Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).

ilustraciones

Autores:
Doria Andrade, Jose Gregorio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79705
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79705
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Semiconductores
Materiales termoeléctricos
III-V Semiconductores
Magnetrón Sputtering
Aleaciones ternarias
III-V Semiconductors
Magnetron Sputtering
Ternary Alloys
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_ec6f3509408bea11d5a7ad19eeb8567a
oai_identifier_str oai:repositorio.unal.edu.co:unal/79705
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
dc.title.translated.eng.fl_str_mv Experimental study of ternary alloys semi-magnetic of (III-V) (Mn, Cr).
title Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
spellingShingle Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
530 - Física
Semiconductores
Materiales termoeléctricos
III-V Semiconductores
Magnetrón Sputtering
Aleaciones ternarias
III-V Semiconductors
Magnetron Sputtering
Ternary Alloys
title_short Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
title_full Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
title_fullStr Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
title_full_unstemmed Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
title_sort Estudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).
dc.creator.fl_str_mv Doria Andrade, Jose Gregorio
dc.contributor.advisor.none.fl_str_mv Pulzara Mora, Alvaro
dc.contributor.author.none.fl_str_mv Doria Andrade, Jose Gregorio
dc.contributor.researchgroup.spa.fl_str_mv Materiales Cerámicos y Vítreos
Magnetismo y Materiales Avanzados
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Semiconductores
Materiales termoeléctricos
III-V Semiconductores
Magnetrón Sputtering
Aleaciones ternarias
III-V Semiconductors
Magnetron Sputtering
Ternary Alloys
dc.subject.lemb.none.fl_str_mv Semiconductores
Materiales termoeléctricos
dc.subject.proposal.spa.fl_str_mv III-V Semiconductores
Magnetrón Sputtering
Aleaciones ternarias
dc.subject.proposal.eng.fl_str_mv III-V Semiconductors
Magnetron Sputtering
Ternary Alloys
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-24T15:55:25Z
dc.date.available.none.fl_str_mv 2021-06-24T15:55:25Z
dc.date.issued.none.fl_str_mv 2021-06-22
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79705
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79705
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] D.C. Cronemeyer, Perpendicular Anisotropy in, 18 (2009) 85–89. https://doi.org/10.1063/1.3141747.
[2] S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics, Surf. Sci. Rep. 61 (2006) 345–381. https://doi.org/10.1016/j.surfrep.2006.05.001.
[3] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Electric-field control of ferromagnetism, Nature. 408 (2000) 944–946. https://doi.org/10.1038/35050040.
[4] L. Angarita, Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro, Tesis. 1 (2017) 11–92.
[5] R. Hummel, Electronic Properties of Materials 20 Edition, n.d.
[6] J. Su, T. Liu, J. Liu, J. Yang, G. Shen, Y. Bai, Z. Dong, F. Wang, Y. Zhao, Electrical and optical property of annealed Te-doped GaSb, J. Semicond. 38 (2017). https://doi.org/10.1088/1674-4926/38/4/043001.
[7] J.M.D.COEY, Magnetism and Magnetic Materials, Trinity College, Dublin, 1395.
[8] M.E. Straumanis, C.D. Kim, Lattice parameters, thermal expansion coefficients, phase width, and perfection of the structure of GaSb and InSb, J. Appl. Phys. 36 (1965) 3822–3825. https://doi.org/10.1063/1.1713955.
[9] S. Blunde, Stephen Blundell Magnetism in condensed matter 2011.pdf, (2011).
[10] M. Oberflächen-nanostrukturierung, Mechanical Surface Nano-patterning of Indium Phosphide and Silicon for Subsequent Electrochemical Processing, (2006).
[11] N. A. Spaldin-J. Mansbridge, Magnetic materials: fundamentals and applications, Second edi, University of California, Santa Barbara, 2010.
[12] B. D. CULLITY-C. D. GRAHAM, INTRODUCTION TO MAGNETIC MATERIALS, n.d.
[13] and W.J.W. D. R. Askeland, P. P. Fulay, Ciencia e ingeniería de materiales, Zeitschrift Fur Naturforsch. - Sect. B J. Chem. Sci. 18 (1963) 753–756. https://doi.org/10.1515/znb-1963-0911.
[14] D. Fiorani, J.L. Dormann, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogues, A. Garcia, A.M. Testa, Collective magnetic state in nanoparticles systems, J. Magn. Magn. Mater. 196 (1999) 143–147. https://doi.org/10.1016/S0304-8853(98)00694-5.
[15] C. A. Pulzara, Aleaciones semi-magnéticas de GaSbMn para aplicaciones en el desarrollo de sensores de campo magnético por efecto hall, Univ. Nac. Manizales. (2017).
[16] S. Romero, Efecto de diversos recubrimientos sobre la propiedades magnéticas de partículas superparamagnéticas de Fe3O4, (2011) 7–19. https://www.repositoriodigital.ipn.mx/handle/123456789/11799.
[17] Sergio M. Rezende, Física de Materiais e Dispositivos Electrónicos, Universida, Pernambuco, Recife, 1996. https://www.passeidireto.com/arquivo/24120600/materiais-e-dispositivos-eletronicos-2-a-ed-sergio-m-rezende-pt-1.
[18] F. Bloch, Nuclear induction, Phys. Rev. 70 (1946) 460–474. https://doi.org/10.1103/PhysRev.70.460.
[19] S. MacK, R.C. Myers, J.T. Heron, A.C. Gossard, D.D. Awschalom, Stoichiometric growth of high Curie temperature heavily alloyed GaMnAs, Appl. Phys. Lett. 92 (2008). https://doi.org/10.1063/1.2927481.
[20] X. Liu, Y.Y. Zhou, J.K. Furdyna, Angular dependence of spin-wave resonances and surface spin pinning in ferromagnetic (Ga,Mn) As films, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–8. https://doi.org/10.1103/PhysRevB.75.195220.
[21] U. Wurstbauer, M. Sperl, M. Soda, D. Neumaier, D. Schuh, G. Bayreuther, J. Zweck, W. Wegscheider, Ferromagnetic GaMnAs grown on (110) faced GaAs, Appl. Phys. Lett. 92 (2008) 19–22. https://doi.org/10.1063/1.2884683.
[22] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic Downloaded from, Science (80-. ). 281 (1998) 951–957. www.sciencemag.orghttscience.sciencemag.org/.
[23] C. Zener, Interaction between the d shells in the transition metals, Phys. Rev. 81 (1951) 440–444. https://doi.org/10.1103/PhysRev.81.440.
[24] A. Quesada, M.A. García, J.F. Fernández, A. Hernando, Semiconductores magnéticos diluidos : Materiales para la espintrónica, (2007).
