Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia
ilustraciones, gráficas, mapas, tablas
- Autores:
-
Prieto Velandia, Jeisson Andres
- Tipo de recurso:
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81293
- Palabra clave:
- 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Infecciones por Coronavirus
Gestión de Riesgos
Gestión de Recursos
Coronavirus Infections
Risk Management
Resources Management
Risk management
Risk-based optimization
Resource allocation
Pandemic response
Multi-objective optimization
Complex systems
COVID-19
Urban spatial analysis
Gestión del riesgo
Optimización basada en riesgos
Asignación de recursos
Respuesta a pandemias
Optimización multiobjetivo
Sistemas complejos
COVID-19
Análisis espacial urbano
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_eb772619e5882212996f6265dd60115e |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81293 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
dc.title.translated.spa.fl_str_mv |
Asignación de recursos basada en riesgo para la gestión y respuesta ante una pandemia: El Caso del COVID-19 en Bogotá, Colombia Español |
title |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
spellingShingle |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Infecciones por Coronavirus Gestión de Riesgos Gestión de Recursos Coronavirus Infections Risk Management Resources Management Risk management Risk-based optimization Resource allocation Pandemic response Multi-objective optimization Complex systems COVID-19 Urban spatial analysis Gestión del riesgo Optimización basada en riesgos Asignación de recursos Respuesta a pandemias Optimización multiobjetivo Sistemas complejos COVID-19 Análisis espacial urbano |
title_short |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
title_full |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
title_fullStr |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
title_full_unstemmed |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
title_sort |
Risk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, Colombia |
dc.creator.fl_str_mv |
Prieto Velandia, Jeisson Andres |
dc.contributor.advisor.none.fl_str_mv |
Gómez Perdomo, Jonatan |
dc.contributor.author.none.fl_str_mv |
Prieto Velandia, Jeisson Andres |
dc.contributor.researchgroup.spa.fl_str_mv |
Alife: Grupo de Investigación en Vida Artificial |
dc.contributor.subjectmatterexpert.none.fl_str_mv |
León Guzmán, Elizabeth Malagon Oviedo, Rafael Antonio |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Infecciones por Coronavirus Gestión de Riesgos Gestión de Recursos Coronavirus Infections Risk Management Resources Management Risk management Risk-based optimization Resource allocation Pandemic response Multi-objective optimization Complex systems COVID-19 Urban spatial analysis Gestión del riesgo Optimización basada en riesgos Asignación de recursos Respuesta a pandemias Optimización multiobjetivo Sistemas complejos COVID-19 Análisis espacial urbano |
dc.subject.decs.spa.fl_str_mv |
Infecciones por Coronavirus Gestión de Riesgos Gestión de Recursos |
dc.subject.decs.eng.fl_str_mv |
Coronavirus Infections Risk Management Resources Management |
dc.subject.proposal.eng.fl_str_mv |
Risk management Risk-based optimization Resource allocation Pandemic response Multi-objective optimization Complex systems COVID-19 Urban spatial analysis |
dc.subject.proposal.spa.fl_str_mv |
Gestión del riesgo Optimización basada en riesgos Asignación de recursos Respuesta a pandemias Optimización multiobjetivo Sistemas complejos COVID-19 Análisis espacial urbano |
description |
ilustraciones, gráficas, mapas, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-03-22T13:13:36Z |
dc.date.available.none.fl_str_mv |
2022-03-22T13:13:36Z |
dc.date.issued.none.fl_str_mv |
