On conjugacy classes of sl(2,q)
Let SL(2,q) be the group of 2x2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least q-1 distinct conjugacy classes of SL(2,q). On the other hand, if q and gt;3 is odd,...
- Autores:
-
Adan-Bante, Edith
Harris, John M.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49374
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49374
http://bdigital.unal.edu.co/42831/
- Palabra clave:
- Clases conjugadas
matrices sobre un campo finito
producto de clases conjugadas
grupo especial lineal
15A33
20E45
20G40
Conjugacy classes
Matrices over a finite field
Products of conjugacy classes
Special linear group
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Let SL(2,q) be the group of 2x2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least q-1 distinct conjugacy classes of SL(2,q). On the other hand, if q and gt;3 is odd, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least (q+3)/2 distinct conjugacy classes of SL(2,q). |
---|