[25] K. Khazen, Ferromagnetic Resonance Investigation of GaMnAs Nanometric Layers, (2008).
[26] and M.T. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, Angle-resolved photoemission study of Ga1−xMnxAs. Phys. Rev. B, 64, 125304. pdf, (n.d.).
[27] E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov. Infrared Probe of Itinerant Ferromagnetism in Ga1−xMnxAs. Phys. Rev. Lett., 89, 097203 (2002).pdf, (n.d.).
[28] J. Blinowski, P. Kacman, Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs, Phys. Rev. B - Condens. Matter Mater. Phys. 67 (2003) 4. https://doi.org/10.1103/PhysRevB.67.121204.
[29] S. Burany, Scanning Electron Microscopy and X-Ray Microanalysis . J. Goldstein, D. Newbury, D. Joy, C, Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael. Kluwer Academic, Plenum Publishers, New York; 2003, 688 pages (Hardback, $75.00) ISBN 0-306-47292-9 , Microsc. Microanal. 9 (2003) 484–484. https://doi.org/10.1017/s1431927603030617.
[30] BJ Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in: 2016: pp. 17–43.
[31] Zhiping Luo, A Practical Guide to Transmission Electron Microscopy, Volume II: Advanced Microscopy, Kindle, 2016. https://www.amazon.com/Practical-Guide-Transmission-Electron-Microscopy-ebook/dp/B01A1IR3VY.
[32] L. Kohl, Helmut ; Reimer, Transmission Electron Microscopy : Physics of Image Formation, 2008. https://doi.org/10.1007/978-0-387-40093-8.
[33] Mauricio Arroyave Franco (Universidad EAFIT), La microscopia, 44 (2008) 68–83. http://www.medic.ula.ve/histologia/anexos/microscopweb/MONOWEB/capitulo3_4.htm.
[34] R.B. Correa, Estudio de capas (Ga,As)(In,N) obtenidas por magnetrón sputtering con posible aplicación en celdas solares, (2015).
[35] C. Hamaguchi, Basic Semiconductor Physics, Second Edi, 2010. https://www.springer.com/gp/book/9783642033025.
[36] J.W. J. Watts, An Introduction to Surface Analysis by XPS and AES, 2015. http://repositorio.unan.edu.ni/2986/1/5624.pdf.
[37] S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev. Sci. Instrum. 30 (1959) 548–557. https://doi.org/10.1063/1.1716679.
[38] A. Rosales Rivera, J.A. Restrepo, M.A. Sanin, O.E. Patiño, Laboratorio de Magnetismo y Materiales Avanzados Universidad Nacional de Colombia Sede Manizales, Rev. Colomb. Física. 38 (2006) 77–80.
[39] R. Bernal-correa, DIFUSIVIDAD T ERMICA DE MONO-CRISTALES DE GaSb Y Si ( 100 ) THERMAL DIFFUSIVITY OF Si ( 100 ) AND GaSb Introducci ´ on En los u ´ ltimos a ˜ nos la t ´ ecnica fotoac ´ ustica ha tomado gran inter ´ es debido a su alto potencial en el estudio de los materi, (2015) 31–44.
[40] A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978–982. https://doi.org/10.1103/PhysRev.56.978.
[41] L.D.N. Semiconductoras, G.A. Madero, Caracterización de capas de GaAs y GaAsMn depositadas por magnetrón sputtering, Superf. y Vacío. 29 (2016) 98–104.
[42] S.C. Jain, M. Willander, H. Maes, Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors, Semicond. Sci. Technol. 11 (1996) 641–671. https://doi.org/10.1088/0268-1242/11/5/004.
[43] M. Sinyukov, R. Trommer, M. Cardona, Resonant Raman scattering in InP, Phys. Status Solidi. 86 (1978) 563–568. https://doi.org/10.1002/pssb.2220860216.
[44] T. Mihailova, N. Velchev, V. Krastev, T. Marinova, XPS study of residual oxide layers on p-GaAs surfaces, Appl. Surf. Sci. 120 (1997) 213–219. https://doi.org/10.1016/S0169-4332(97)00249-3.
[45] P. Streubel, R. Hesse, L. Makhova, J. Schindelka, R. Denecke, A Practicable Method for Thickness Estimation of Ultrathin Layers from XPS Data with UNIFIT 2011, (2011) 15.
[46] M.C. Siqueira, R.N.A. Maia, R.M.T. Araujo, K.D. Machado, S.F. Stolf, J.C. De Lima, C.M. Poffo, Determination of thermal and photothermal properties of an amorphous GaSe9 alloy, J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4894184.
[47] J.C. de Souza, A.F. da Silva, H. Vargas, Optical fundamental band-gap energy of semiconductors by photoacoustic spectroscopy, J. Phys. IV JP. 4 (1994). https://doi.org/10.1051/jp4:1994731.
[48] J.S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53 (1982). https://doi.org/10.1063/1.331665.
[49] J. Mira, F. Rivadulla, J. Rivas, A. Fondado, T. Guidi, R. Caciuffo, F. Carsughi, P.G. Radaelli, J.B. Goodenough, Structural Transformation Induced by Magnetic Field and “Colossal-Like” Magnetoresistance Response above 313 K in MnAs, Phys. Rev. Lett. 90 (2003) 4. https://doi.org/10.1103/PhysRevLett.90.097203.
[50] T. Concerns, Pressure on, (1961) 241.
[51] Y. Shuangli, Magneto-transport in ( Ga , Mn ) As-based alloys and hybrids, (2005).
[52] J. Yang, N.F. Chen, Z. Liu, S. Yang, C. Chai, M. Liao, H. He, (Ga,Mn,As) compounds grown on semi-insulating GaAs with mass-analyzed low energy dual ion beam deposition, J. Cryst. Growth. 234 (2002) 359–363. https://doi.org/10.1016/S0022-0248(01)01722-5.
[53] P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidterilchen mittels Rontgestrahlen, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse. (1918) 98–100.
[54] N. Chen, H. Xiu, J. Yang, J. Wu, X. Zhong, L. Lin, Content analyses in GaMnAs by double-crystal X-ray diffraction, Chinese Sci. Bull. 47 (2002) 274–275. https://doi.org/10.1360/02tb9066.
[55] M.E. Mendoza-Alvarez, C. Tabares-Muñoz, Óxidos Como Sustratos Para Películas Delgadas De Superconductores De Alta Temperatura Crítica, Rev. Mex. Fis. 46 (2000) 8–13.
[56] Y.H. Zhang, L.L. Guo, W.Z. Shen, Study on the Raman scattering measurements of Mn ion implanted GaN, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 130 (2006) 269–272. https://doi.org/10.1016/j.mseb.2006.03.014.
