Sobre una transformación generalizada de hankel

In this paper, the classical Hankel transformation is extended to a certain space of generalized functions. We construct a space Tμ δ, B of testing functions, such that xJμ(xy) is in Tμ δ, B for every y and gt; 0. The generalized Hankel transformation hμf of fϵ Tμ, δ, B, the dual space of Tμ δ, B is...

Full description

Autores:
Betancor, Jorge J.
Tipo de recurso:
Article of journal
Fecha de publicación:
1989
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43243
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43243
http://bdigital.unal.edu.co/33341/
Palabra clave:
Hankel Transformation
function space
test functions
abelian theorems/ Transformación de Hankel
espacio de funciones
funciones de prueba
teoremas abelianos
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In this paper, the classical Hankel transformation is extended to a certain space of generalized functions. We construct a space Tμ δ, B of testing functions, such that xJμ(xy) is in Tμ δ, B for every y and gt; 0. The generalized Hankel transformation hμf of fϵ Tμ, δ, B, the dual space of Tμ δ, B is defined by:(h´μf)(y)= and lt;f(x),xJμ (xy), y and gt; 0 .Several smoothness, boundedness and inversion theorems are proved. Moreover, Abelian  theorems due to J.L. Griffith are extended to the space of distributions introduced. Finally, we analyze some applications of the generalized h'μ-transformation.