2022-01-17 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81293 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81293 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Rajib Acharya and Akash Porwal. A vulnerability index for the management of and response to the COVID-19 epidemic in India: an ecological study. The Lancet Global Health, 8(9):e1142–e1151, 2020. Óscar Alfonso. Densidades divergentes y segregación socio-espacial en la Bogotá de hoy: un análisis a partir de un índice de calidad de la densidad. In VIII Seminario Internacional de Investigación en Urbanismo, Barcelona-Balneário Camboriú, Junio 2016, 2016. Ethem Alpaydin. Introduction to machine learning. MIT press, 2020. Nezih Altay and Walter G Green III. OR/MS research in disaster operations management. European journal of operational research, 175(1):475–493, 2006. Gary An, Qi Mi, Joyeeta Dutta-Moscato, and Yoram Vodovotz. Agent-based models in translational systems biology. WIREs Systems Biology and Medicine, 1(2):159–171, 2009. John E Angus. The probability integral transform and related results. SIAM review, 36(4):652–654, 1994. P. G. Balaji and D. Srinivasan. An introduction to multi-agent systems. Studies in Computational Intelligence, 310:1–27, 2010. E Lee Daugherty Biddison, Ruth Faden, Howard S Gwon, Darren P Mareiniss, Alan C Regenberg, Monica Schoch-Spana, Jack Schwartz, and Eric S Toner. Too many patients… a framework to guide statewide allocation of scarce mechanical ventilation during disasters. Chest, 155(4):848–854, 2019. Sheryl L Chang, Nathan Harding, Cameron Zachreson, Oliver M Cliff, and Mikhail Prokopenko. Modelling transmission and control of the COVID-19 pandemic in Australia. Nature communications, 11(1):1–13, 2020 Mark IC Chen, Vernon JM Lee, Ian Barr, Cui Lin, Rachelle Goh, Caroline Lee, Baldev Singh, Jessie Tan, Wei-Yen Lim, Alex R Cook, et al. Risk factors for pandemic (H1N1) 2009 virus seroconversion among hospital staff, Singapore. Emerging infectious diseases, 16(10):1554, 2010. Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(5):773–791, 2016. Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Stefano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489):395–400, 2020. Philip Cooley, Bruce Y Lee, Shawn Brown, James Cajka, Bernadette Chasteen, Laxminarayana Ganapathi, James H Stark, William D Wheaton, Diane K Wagener, and Donald S Burke. Protecting health care workers: a pandemic simulation based on Allegheny County. Influenza and other respiratory viruses, 4(2):61–72, 2010. Damon P Coppola. Introduction to international disaster management. Elsevier, 2006. Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization, 8(3):631–657, 1998. Michael Day. Covid-19: four fifths of cases are asymptomatic, China figures indicate, 2020. Maria Cristina de Mattos Almeida, Waleska Teixeira Caiaffa, Renato Martins Assunçao, and Fernando Augusto Proietti. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. Journal of Urban Health, 84(3):334–345, 2007. Kalyanmoy Deb. Multi-objective optimisation using evolutionary algorithms: an introduction. In Multi-objective evolutionary optimisation for product design and manufacturing, pages 3–34. Springer, 2011. Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover for continuous search space. Complex systems, 9(2):115–148, 1995. Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and informatics, 26:30–45, 1996. Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013. Departamento Administrativo Nacional de Estadística. COLOMBIA - Censo Nacional de Población y Vivienda - CNPV - 2018, 2018. Departamento Administrativo Nacional de Estadística. Pobreza multidimensional en Colombia, 2018. Departamento Administrativo Nacional de Estadística. Índice de vulnerabilidad por manzana con el uso de variables demográficas y comorbilidades, 2020. UN DHA. Internationally agreed glossary of basic terms related to disaster management. UN DHA (United Nations Department of Humanitarian Affairs), Geneva, 1992. Max Egenhofer. A mathematical framework for the definition of topological relations. In Proc. the fourth international symposium on spatial data handing, pages 803–813, 1990. Peter Emerson. The original