[57] H.W.L. Alves, L. Scolfaro, F. Eronides, S. Jr, Lattice dynamics of Ga 1 − x Mn x N and Ga 1 − x Mn x As by first-principle calculations, 1 (2012) 1–5.
[58] J.B. Kim, Y.P. Lee, K.S. Ryu, S.C. Shin, H. Akinaga, K.W. Kim, Investigation of the micromagnetic structure of MnAs film on GaAs(0 0 1), J. Magn. Magn. Mater. 310 (2007) 1799–1800. https://doi.org/10.1016/j.jmmm.2006.10.711.
[59] J.L. Xu, M. Van Schilfgaarde, G.D. Samolyuk, Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN, Phys. Rev. Lett. 94 (2005) 1–4. https://doi.org/10.1103/PhysRevLett.94.097201.
[60] M. Mizuguchi, H. Akinaga, T. Manago, K. Ono, M. Oshima, M. Shirai, M. Yuri, H. J. Lin, H. H. Hsieh, and C. T. Chen. Epitaxial growth of zincblende CrAs GaAs multilayer. Journal of Applied Physics 91, 7917 (2002) doi 10..pdf, (n.d.).
[61] K. Zhang, C. Tenailleau, P. Alphonse, J.Y. Chane-Ching, Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation, Appl. Phys. A Mater. Sci. Process. 100 (2010) 1049–1055. https://doi.org/10.1007/s00339-010-5905-8.
[62] S.L. Duan, J.O. Artman, B. Wong, D.E. Laughlin, Study of the growth characteristics of sputtered Cr thin films, J. Appl. Phys. 67 (1990) 4913–4915. https://doi.org/10.1063/1.344729.
[63] D. Beazley, B.K. Jones, Critical development stages for the reactive Cr-GaAs(110) interface, Python Cookb. 31 (2013) 706. http://oreilly.com/catalog/errata.csp?isbn=9781449340377.
[64] H. Akinaga, T. Manago, M. Shirai, Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy, Jpn. J. Appl. Phys. 39 (2000) 37–40. https://doi.org/10.1143/jjap.39.l1118.
[65] D. H. Mosca, P. C. de Camargo, J. L. Guimaraes, W. H. Schreiner, A. J. A. de Oliveira, P. E. N. Souza, M. Eddrief, V. H. Etgens. Magnetic and chemical aspects of Crbased films grown on GaAs (001). J. Phys. Condens..pdf, (n.d.).
[66] M.D. Deal, D.A. Stevenson, Diffusion of chromium in gallium arsenide, J. Appl. Phys. 59 (1986) 2398–2407. https://doi.org/10.1063/1.336341.
[67] S. Torres-Jaramillo, C. Pulzara-Mora, R. Bernal-Correa, M.V. de la Cerda, S. Gallardo-Hernández, M. López-López, A. Pulzara-Mora, Structural and optical study of indium and gallium arsenide nanostructures prepared by magnetron sputtering, Univ. Sci. 24 (2019) 523–542. https://doi.org/10.11144/Javeriana.SC24-3.saos.
[68] G. Yang, F. Zhu, S. Dong, Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn, J. Cryst. Growth. 316 (2011) 145–148. https://doi.org/10.1016/j.jcrysgro.2010.12.022.
[69] M.R. Islam, M.M. Hasan, N. Chen, M. Fukuzawa, M. Yamada, Raman scattering study of vibrational modes and hole concentration in GaxMn1-xSb, Semicond. Sci. Technol. 25 (2010). https://doi.org/10.1088/0268-1242/25/9/095010.
[70] R. Fukasawa, S. Perkowitz, Raman-scattering spectra of coupled LO-phonon-hole-plasmon modes in p-type GaAs, Phys. Rev. B. 50 (1994) 14119–14124. https://doi.org/10.1103/PhysRevB.50.14119.
[71] X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng, Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb), Sci. Rep. 6 (2016) 1–7. https://doi.org/10.1038/srep21821.
[72] M. Romcevic, M. Gilic, L. Kilanski, W. Dobrowolski, I.V. Fedorchenko, S.F. Marenkin, N. Romcevic, Phonon properties of ZnSnSb2 + Mn semiconductors: Raman spectroscopy, J. Raman Spectrosc. 49 (2018) 1678–1685. https://doi.org/10.1002/jrs.5421.
[73] I. Conference, C. E. Icece, E. Engineering, S. M. Science, and C. Academy, in: Vib. Modes Ga x Mn 1- x Sb Stud. by Raman Spectrosc., n.d.
[74] P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 1444201–14442012. https://doi.org/10.1103/PhysRevB.64.144420.
[75] Cathy Murphy, Sustainable Nano,” The center for sustainable nanotechnology, 2016, in: n.d.
[76] J. Tejada, X. Zhang, and J. M. Hernández, Magnetic Hysteresis in Novel Magnetic Materials. Greece, 1996..pdf, (n.d.).
[77] B.D. McCombe, M. Na, X. Chen, M. Cheon, S. Wang, H. Luo, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, S.J. Potashnik, P. Schiffer, Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys, Phys. E Low-Dimensional Syst. Nanostructures. 16 (2003) 90–98. https://doi.org/10.1016/S1386-9477(02)00594-5.
[78] Y.A. Danilov, A. V. Kruglov, M. Behar, M.C. Dos Santos, L.G. Pereira, J.E. Schmidt, Formation of clusters and the magnetooptical Kerr effect in gallium arsenide implanted with manganese ions, Phys. Solid State. 47 (2005) 1626–1629. https://doi.org/10.1134/1.2045344.
[79] H. Luo, G.B. Kim, M. Cheon, X. Chen, M. Na, S. Wang, B.D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, G. Boishin, L.J. Whitman, Ferromagnetic GaSb/Mn digital alloys, Phys. E Low-Dimensional Syst. Nanostructures. 20 (2004) 338–345. https://doi.org/10.1016/j.physe.2003.08.030.
[80] A.I. Dmitriev, A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films, J. Appl. Phys. 119 (2016). https://doi.org/10.1063/1.4942005.
[81] A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Ferromagnetism and microwave magnetoresistance of GaMnSb films, Phys. Solid State. 57 (2015) 322–330. https://doi.org/10.1134/S1063783415020353.
[82] G.L. Parrish, C. Ortiz, M. Hart, M. Bellotto, Grazing incidence synchrotron x-ray diffraction method for analyzing thin films, J. Mater. Res. 2 (1987) 471–477. https://doi.org/10.1557/JMR.1987.0471.
