High expression of ID family and IGJ genes signature as predictor of low induction treatment response and worst survival in adult Hispanic patients with B-Acute lymphoblastic leukemia. Journal of Experimental and Clinical Cancer Research 35, 1–14 (2016).Goldman, M. et al. The UCSC Xena platform for public and private cancer genomics data visualization and interpretation. BioRxiv (2019) doi:10.1101/326470.Warde-Farley, D. et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38, (2010).Cheok, M. H. et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet 34, 85–90 (2003).Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics 16, (2015).Goldman, M. J. et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol 38, 675–678 (2020).Lejman, M., Chałupnik, A., Chilimoniuk, Z. & Dobosz, M. Genetic Biomarkers and Their Clinical Implications in B-Cell Acute Lymphoblastic Leukemia in Children. International Journal of Molecular Sciences vol. 23 Preprint at https://doi.org/10.3390/ijms23052755 (2022).McCabe, M. T., Brandes, J. C. & Vertino, P. M. Cancer DNA methylation: Molecular mechanisms and clinical implications. Clinical Cancer Research vol. 15 3927–3937 Preprint at https://doi.org/10.1158/1078-0432.CCR-08-2784 (2009).Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discovery vol. 12 31–46 Preprint at https://doi.org/10.1158/2159-8290.CD-21-1059 (2022).Borssén, M. et al. DNA methylation holds prognostic information in relapsed precursor B-cell acute lymphoblastic leukemia. Clin Epigenetics 10, 1–7 (2018).Tsellou, E. et al. Hypermethylation of CpG islands in the promoter region of the p15INK4B gene in childhood acute leukaemia. Eur J Cancer 41, 584–589 (2005).Mai, H. et al. Hypermethylation of p15 gene associated with an inferior poor long-term outcome in childhood acute lymphoblastic leukemia. J Cancer Res Clin Oncol 142, 497–504 (2016).Kuang, S. Q. et al. Genome-wide identification of aberrantly methylated promoter associated CpG islands in acute lymphocytic leukemia. Leukemia 22, 1529–1538 (2008).Musialik, E. et al. Promoter methylation and expression levels of selected hematopoietic genes in pediatric B-cell acute lymphoblastic leukemia. Blood Res 50, 26–32 (2015).Ghasemian, M. et al. Long non-coding RNA MIR4435-2HG: a key molecule in progression of cancer and non-cancerous disorders. Cancer Cell International vol. 22 Preprint at https://doi.org/10.1186/s12935-022-02633-8 (2022).Movahhed, P. et al. The impact of DAPK1 and mTORC1 signaling association on autophagy in cancer. Mol Biol Rep 49, 4959–4964 (2022).Qin, Y. et al. Effect of DAPK1 gene on proliferation, migration, and invasion of carcinoma of pancreas BxPC-3 cell line. Int J Clin Exp Pathol vol. 7 www.ijcep.com/ (2014).Gasimli, K., Raab, M., Becker, S., Sanhaji, M. & Strebhardt, K. The Role of DAPK1 in the Cell Cycle Regulation of Cervical Cancer Cells and in Response to Topotecan. J Cancer 13, 728–743 (2022).Lake, S. L. et al. Single nucleotide polymorphism array analysis of uveal melanomas reveals that amplification of CNKSR3 is correlated with improved patient survival. American Journal of Pathology 182, 678–687 (2013).Sørensen, K. D. et al. Genetic and epigenetic SLC18A2 silencing in prostate cancer is an independent adverse predictor of biochemical recurrence after radical prostatectomy. Clinical Cancer Research 15, 1400–1410 (2009).Lebedev, T. D. et al. Two receptors, two isoforms, two cancers: Comprehensive analysis of kit and trka expression in neuroblastoma and acute myeloid leukemia. Front Oncol 9, (2019).Meng, C., Zhang, Y., Jiang, D. & Wang, J. CTHRC1 is a prognosis-related biomarker correlated with immune infiltrates in colon adenocarcinoma. World J Surg Oncol 20, (2022).Sial, N. et al. CTHRC1 expression is a novel shared diagnostic and prognostic biomarker of survival in