Sobre una transformación generalizada de hankel
In this paper, the classical Hankel transformation is extended to a certain space of generalized functions. We construct a space Tμ δ, B of testing functions, such that xJμ(xy) is in Tμ δ, B for every y and gt; 0. The generalized Hankel transformation hμf of fϵ Tμ, δ, B, the dual space of Tμ δ, B is...
- Autores:
-
Betancor, Jorge J.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1989
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43243
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43243
http://bdigital.unal.edu.co/33341/
- Palabra clave:
- Hankel Transformation
function space
test functions
abelian theorems/ Transformación de Hankel
espacio de funciones
funciones de prueba
teoremas abelianos
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this paper, the classical Hankel transformation is extended to a certain space of generalized functions. We construct a space Tμ δ, B of testing functions, such that xJμ(xy) is in Tμ δ, B for every y and gt; 0. The generalized Hankel transformation hμf of fϵ Tμ, δ, B, the dual space of Tμ δ, B is defined by:(h´μf)(y)= and lt;f(x),xJμ (xy), y and gt; 0 .Several smoothness, boundedness and inversion theorems are proved. Moreover, Abelian theorems due to J.L. Griffith are extended to the space of distributions introduced. Finally, we analyze some applications of the generalized h'μ-transformation. |
---|