[83] U. Complutense, “Centro de Asistencia a la Investigación Difracción de Rayos X.,” in: n.d. http://webs.ucm.es/centros/webs/cai5084/index.php?tp=Difracci%F3n de Polvo&a=dir3&d=23115.php.
[84] D. Chateigner, Thin film analysis by X-ray scattering. By Mario Birkholz, with contributions by P. F. Fewster and C. Genzel. Pp. xxii+356. Weinheim: Wiley-VCH Verlag GmbH Co., 2005. Price (hardcover) EUR 119, SFR 188. ISBN-10: 3-527-31052-5; ISBN-13: 978-3-527-31052-4. , J. Appl. Crystallogr. 39 (2006) 925–926. https://doi.org/10.1107/s0021889806034698.
[85] F. Matsukura, E. Abe, H. Ohno, Magnetotransport properties of (Ga, Mn)Sb, J. Appl. Phys. 87 (2000) 6442–6444. https://doi.org/10.1063/1.372732.
[86] T. Dietl and H. Ohno, Engineering magnetism, Mater. Today. 9 (2006) 18–26.
[87] and U.D. D. K. Sadana, M. H. Norcott, R. G. Wilson, Rapid Thermal Processing: Science and Technology, n.d.
[88] and D.N.S. D. Isheim, M. S. Gagliano, M. E. Fine, Atom Probe Microscopy, n.d.
[89] G.A. Held, G. Grinstein, H. Doyle, S. Sun, C.B. Murray, Competing interactions in dispersions of superparamagnetic nanoparticles, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 124081–124084. https://doi.org/10.1103/physrevb.64.012408.
[90] Y.M. T. Okita, Crystal magnetic anisotropy and magnetization of MnSb, (n.d.).
[91] R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, Electronic and Magnetic Properties of MnSb Compounds, J. Supercond. Nov. Magn. 28 (2015) 1815–1819. https://doi.org/10.1007/s10948-014-2947-8.
[92] M. Asanuma, The magnetic properties of B8 type structure compounds in transition elementsetin systems, J. Phys. Soc. Jpn. 17 (1962)].pdf, (n.d.).
[93] A.E. Taylor, T. Berlijn, S.E. Hahn, A.F. May, T.J. Williams, L. Poudel, S. Calder, R.S. Fishman, M.B. Stone, A.A. Aczel, H.B. Cao, M.D. Lumsden, A.D. Christianson, Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015) 1–11. https://doi.org/10.1103/PhysRevB.91.224418.
[94] G. Zaránd, B. Jankó, [Formula presented]: A Frustrated Ferromagnet, Phys. Rev. Lett. 89 (2002) 2–5. https://doi.org/10.1103/PhysRevLett.89.047201.
[95] G.A. Fiete, G. Zaránd, B. Jankó, P. Redliński, C. Pascu Moca, Positional disorder, spin-orbit coupling, and frustration in Ga 1-xMn xAs, Phys. Rev. B - Condens. Matter Mater. Phys. 71 (2005) 1–16. https://doi.org/10.1103/PhysRevB.71.115202.
[96] G.R.S. Tu Chen, W. Stutius, J.W. Allen, Proceedings of the 21st Annual Conference on Magnetism and Magnetic Materials, AIP, New York, 1976, in: Magn. Magn. Mater. e 1975, n.d.
[97] C. Caizer, M. Stefanescu, Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method, J. Phys. D. Appl. Phys. 35 (2002) 3035–3040. https://doi.org/10.1088/0022-3727/35/23/301.
[98] K. Maaz, A. Mumtaz, S.K. Hasanain, M.F. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles, J. Magn. Magn. Mater. 322 (2010) 2199–2202. https://doi.org/10.1016/j.jmmm.2010.02.010.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 174 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Escuela de física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79705/4/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79705/7/78748454.pdf
https://repositorio.unal.edu.co/bitstream/unal/79705/8/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79705/9/78748454.pdf.jpg
bitstream.checksum.fl_str_mv f7d494f61e544413a13e6ba1da2089cd
760a3b042a4862072b64909e3a44b2d1
cccfe52f796b7c63423298c2d3365fc6
8e13b8fa743d3746cd1c1a0c99678387
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089419265671168
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Pulzara Mora, Alvaro67b9a8430ddf9671229e9a454d3f8c4b600Doria Andrade, Jose Gregoriod9587b2a0668f83c2a37a0cb461ef0ba600Materiales Cerámicos y VítreosMagnetismo y Materiales Avanzados2021-06-24T15:55:25Z2021-06-24T15:55:25Z2021-06-22https://repositorio.unal.edu.co/handle/unal/79705Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesDurante más de dos décadas, el estudio de las impurezas magnéticas en semiconductores ha recibido una gran atención. El interés en estos compuestos es impulsado en parte por el deseo de utilizar el spin del electrón en la electrónica, un campo de rápida expansión en la que hoy conocemos como la espintrónica. El descubrimiento del ferromagnetismo en el grupo III-V dopados con metales de transición como Mn, Fe y Cr es de gran interés en la investigación de semiconductores magnéticos, abrió un campo de investigación de mucho interés para aplicaciones tecnológicas. La ventaja de III (Mn, Cr) V es que los efectos magnéticos, ópticos y electrónicos están todos interconectados. Además, todas estas propiedades son sensibles a los estímulos externos y pueden modificarse fácilmente mediante la aplicación de un campo eléctrico o magnético externo y también mediante radiación. Es por eso, que en el presente trabajo de tesis nos enfocamos en mostrar resultados experimentales de aleaciones semiconductoras III-V, específicamente películas delgadas de: GaCrAs, GaMnAs, y GaMnSb obtenidas por la técnica de evaporación catódica asistida por campo magnético o magnetrón sputtering. Esta técnica de preparación de películas delgadas permite controlar variables físicas involucradas en los procesos (tiempo, presión, temperatura y atmósfera), lo que hace que se convierta en una técnica ideal para obtener películas delgadas semiconductoras. Con el fin de aprovechar esta versatilidad de la técnica de preparación, recolectamos información de las propiedades físicas de cada una de las