six different human cancer subtypes. Sci Rep 11, (2021).Nguyen, C. H. et al. SOCS2 is part of a highly prognostic 4-gene signature in AML and promotes disease aggressiveness. Sci Rep 9, (2019).Fattahi, S., Nikbakhsh, N., Ranaei, M., Sabour, D. & Akhavan-Niaki, H. Association of sonic hedgehog signaling pathway genes IHH, BOC, RAB23a and MIR195-5p, MIR509-3-5p, MIR6738-3p with gastric cancer stage. Sci Rep 11, (2021).Mathew, E. et al. Dosage-dependent regulation of pancreatic cancer growth and angiogenesis by Hedgehog signaling. Cell Rep 9, 484–494 (2014).Hu, X. G. et al. Elevated expression of ASCL2 is an independent prognostic indicator in lung squamous cell carcinoma. J Clin Pathol 69, 313–318 (2016).Wu, L. et al. ASCL2 Affects the Efficacy of Immunotherapy in Colon Adenocarcinoma Based on Single-Cell RNA Sequencing Analysis. Front Immunol 13, (2022).Esgueva, R. et al. Prevalence of TMPRSS2-ERG and SLC45A3-ERG gene fusions in a large prostatectomy cohort. Modern Pathology 23, 539–546 (2010).Pin, E. et al. Identification of a Novel Autoimmune Peptide Epitope of Prostein in Prostate Cancer. J Proteome Res 16, 204–216 (2017).Song, S. et al. Downregulation of ITGA6 confers to the invasion of multiple myeloma and promotes progression to plasma cell leukaemia. Br J Cancer 124, 1843–1853 (2021).Yamakawa, N., Kaneda, K., Saito, Y., Ichihara, E. & Morishita, K. The increased expression of integrin α6 (itga6) enhances drug resistance in evi1 high leukemia. PLoS One 7, (2012).Ouyang, W., Ren, L., Liu, G., Chi, X. & Wei, H. Lncrna mir4435-2hg predicts poor prognosis in patients with colorectal cancer. PeerJ 2019, (2019).Zhong, C., Xie, Z., Zeng, L. H., Yuan, C. & Duan, S. MIR4435-2HG Is a Potential Pan-Cancer Biomarker for Diagnosis and Prognosis. Frontiers in Immunology vol. 13 Preprint at https://doi.org/10.3389/fimmu.2022.855078 (2022).Zhu, L., Wang, A., Gao, M., Duan, X. & Li, Z. LncRNA MIR4435-2HG triggers ovarian cancer progression by regulating miR-128-3p/CKD14 axis. Cancer Cell Int 20, (2020).Shen, H. et al. MIR4435-2HG regulates cancer cell behaviors in oral squamous cell carcinoma cell growth by upregulating TGF-β1. Odontology 108, 553–559 (2020).Navarrete-Meneses, M. del P. & Pérez-Vera, P. Alteraciones epigenéticas en leucemia linfoblástica aguda. Bol Med Hosp Infant Mex 74, 243–264 (2017).Zhou, Z. H. et al. Chromatin accessibility changes are associated with enhanced growth and liver metastasis capacity of acid-adapted colorectal cancer cells. Cell Cycle 18, 511–522 (2019).Li, X., Song, F. & Sun, H. Long non-coding RNA AWPPH interacts with ROCK2 and regulates the proliferation and apoptosis of cancer cells in pediatric T-cell acute lymphoblastic leukemia. Oncol Lett 20, (2020).Greco, M. et al. Promoter methylation of DAPK1, E-cadherin and thrombospondin-1 in de novo and therapy-related myeloid neoplasms. Blood Cells Mol Dis 45, 181–185 (2010).Dong, R. et al. Models for Predicting Response to Immunotherapy and Prognosis in Patients with Gastric Cancer: DNA Damage Response Genes. Biomed Res Int 2022, 4909544 (2022).Tong, C.-W. et al. Novel genes that mediate nuclear respiratory factor 1-regualted neurite outgrowth in neuroblastoma IMR-32 cells. Gene 515, 62–70 (2013).Bloomston, M. et al. Identification of Molecular Markers Specific for Pancreatic Neuroendocrine Tumors by Genetic Profiling of Core Biopsies. Ann Surg Oncol 11, 413–419 (2004).Potter, C. et al. Maternal Red Blood Cell Folate and Infant Vitamin B12 Status Influence Methylation of Genes Associated with Childhood Acute Lymphoblastic Leukemia. Mol Nutr Food Res 62, 1800411 (2018).Sandoval, J. et al. Genome-wide DNA methylation profiling predicts relapse in childhood B-cell acute lymphoblastic leukaemia. Br J Haematol 160, 404–418 (2012).Nordlund, J. et al. Dna methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 7, 1–12 (2015).Milani, L. et al. DNA methylation for subtype classification and prediction of treatment outcome in patients with childhood acute. Childhood A Global Journal Of Child Research 115, 1214–1225 (2010).Gabriel, A. S. et al. Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics 10, 717–726 (2015).Iacobucci, I. & Mullighan, C. G. Genetic basis of acute lymphoblastic leukemia. Journal of Clinical Oncology 35, 975–983 (2017).Gröbner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature (2018) doi:10.1038/nature25480.Thol, F. ALL is not the same in the era of genetics. Blood vol. 138 915–916 Preprint at https://doi.org/10.1182/blood.2021011934 (2021).Guru, S. A. et al. Aberrant hydroxymethylation in promoter CpG regions of genes related to the cell cycle and apoptosis characterizes advanced chronic myeloid leukemia disease, poor imatinib respondents and poor survival. BMC Cancer 22, (2022).Yuan, W. et al. Correlation of DAPK1 methylation and the risk of gastrointestinal cancer: A systematic review and meta-analysis. PLoS One 12, (2017).Calmon, M. F. et al. Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer. Cancer Genet Cytogenet 173, 31–37 (2007).Wei, J. et al. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med 8, 678–678 (2020).Singh, P., Ravanan, P. & Talwar, P. Death associated protein kinase 1 (DAPK1): A regulator of apoptosis and autophagy. Frontiers in Molecular Neuroscience vol. 9 Preprint at https://doi.org/10.3389/fnmol.2016.00046 (2016).Wang, L. Q. et al. Epigenetic inactivation of mir-34b/c in addition to mir-34a and DAPK1 in chronic lymphocytic leukemia. J Transl Med 12, (2014).Eben Massari, M. & Murre, C. Helix-Loop-Helix Proteins: Regulators of Transcription in Eucaryotic Organisms. MOLECULAR AND CELLULAR BIOLOGY vol. 20 (2000).van der Flier, L. G. et al. Transcription Factor Achaete Scute-Like 2 Controls Intestinal Stem Cell Fate. Cell 136, 903–912 (2009).Zuo, Q. et al. ASCL2 expression contributes to gastric tumor migration and invasion by downregulating miR223 and inducing EMT. Mol Med Rep 18, 3751–3759 (2018).Kwon, O. H. et al. Aberrant upregulation of ASCL2 by promoter demethylation promotes the growth and resistance to 5-fluorouracil of gastric cancer cells. Cancer Sci 104, 391–397 (2013).Jubb, A. M. et al. Achaete-scute like 2 (ascl2) is a target of Wnt signalling and is upregulated in intestinal neoplasia. Oncogene 25, 3445–3457 (2006).Samra, E. B., Klein, B., Commes, T. & Moreaux, J. Development of gene expression-based risk score in cytogenetically normal acute myeloid leukemia patients. Oncotarget vol. 3 www.impactjournals.com/oncotargetwww.impactjournals.com/oncotarget/ (2012).Kiyotani, K. et al. A genome-wide association study identifies four genetic markers for hematological toxicities in cancer patients receiving gemcitabine therapy. Pharmacogenet Genomics 22, 229–235 (2012).Identificación de los cambios en los perfiles de metilación de DNA y de expresión génica, asociados a la respuesta clínica al tratamiento quimioterapéutico en pacientes pediátricos con leucemia linfoide aguda tipo BInstituto Nacional de CancerologíaEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84105/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1020747366 2023.pdf1020747366 2023.pdfTesis de Doctorado en Ciencias Biomédicasapplication/pdf3734741https://repositorio.unal.edu.co/bitstream/unal/84105/3/1020747366%202023.pdfc78af98461965885da1f529703e40c30MD53THUMBNAIL1020747366 2023.pdf.jpg1020747366 2023.pdf.jpgGenerated Thumbnailimage/jpeg7204https://repositorio.unal.edu.co/bitstream/unal/84105/4/1020747366%202023.pdf.jpgb92feeac56e231f5b7d9a2b9dd560221MD54unal/84105oai:repositorio.unal.edu.co:unal/841052024-08-07 23:10:50.056Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |