On conjugacy classes of sl(2,q)

Let SL(2,q) be the group of 2x2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least q-1 distinct conjugacy classes of SL(2,q). On the other hand, if q and gt;3 is odd,...

Full description

Autores:
Adan-Bante, Edith
Harris, John M.
Tipo de recurso:
Article of journal
Fecha de publicación:
2012
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49374
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49374
http://bdigital.unal.edu.co/42831/
Palabra clave:
Clases conjugadas
matrices sobre un campo finito
producto de clases conjugadas
grupo especial lineal
15A33
20E45
20G40
Conjugacy classes
Matrices over a finite field
Products of conjugacy classes
Special linear group
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Let SL(2,q) be the group of 2x2 matrices with determinant one over a finite field F of size q. We prove that if q is even, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least q-1 distinct conjugacy classes of SL(2,q). On the other hand, if q and gt;3 is odd, then the product of any two noncentral conjugacy classes of SL(2,q) is the union of at least (q+3)/2 distinct conjugacy classes of SL(2,q).