muestras obtenidas, utilizando: difracción de rayos X (DRX), microscopía Raman, microscopía electrónica de barrido (SEM), microscopía de fuerza atómica (AFM), espectroscopia de masas de iones secundarios (SIMS) y magnetometría de muestra vibrante (VSM). Lo anterior permitió corroborar la obtención del semiconductor de interés y además correlacionar las propiedades ópticas, estructurales y magnéticas en función de algunas de las variables experimentales, resultados que coinciden con los reportados en la literatura. (Tomado de la fuente)For more than two decades, the study of magnetic impurities in semiconductors has received great attention. Interest in these compounds is driven in part by the desire to use the spin of the electron in electronics, a rapidly expanding field from what it is now known as spintronics. The discovery of ferromagnetism in group III-V doped with transition metals such as Mn, Fe and Cr is of great interest in magnetic semiconductor research, it opened a field of research which appears to be appealing for technological applications. The advantage of III (Mn, Cr) V is that the magnetic, optical and electronic effects are all interconnected. Furthermore, all these properties are sensitive to external stimuli and can be easily modified by applying an external electric or magnetic field and also by radiation. That is why, in this thesis work we focus on showing experimental results of III-V semiconductor alloys, specifically layers of: GaCrAs, GaMnAs, and GaSbAs obtained by the cathodic evaporation technique assisted by magnetic field or magnetron sputtering. This technique for preparing thin layers allows controlling physical variables involved in the processes (time, pressure, temperature and atmosphere), which makes it an ideal technique to obtain semiconductor layers. In order to take advantage of this versatility of the preparation technique, we collected information on the physical properties of each of the samples obtained, using: X-ray diffraction (XRD), Raman microscopy, scanning electron microscopy (SEM), Atomic Force Microscopy (AFM), Secondary Ion Mass Spectroscopy (SIMS), and Vibrating Sample Magnetometry (VSM). This allowed corroborating the obtaining of the semiconductor of interest and also correlating the optical, structural and magnetic properties based on some of the experimental variables, results that coincide with those reported in the literature. (Tomado de la fuente)DoctoradoDoctor en Ciencias -FísicaMateriales semiconductores Nanoestructurados174 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en Ciencias - FísicaEscuela de físicaFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín530 - FísicaSemiconductoresMateriales termoeléctricosIII-V SemiconductoresMagnetrón SputteringAleaciones ternariasIII-V SemiconductorsMagnetron SputteringTernary AlloysEstudio experimental de aleaciones ternarias semimagnéticas de (III-V) (Mn, Cr).Experimental study of ternary alloys semi-magnetic of (III-V) (Mn, Cr).Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] D.C. Cronemeyer, Perpendicular Anisotropy in, 18 (2009) 85–89. https://doi.org/10.1063/1.3141747.[2] S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics, Surf. Sci. Rep. 61 (2006) 345–381. https://doi.org/10.1016/j.surfrep.2006.05.001.[3] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno, K. Ohtani, Electric-field control of ferromagnetism, Nature. 408 (2000) 944–946. https://doi.org/10.1038/35050040.[4] L. Angarita, Síntesis de películas delgadas por la técnica de magnetrón sputtering a partir de blancos de renio y boro, Tesis. 1 (2017) 11–92.[5] R. Hummel, Electronic Properties of Materials 20 Edition, n.d.[6] J. Su, T. Liu, J. Liu, J. Yang, G. Shen, Y. Bai, Z. Dong, F. Wang, Y. Zhao, Electrical and optical property of annealed Te-doped GaSb, J. Semicond. 38 (2017). https://doi.org/10.1088/1674-4926/38/4/043001.[7] J.M.D.COEY, Magnetism and Magnetic Materials, Trinity College, Dublin, 1395.[8] M.E. Straumanis, C.D. Kim, Lattice parameters, thermal expansion coefficients, phase width, and perfection of the structure of GaSb and InSb, J. Appl. Phys. 36 (1965) 3822–3825. https://doi.org/10.1063/1.1713955.[9] S. Blunde, Stephen Blundell Magnetism in condensed matter 2011.pdf, (2011).[10] M. Oberflächen-nanostrukturierung, Mechanical Surface Nano-patterning of Indium Phosphide and Silicon for Subsequent Electrochemical Processing, (2006).[11] N. A. Spaldin-J. Mansbridge, Magnetic materials: fundamentals and applications, Second edi, University of California, Santa Barbara, 2010.[12] B. D. CULLITY-C. D. GRAHAM, INTRODUCTION TO MAGNETIC MATERIALS, n.d.[13] and W.J.W. D. R. Askeland, P. P. Fulay, Ciencia e ingeniería de materiales, Zeitschrift Fur Naturforsch. - Sect. B J. Chem. Sci. 18 (1963) 753–756. https://doi.org/10.1515/znb-1963-0911.[14] D. Fiorani, J.L. Dormann, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Nogues, A. Garcia, A.M. Testa, Collective magnetic state in nanoparticles systems, J. Magn. Magn. Mater. 196 (1999) 143–147. https://doi.org/10.1016/S0304-8853(98)00694-5.[15] C. A. Pulzara, Aleaciones semi-magnéticas de GaSbMn para aplicaciones en el desarrollo de sensores de campo magnético por efecto hall, Univ. Nac. Manizales. (2017).[16] S. Romero, Efecto de diversos recubrimientos sobre la propiedades magnéticas de partículas superparamagnéticas de Fe3O4, (2011) 7–19. https://www.repositoriodigital.ipn.mx/handle/123456789/11799.[17] Sergio M. Rezende, Física de Materiais e Dispositivos Electrónicos, Universida, Pernambuco, Recife, 1996. https://www.passeidireto.com/arquivo/24120600/materiais-e-dispositivos-eletronicos-2-a-ed-sergio-m-rezende-pt-1.[18] F. Bloch, Nuclear induction, Phys. Rev. 70 (1946) 460–474. https://doi.org/10.1103/PhysRev.70.460.[19] S. MacK, R.C. Myers, J.T. Heron, A.C. Gossard, D.D. Awschalom, Stoichiometric growth of high Curie temperature heavily alloyed GaMnAs, Appl. Phys. Lett. 92 (2008). https://doi.org/10.1063/1.2927481.[20] X. Liu, Y.Y. Zhou, J.K. Furdyna, Angular dependence of spin-wave resonances and surface spin pinning in ferromagnetic (Ga,Mn) As films, Phys. Rev. B - Condens. Matter Mater. Phys. 75 (2007) 1–8. https://doi.org/10.1103/PhysRevB.75.195220.[21] U. Wurstbauer, M. Sperl, M. Soda, D. Neumaier, D. Schuh, G. Bayreuther, J. Zweck, W. Wegscheider, Ferromagnetic GaMnAs grown on (110) faced GaAs, Appl. Phys. Lett. 92 (2008) 19–22. https://doi.org/10.1063/1.2884683.[22] H. Ohno, Making Nonmagnetic Semiconductors Ferromagnetic Downloaded from, Science (80-. ). 281 (1998) 951–957. www.sciencemag.orghttscience.sciencemag.org/.[23] C. Zener, Interaction between the d shells in the transition metals, Phys. Rev. 81 (1951) 440–444. https://doi.org/10.1103/PhysRev.81.440.[24] A. Quesada, M.A. García, J.F. Fernández, A. Hernando, Semiconductores magnéticos diluidos : Materiales para la espintrónica, (2007).[25] K. Khazen, Ferromagnetic Resonance Investigation of GaMnAs Nanometric Layers, (2008).[26] and M.T. Okabayashi, A. Kimura, O. Rader, T. Mizokawa, A. Fujimori, T. Hayashi, Angle-resolved photoemission study of Ga1−xMnxAs. Phys. Rev. B, 64, 125304. pdf, (n.d.).[27] E. J. Singley, R. Kawakami, D. D. Awschalom, and D. N. Basov. Infrared Probe of Itinerant Ferromagnetism in Ga1−xMnxAs. Phys. Rev. Lett., 89, 097203 (2002).pdf, (n.d.).[28] J. Blinowski, P. Kacman, Spin interactions of interstitial Mn ions in ferromagnetic GaMnAs, Phys. Rev. B - Condens. Matter Mater. Phys. 67 (2003) 4. https://doi.org/10.1103/PhysRevB.67.121204.[29] S. Burany, Scanning Electron Microscopy and X-Ray Microanalysis . J. Goldstein, D. Newbury, D. Joy, C, Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael. Kluwer Academic, Plenum Publishers, New York; 2003, 688 pages (Hardback, $75.00) ISBN 0-306-47292-9 , Microsc. Microanal. 9 (2003) 484–484. https://doi.org/10.1017/s1431927603030617.[30] BJ Inkson, Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for materials characterization, in: 2016: pp. 17–43.[31] Zhiping Luo, A Practical Guide to Transmission Electron Microscopy, Volume II: Advanced Microscopy, Kindle, 2016. https://www.amazon.com/Practical-Guide-Transmission-Electron-Microscopy-ebook/dp/B01A1IR3VY.[32] L. Kohl, Helmut ; Reimer, Transmission Electron Microscopy : Physics of Image Formation, 2008. https://doi.org/10.1007/978-0-387-40093-8.[33] Mauricio Arroyave Franco (Universidad EAFIT), La microscopia, 44 (2008) 68–83. http://www.medic.ula.ve/histologia/anexos/microscopweb/MONOWEB/capitulo3_4.htm.[34] R.B. Correa, Estudio de capas (Ga,As)(In,N) obtenidas por magnetrón sputtering con posible aplicación en celdas solares, (2015).[35] C. Hamaguchi, Basic Semiconductor Physics, Second Edi, 2010. https://www.springer.com/gp/book/9783642033025.[36] J.W. J. Watts, An Introduction to Surface Analysis by XPS and AES, 2015. http://repositorio.unan.edu.ni/2986/1/5624.pdf.[37] S. Foner, Versatile and sensitive vibrating-sample magnetometer, Rev. Sci. Instrum. 30 (1959) 548–557. https://doi.org/10.1063/1.1716679.[38] A. Rosales Rivera, J.A. Restrepo, M.A. Sanin, O.E. Patiño, Laboratorio de Magnetismo y Materiales Avanzados Universidad Nacional de Colombia Sede Manizales, Rev. Colomb. Física. 38 (2006) 77–80.[39] R. Bernal-correa, DIFUSIVIDAD T ERMICA DE MONO-CRISTALES DE GaSb Y Si ( 100 ) THERMAL DIFFUSIVITY OF Si ( 100 ) AND GaSb Introducci ´ on En los u ´ ltimos a ˜ nos la t ´ ecnica fotoac ´ ustica ha tomado gran inter ´ es debido a su alto potencial en el estudio de los materi, (2015) 31–44.[40] A.L. Patterson, The scherrer formula for X-ray particle size determination, Phys. Rev. 56 (1939) 978–982. https://doi.org/10.1103/PhysRev.56.978.[41] L.D.N. Semiconductoras, G.A. Madero, Caracterización de capas de GaAs y GaAsMn depositadas por magnetrón sputtering, Superf. y Vacío. 29 (2016) 98–104.[42] S.C. Jain, M. Willander, H. Maes, Stresses and strains in epilayers, stripes and quantum structures of III-V compound semiconductors, Semicond. Sci. Technol. 11 (1996) 641–671. https://doi.org/10.1088/0268-1242/11/5/004.[43] M. Sinyukov, R. Trommer, M. Cardona, Resonant Raman scattering in InP, Phys. Status Solidi. 86 (1978) 563–568. https://doi.org/10.1002/pssb.2220860216.[44] T. Mihailova, N. Velchev, V. Krastev, T. Marinova, XPS study of residual oxide layers on p-GaAs surfaces, Appl. Surf. Sci. 120 (1997) 213–219. https://doi.org/10.1016/S0169-4332(97)00249-3.[45] P. Streubel, R. Hesse, L. Makhova, J. Schindelka, R. Denecke, A Practicable Method for Thickness Estimation of Ultrathin Layers from XPS Data with UNIFIT 2011, (2011) 15.[46] M.C. Siqueira, R.N.A. Maia, R.M.T. Araujo, K.D. Machado, S.F. Stolf, J.C. De Lima, C.M. Poffo, Determination of thermal and photothermal properties of an amorphous GaSe9 alloy, J. Appl. Phys. 116 (2014). https://doi.org/10.1063/1.4894184.[47] J.C. de Souza, A.F. da Silva, H. Vargas, Optical fundamental band-gap energy of semiconductors by photoacoustic spectroscopy, J. Phys. IV JP. 4 (1994). https://doi.org/10.1051/jp4:1994731.[48] J.S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl. Phys. 53 (1982). https://doi.org/10.1063/1.331665.[49] J. Mira, F. Rivadulla, J. Rivas, A. Fondado, T. Guidi, R. Caciuffo, F. Carsughi, P.G. Radaelli, J.B. Goodenough, Structural Transformation Induced by Magnetic Field and “Colossal-Like” Magnetoresistance Response above 313 K in MnAs, Phys. Rev. Lett. 90 (2003) 4. https://doi.org/10.1103/PhysRevLett.90.097203.[50] T. Concerns, Pressure on, (1961) 241.[51] Y. Shuangli, Magneto-transport in ( Ga , Mn ) As-based alloys and hybrids, (2005).[52] J. Yang, N.F. Chen, Z. Liu, S. Yang, C. Chai, M. Liao, H. He, (Ga,Mn,As) compounds grown on semi-insulating GaAs with mass-analyzed low energy dual ion beam deposition, J. Cryst. Growth. 234 (2002) 359–363. https://doi.org/10.1016/S0022-0248(01)01722-5.[53] P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidterilchen mittels Rontgestrahlen, Nachrichten von Der Gesellschaft Der Wissenschaften Zu Göttingen, Math. Klasse. (1918) 98–100.[54] N. Chen, H. Xiu, J. Yang, J. Wu, X. Zhong, L. Lin, Content analyses in GaMnAs by double-crystal X-ray diffraction, Chinese Sci. Bull. 47 (2002) 274–275. https://doi.org/10.1360/02tb9066.[55] M.E. Mendoza-Alvarez, C. Tabares-Muñoz, Óxidos Como Sustratos Para Películas Delgadas De Superconductores De Alta Temperatura Crítica, Rev. Mex. Fis. 46 (2000) 8–13.[56] Y.H. Zhang, L.L. Guo, W.Z. Shen, Study on the Raman scattering measurements of Mn ion implanted GaN, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 130 (2006) 269–272. https://doi.org/10.1016/j.mseb.2006.03.014.[57] H.W.L. Alves, L. Scolfaro, F. Eronides, S. Jr, Lattice dynamics of Ga 1 − x Mn x N and Ga 1 − x Mn x As by first-principle calculations, 1 (2012) 1–5.[58] J.B. Kim, Y.P. Lee, K.S. Ryu, S.C. Shin, H. Akinaga, K.W. Kim, Investigation of the micromagnetic structure of MnAs film on GaAs(0 0 1), J. Magn. Magn. Mater. 310 (2007) 1799–1800. https://doi.org/10.1016/j.jmmm.2006.10.711.[59] J.L. Xu, M. Van Schilfgaarde, G.D. Samolyuk, Role of disorder in Mn:GaAs, Cr:GaAs, and Cr:GaN, Phys. Rev. Lett. 94 (2005) 1–4. https://doi.org/10.1103/PhysRevLett.94.097201.[60] M. Mizuguchi, H. Akinaga, T. Manago, K. Ono, M. Oshima, M. Shirai, M. Yuri, H. J. Lin, H. H. Hsieh, and C. T. Chen. Epitaxial growth of zincblende CrAs GaAs multilayer. Journal of Applied Physics 91, 7917 (2002) doi 10..pdf, (n.d.).[61] K. Zhang, C. Tenailleau, P. Alphonse, J.Y. Chane-Ching, Realization of aligned three-dimensional single-crystal chromium nanostructures by thermal evaporation, Appl. Phys. A Mater. Sci. Process. 100 (2010) 1049–1055. https://doi.org/10.1007/s00339-010-5905-8.[62] S.L. Duan, J.O. Artman, B. Wong, D.E. Laughlin, Study of the growth characteristics of sputtered Cr thin films, J. Appl. Phys. 67 (1990) 4913–4915. https://doi.org/10.1063/1.344729.[63] D. Beazley, B.K. Jones, Critical development stages for the reactive Cr-GaAs(110) interface, Python Cookb. 31 (2013) 706. http://oreilly.com/catalog/errata.csp?isbn=9781449340377.[64] H. Akinaga, T. Manago, M. Shirai, Material design of half-metallic zinc-blende CrAs and the synthesis by molecular-beam epitaxy, Jpn. J. Appl. Phys. 39 (2000) 37–40. https://doi.org/10.1143/jjap.39.l1118.[65] D. H. Mosca, P. C. de Camargo, J. L. Guimaraes, W. H. Schreiner, A. J. A. de Oliveira, P. E. N. Souza, M. Eddrief, V. H. Etgens. Magnetic and chemical aspects of Crbased films grown on GaAs (001). J. Phys. Condens..pdf, (n.d.).[66] M.D. Deal, D.A. Stevenson, Diffusion of chromium in gallium arsenide, J. Appl. Phys. 59 (1986) 2398–2407. https://doi.org/10.1063/1.336341.[67] S. Torres-Jaramillo, C. Pulzara-Mora, R. Bernal-Correa, M.V. de la Cerda, S. Gallardo-Hernández, M. López-López, A. Pulzara-Mora, Structural and optical study of indium and gallium arsenide nanostructures prepared by magnetron sputtering, Univ. Sci. 24 (2019) 523–542. https://doi.org/10.11144/Javeriana.SC24-3.saos.[68] G. Yang, F. Zhu, S. Dong, Fabrication of ferromagnetic GaMnSb by thermal diffusion of evaporated Mn, J. Cryst. Growth. 316 (2011) 145–148. https://doi.org/10.1016/j.jcrysgro.2010.12.022.[69] M.R. Islam, M.M. Hasan, N. Chen, M. Fukuzawa, M. Yamada, Raman scattering study of vibrational modes and hole concentration in GaxMn1-xSb, Semicond. Sci. Technol. 25 (2010). https://doi.org/10.1088/0268-1242/25/9/095010.[70] R. Fukasawa, S. Perkowitz, Raman-scattering spectra of coupled LO-phonon-hole-plasmon modes in p-type GaAs, Phys. Rev. B. 50 (1994) 14119–14124. https://doi.org/10.1103/PhysRevB.50.14119.[71] X.Y. Chong, Y.H. Jiang, R. Zhou, J. Feng, Pressure dependence of electronic structure and superconductivity of the MnX (X = N, P, As, Sb), Sci. Rep. 6 (2016) 1–7. https://doi.org/10.1038/srep21821.[72] M. Romcevic, M. Gilic, L. Kilanski, W. Dobrowolski, I.V. Fedorchenko, S.F. Marenkin, N. Romcevic, Phonon properties of ZnSnSb2 + Mn semiconductors: Raman spectroscopy, J. Raman Spectrosc. 49 (2018) 1678–1685. https://doi.org/10.1002/jrs.5421.[73] I. Conference, C. E. Icece, E. Engineering, S. M. Science, and C. Academy, in: Vib. Modes Ga x Mn 1- x Sb Stud. by Raman Spectrosc., n.d.[74] P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Granular Cu-Co alloys as interacting superparamagnets, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 1444201–14442012. https://doi.org/10.1103/PhysRevB.64.144420.[75] Cathy Murphy, Sustainable Nano,” The center for sustainable nanotechnology, 2016, in: n.d.[76] J. Tejada, X. Zhang, and J. M. Hernández, Magnetic Hysteresis in Novel Magnetic Materials. Greece, 1996..pdf, (n.d.).[77] B.D. McCombe, M. Na, X. Chen, M. Cheon, S. Wang, H. Luo, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, S.J. Potashnik, P. Schiffer, Novel ferromagnetism in digital GaAs/Mn and GaSb/Mn alloys, Phys. E Low-Dimensional Syst. Nanostructures. 16 (2003) 90–98. https://doi.org/10.1016/S1386-9477(02)00594-5.[78] Y.A. Danilov, A. V. Kruglov, M. Behar, M.C. Dos Santos, L.G. Pereira, J.E. Schmidt, Formation of clusters and the magnetooptical Kerr effect in gallium arsenide implanted with manganese ions, Phys. Solid State. 47 (2005) 1626–1629. https://doi.org/10.1134/1.2045344.[79] H. Luo, G.B. Kim, M. Cheon, X. Chen, M. Na, S. Wang, B.D. McCombe, X. Liu, Y. Sasaki, T. Wojtowicz, J.K. Furdyna, G. Boishin, L.J. Whitman, Ferromagnetic GaSb/Mn digital alloys, Phys. E Low-Dimensional Syst. Nanostructures. 20 (2004) 338–345. https://doi.org/10.1016/j.physe.2003.08.030.[80] A.I. Dmitriev, A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Magnetic fluctuations sorted by magnetic field in MnSb clusters embedded in GaMnSb thin films, J. Appl. Phys. 119 (2016). https://doi.org/10.1063/1.4942005.[81] A.D. Talantsev, O. V. Koplak, R.B. Morgunov, Ferromagnetism and microwave magnetoresistance of GaMnSb films, Phys. Solid State. 57 (2015) 322–330. https://doi.org/10.1134/S1063783415020353.[82] G.L. Parrish, C. Ortiz, M. Hart, M. Bellotto, Grazing incidence synchrotron x-ray diffraction method for analyzing thin films, J. Mater. Res. 2 (1987) 471–477. https://doi.org/10.1557/JMR.1987.0471.[83] U. Complutense, “Centro de Asistencia a la Investigación Difracción de Rayos X.,” in: n.d. http://webs.ucm.es/centros/webs/cai5084/index.php?tp=Difracci%F3n de Polvo&a=dir3&d=23115.php.[84] D. Chateigner, Thin film analysis by X-ray scattering. By Mario Birkholz, with contributions by P. F. Fewster and C. Genzel. Pp. xxii+356. Weinheim: Wiley-VCH Verlag GmbH Co., 2005. Price (hardcover) EUR 119, SFR 188. ISBN-10: 3-527-31052-5; ISBN-13: 978-3-527-31052-4. , J. Appl. Crystallogr. 39 (2006) 925–926. https://doi.org/10.1107/s0021889806034698.[85] F. Matsukura, E. Abe, H. Ohno, Magnetotransport properties of (Ga, Mn)Sb, J. Appl. Phys. 87 (2000) 6442–6444. https://doi.org/10.1063/1.372732.[86] T. Dietl and H. Ohno, Engineering magnetism, Mater. Today. 9 (2006) 18–26.[87] and U.D. D. K. Sadana, M. H. Norcott, R. G. Wilson, Rapid Thermal Processing: Science and Technology, n.d.[88] and D.N.S. D. Isheim, M. S. Gagliano, M. E. Fine, Atom Probe Microscopy, n.d.[89] G.A. Held, G. Grinstein, H. Doyle, S. Sun, C.B. Murray, Competing interactions in dispersions of superparamagnetic nanoparticles, Phys. Rev. B - Condens. Matter Mater. Phys. 64 (2001) 124081–124084. https://doi.org/10.1103/physrevb.64.012408.[90] Y.M. T. Okita, Crystal magnetic anisotropy and magnetization of MnSb, (n.d.).[91] R. Masrour, E.K. Hlil, M. Hamedoun, A. Benyoussef, O. Mounkachi, H. El Moussaoui, Electronic and Magnetic Properties of MnSb Compounds, J. Supercond. Nov. Magn. 28 (2015) 1815–1819. https://doi.org/10.1007/s10948-014-2947-8.[92] M. Asanuma, The magnetic properties of B8 type structure compounds in transition elementsetin systems, J. Phys. Soc. Jpn. 17 (1962)].pdf, (n.d.).[93] A.E. Taylor, T. Berlijn, S.E. Hahn, A.F. May, T.J. Williams, L. Poudel, S. Calder, R.S. Fishman, M.B. Stone, A.A. Aczel, H.B. Cao, M.D. Lumsden, A.D. Christianson, Influence of interstitial Mn on magnetism in the room-temperature ferromagnet Mn1+δSb, Phys. Rev. B - Condens. Matter Mater. Phys. 91 (2015) 1–11. https://doi.org/10.1103/PhysRevB.91.224418.[94] G. Zaránd, B. Jankó, [Formula presented]: A Frustrated Ferromagnet, Phys. Rev. Lett. 89 (2002) 2–5. https://doi.org/10.1103/PhysRevLett.89.047201.[95] G.A. Fiete, G. Zaránd, B. Jankó, P. Redliński, C. Pascu Moca, Positional disorder, spin-orbit coupling, and frustration in Ga 1-xMn xAs, Phys. Rev. B - Condens. Matter Mater. Phys. 71 (2005) 1–16. https://doi.org/10.1103/PhysRevB.71.115202.[96] G.R.S. Tu Chen, W. Stutius, J.W. Allen, Proceedings of the 21st Annual Conference on Magnetism and Magnetic Materials, AIP, New York, 1976, in: Magn. Magn. Mater. e 1975, n.d.[97] C. Caizer, M. Stefanescu, Magnetic characterization of nanocrystalline Ni-Zn ferrite powder prepared by the glyoxylate precursor method, J. Phys. D. Appl. Phys. 35 (2002) 3035–3040. https://doi.org/10.1088/0022-3727/35/23/301.[98] K. Maaz, A. Mumtaz, S.K. Hasanain, M.F. Bertino, Temperature dependent coercivity and magnetization of nickel ferrite nanoparticles, J. Magn. Magn. Mater. 322 (2010) 2199–2202. https://doi.org/10.1016/j.jmmm.2010.02.010.EspecializadaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8799https://repositorio.unal.edu.co/bitstream/unal/79705/4/license_rdff7d494f61e544413a13e6ba1da2089cdMD54ORIGINAL78748454.pdf78748454.pdfTesis de Doctorado en Ciencias - Físicaapplication/pdf3947191https://repositorio.unal.edu.co/bitstream/unal/79705/7/78748454.pdf760a3b042a4862072b64909e3a44b2d1MD57LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79705/8/license.txtcccfe52f796b7c63423298c2d3365fc6MD58THUMBNAIL78748454.pdf.jpg78748454.pdf.jpgGenerated Thumbnailimage/jpeg5183https://repositorio.unal.edu.co/bitstream/unal/79705/9/78748454.pdf.jpg8e13b8fa743d3746cd1c1a0c99678387MD59unal/79705oai:repositorio.unal.edu.co:unal/797052023-07-23 23:03:23.758Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==