Borda count and partial voting. Social Choice and Welfare, 40(2):353–358, 2013. Wayne TA Enanoria, Fengchen Liu, Jennifer Zipprich, Kathleen Harriman, Sarah Ackley, Seth Blumberg, Lee Worden, and Travis C Porco. The effect of contact investigations and public health interventions in the control and prevention of measles transmission: a simulation study. PloS one, 11(12):e0167160, 2016. Joshua M Epstein, Ramesh Pankajakshan, and Ross A Hammond. Combining computational fluid dynamics and agent-based modeling: A new approach to evacuation planning. PloS one, 6(5):e20139, 2011. María Elena Escobar-Ospina and Jonatan Gómez. ”Artificial Life and Therapeutic Vaccines Against Cancers that Originate in Viruses”, pages 149–305. Springer International Publishing, Cham, 2019. Diana Farrell, Biniam Gebre, Claudia Hudspeth, and Andrew Sellgren. Risk-based resource allocation. McKinsey Center for Government, 2013. Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. 2020. Neil M Ferguson, Derek AT Cummings, Simon Cauchemez, Christophe Fraser, Steven Riley, Aronrag Meeyai, Sopon Iamsirithaworn, and Donald S Burke. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437(7056):209–214, 2005. Barry E Flanagan, Edward W Gregory, Elaine J Hallisey, Janet L Heitgerd, and Brian Lewis. A social vulnerability index for disaster management. Journal of homeland security and emergency management, 8(1), 2011. Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Helen Coupland, Thomas A Mellan, Harrison Zhu, Tresnia Berah, Jeffrey W Eaton, Pablo NP Guzman, et al. Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in european countries: technical description update. arXiv preprint arXiv:2004.11342, 2020. Sandro Galea, Matthew Riddle, and George A Kaplan. Causal thinking and complex system approaches in epidemiology. International journal of epidemiology, 39(1):97–106, 2010. Geoffrey P Garnett, Simon Cousens, Timothy B Hallett, Richard Steketee, and Neff Walker. Mathematical models in the evaluation of health programmes. The Lancet, 378(9790):515–525, 2011. Edward Goldstein and Marc Lipsitch. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (covid-19) cases following the introduction of physical distancing measures, germany, march to april 2020. Eurosurveillance, 25(17):2000596, 2020. Jonatan Gomez, Jeisson Prieto, Elizabeth Leon, and Arles Rodríguez. INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia. PloS one, 16(2):e0245787, 2021. Joel Grus. Data science from scratch: first principles with python. O’Reilly Media, 2019. Michael Hagenlocher and Marcia C Castro. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Population health metrics, 13(1):1–14, 2015. Michael Hagenlocher, Stefan Kienberger, Stefan Lang, and Thomas Blaschke. Implications of spatial scales and reporting units for the spatial modelling of vulnerability to vector borne diseases. GI_Forum, 2014:197, 2014. M Elizabeth Halloran, Ira M Longini, Azhar Nizam, and Yang Yang. Containing bioterrorist smallpox. Science, 298(5597):1428–1432, 2002. International Labour Organisation. COVID-19 crisis and the informal economy: immediate responses and policy challenges. 2020. Mark Jit and Marc Brisson. Modelling the epidemiology of infectious diseases for decision analysis. Pharmacoeconomics, 29(5):371–386, 2011. Rachel E Jordan, Peymane Adab, and KK Cheng. Covid-19: risk factors for severe disease and death, 2020. Sung-mok Jung, Andrei R Akhmetzhanov, Katsuma Hayashi, Natalie M Linton, Yichi Yang, Baoyin Yuan, Tetsuro Kobayashi, Ryo Kinoshita, and Hiroshi Nishiura. Realtime estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. Journal of clinical medicine, 9(2):523, 2020. Naoki Katoh and Toshihide Ibaraki. Resource allocation problems. In Handbook of combinatorial optimization, pages 905–1006. Springer, 1998. Rebecca Katz. Use of revised International Health Regulations during influenza A (H1N1) epidemic, 2009. Emerging infectious diseases, 15(8):1165, 2009. Ilan Kelman. Lost for words amongst disaster risk science vocabulary? International Journal of Disaster Risk Science, 9(3):281–291, 2018. Ilan Kelman. COVID-19: what is the disaster? Social Anthropology, 2020. William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772):700–721, 1927. Stefan Kienberger and Michael Hagenlocher. Spatial-explicit modeling of social vulnerability to malaria in East Africa. International journal of health geographics, 13(1):1–16, 2014. István Z Kiss, Joel C Miller, Péter L Simon, et al. Mathematics of epidemics on networks. Cham: Springer, 598, 2017. Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész, Jari Saramäki, and Márton Karsai. Multiscale analysis of spreading in a large communication network. Journal of Statistical Mechanics: Theory and Experiment, 2012(03):P03005, 2012. Maciej Komosinski and Andrew Adamatzky. Artificial Life Models in Software. Springer Publishing Company, Incorporated, 2nd edition, 2014. Melik Koyuncu and Rizvan Erol. Optimal resource allocation model to mitigate the impact of pandemic influenza: a case study for Turkey. Journal of medical systems, 34(1):61–70, 2010. James Ladyman, James Lambert, and Karoline Wiesner. What is a complex system European Journal for Philosophy of Science, 3(1):33–67, 2013. Pat Langley. Systematic and nonsystematic search strategies. In Artificial Intelligence Planning Systems, pages 145–152. Elsevier, 1992. Joshua Lederberg, Margaret A Hamburg, Mark S Smolinski, et al. Microbial threats to health: emergence, detection, and response. National Academies Press, 2003. J Lessler, WJ Edmunds, ME Halloran, TD Hollingsworth, and AL Lloyd. Seven challenges for model-driven data collection in experimental and observational studies. Epidemics, 10:78–82, 2015. Mo Li, Ping Guo, Vijay P Singh, and Gaiqiang Yang. An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation. Agricultural Water Management, 177:10–23, 2016. Jingzhou Liu, Jinshan Wu, and ZR Yang. The spread of infectious disease on complex networks with household-structure. Physica A: Statistical Mechanics and its Applications, 341:273–280, 2004. Douglas A Luke and Katherine A Stamatakis. Systems science methods in public health: dynamics, networks, and agents. Annual review of public health, 33:357–376, 2012. Nita Madhav, Ben Oppenheim, Mark Gallivan, Prime Mulembakani, Edward Rubin, and Nathan Wolfe. Pandemics: risks, impacts, and mitigation. In Disease Control Priorities: Improving Health and Reducing Poverty. 3rd edition. The International Bank for Reconstruction and Development/The World Bank, 2017. David McLoughlin. A framework for integrated emergency management. Public administration review, 45:165–172, 1985. Emanuela Merelli, Matteo Rucco, Peter Sloot, and Luca Tesei. Topological characterization of complex systems: Using persistent entropy. Entropy, 17(10):6872–6892, 2015. Robert A Meyers. Encyclopedia of Complexity and Systems Science. Springer, New York, NY, 2009. Swasti Vardhan Mishra, Amiya Gayen, and Sk Mafizul Haque. COVID-19 and urban vulnerability in India. Habitat international, 103:102230, 2020. Melanie Mitchell and Mark Newman. Complex Systems Theory and Evolution. Oxford University Press, 2005. D Mitlin. Dealing with COVID-19 in the towns and cities of the global South. IIED Blogs, 27, 2020. Clyde L Monma, Alexander Schrijver, Michael J Todd, and Victor K Wei. Convex resource allocation problems on directed acyclic graphs: duality, complexity, special cases, and extensions. Mathematics of Operations Research, 15(4):736–748, 1990. Melinda Moore, Bill Gelfeld, and Christopher Paul Adeyemi Okunogbe. Identifying future disease hot spots: infectious disease vulnerability index. Rand health quarterly, 6(3), 2017. Stephen S Morse. Factors in the emergence of infectious diseases. In Plagues and politics, pages 8–26. Springer, 2001. Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS medicine, 5(3), 2008. Enrique Mu and Milagros Pereyra-Rojas. Practical decision making: an introduction to the Analytic Hierarchy Process (AHP) using super decisions V2. Springer, 2016. Colleen Murphy and Paolo Gardoni. Determining public policy and resource allocation priorities for mitigating natural hazards: A capabilities-based approach. Science and Engineering Ethics, 13(4):489–504, 2007. Megan Murray. Determinants of cluster distribution in the molecular epidemiology of tuberculosis. Proceedings of the National Academy of Sciences, 99(3):1538–1543, 2002. Observatorio de Salud de Bogotá. Casos confirmados de COVID-19 en Bogotá, 2020. Ben Oppenheim, Mark Gallivan, Nita K Madhav, Naor Brown, Volodymyr Serhiyenko, Nathan D Wolfe, and Patrick Ayscue. Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index. BMJ global health, 4(1):e001157, 2019. Pan American Health Organization. Leadership during a pandemic: What your municipality can do, 2009. World Health Organization. International health regulations (2005). World Health Organization, 2008. World Health Organization. Report of the review committee on the functioning of the international health regulations (2005) in relation to pandemic (H1N1) 2009. Sixty-fourth World Health Assembly: World Health Organization, pages 49–50, 2011. Jeisson Prieto and Jonatan Gomez. Multi-objective risk-based resource allocation for urban pandemic preparedness: The covid-19 case in bogotá, colombia. medRxiv, 2021. Jeisson Prieto, Jonatan Gomez, and Elizabeth Leon. Multi-objective evolutionary algorithm for DNA codeword design. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 604–611, 2019. Jeisson Prieto, Rafael Malagón, Jonatan Gomez, and Elizabeth León. Urban vulnerability assessment for pandemic surveillance—the covid-19 case in bogotá, colombia. Sustainability, 13(6):3402, 2021. United Nations Development Programme. Covid-19 pandemic humanity needs leadership and solidarity to defeat the coronavirus, 2020. Yuming Qiu, Ping Ge, and Solomon C Yim. Risk-based resource allocation for collaborative system design in a distributed environment. Journal of Mechanical Design, 130(6), 2008. Luca Quadrifoglio. A bottom-up risk-based resource allocation methodology to counter terrorism. International journal of society systems science, 1(1):4–25, 2008. J Ray, PT Boggs, DM Gay, MN Lemaster, and ME Ehlen. Risk-based decision making for staggered bioterrorist attacks: Resource allocation and risk reduction in “reload” scenarios. Sandia Report, SAND2009-6008, 2009. Alireza Rezaei and Sadra Tahsili. Urban vulnerability assessment using AHP. Advances in Civil Engineering, 2018, 2018. Arles Rodríguez, Jonatan Gómez, and Ada Diaconescu. Towards failure-resistant mobile distributed systems inspired by swarm intelligence and trophallaxis. In Artificial Life Conference Proceedings 13, pages 448–455. MIT Press, 2015. Arles Rodríguez, Jonatan Gómez, and Ada Diaconescu. Exploring complex networks with failure-prone agents. In Mexican International Conference on Artificial Intelligence, pages 81–98. Springer, 2016. Carlos Romero. Risk programming for agricultural resource allocation: A multidimensional risk approach. Annals of Operations Research, 94(1-4):57–68, 2000. Stuart Russell and Peter Norvig. Artificial intelligence a modern approach. Prentice-Hall, New Jersey, third edition, 2010. Jorge Salas and Víctor Yepes. Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544–558, 2018. Jorge Salas and Víctor Yepes. VisualUVAM: A decision support system addressing the curse of dimensionality for the multi-scale assessment of urban vulnerability in Spain. Sustainability, 11(8):2191, 2019. Marcel Salathé and James H Jones. Dynamics and control of diseases in networks with community structure. PLoS computational biology, 6(4), 2010. Hiroki Sayama. Introduction to the modeling and analysis of complex systems. Binghamton University, SUNY, 2015. SF Schultz. Disaster relief logistics: benefits of and impediments to horizontal cooperation between humanitarian organizations. PhD thesis, Tese. Technischen Universität Berlin, 2008. Oliver Schutze, Xavier Esquivel, Adriana Lara, and Carlos A Coello Coello. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16(4):504–522, 2012. David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, 2015. Secretaría Distrital de Movilidad. Observatorio de Movilidad Bogotá D.C. 2017, 2017. Secretaría Distrital de Planeación. Monografías de las localidades Bogotá D.C. 2011, 2011. Secretaría Distrital de Planeación. Información, cartografía y estadística, 2016. Secretaría Distrital de Planeación. Monografías de las localidades Bogotá D.C. 2017, 2017. Secretaría Distrital de Planeación. Población UPZ Bogotá, 2017. Secretaría Distrital de Planeación. Determinantes de la distribución espacial de la informalidad laboral en Bogotá, 2018. Clara Stegehuis, Remco Van Der Hofstad, and Johan SH Van Leeuwaarden. Epidemic spreading on complex networks with community structures. Scientific reports, 6(1):1–7, 2016. Subgerencia Técnica y Servicios Bogotá D.C. Trazados Troncales de TRANSMILENIO, 2019. Jennifer A Summers, Nick Wilson, Michael G Baker, and G Dennis Shanks. Mortality risk factors for pandemic influenza on New Zealand troop ship, 1918. Emerging infectious diseases, 16(12):1931, 2010. HJ Sun and ZY Gao. Dynamical behaviors of epidemics on scale-free networks with community structure. Physica A: Statistical Mechanics and its Applications, 381:491–496, 2007. Li Sun, Gail W DePuy, and Gerald W Evans. Multi-objective optimization models for patient allocation during a pandemic influenza outbreak. Computers & Operations Research, 51:350–359, 2014. Ye Tian, Ran Cheng, Xingyi Zhang, Fan Cheng, and Yaochu Jin. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Transactions on Evolutionary Computation, 22(4):609–622, 2017. Ye Tian, Ran Cheng, Xingyi Zhang, Miqing Li, and Yaochu Jin. Diversity Assessment of Multi-Objective Evolutionary Algorithms: Performance Metric and Benchmark Problems [Research Frontier]. IEEE Computational Intelligence Magazine, 14(3):61–74, 2019. UN Habitat. UN-habitat COVID-19 response plan, 2020. Remco Van Der Hofstad. Random Graphs and Complex Networks Vol. I., volume I. Cambridge Series in Statistical and Probabilistic Mathematics, 2017. Durk-Jouke van der Zee. Approaches for simulation model simplification. In 2017 Winter Simulation Conference (WSC), pages 4197–4208. IEEE, 2017. Esther van Kleef, Julie V Robotham, Mark Jit, Sarah R Deeny, and William J Edmunds. Modelling the transmission of healthcare associated infections: a systematic review. BMC infectious diseases, 13(1):294, 2013. Pantea Vaziri, Rachel A Davidson, Linda K Nozick, and Mahmood Hosseini. Resource allocation for regional earthquake risk mitigation: a case study of Tehran, Iran. Natural hazards, 53(3):527–546, 2010. Robert Verity, Lucy C Okell, Ilaria Dorigatti, Peter Winskill, Charles Whittaker, Natsuko Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick GT Walker, Han Fu, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet infectious diseases, 20(6):669–677, 2020. Rozann Whitaker. Criticisms of the Analytic Hierarchy Process: Why they often make no sense. Mathematical and Computer Modelling, 46(7-8):948–961, 2007. Lander Willem, Frederik Verelst, Joke Bilcke, Niel Hens, and Philippe Beutels. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC infectious diseases, 17(1):612, 2017. Henry H Willis. Guiding resource allocations based on terrorism risk. Risk Analysis: An International Journal, 27(3):597–606, 2007. Jerome M Wolgin. Resource allocation and risk: A case study of smallholder agriculture in Kenya. American Journal of Agricultural Economics, 57(4):622–630, 1975. World Health Organization. Coronavirus disease 2019 (COVID-19): Situation report, 40, 2020. Bo Xu, Moritz UG Kraemer, and Data Curation Group. Open access epidemiological data from the COVID-19 outbreak. The Lancet. Infectious Diseases, 2020. Zhenyu Yan and Yacov Y Haimes. Risk-based multiobjective resource allocation in hierarchical systems with multiple decisionmakers. Part I: Theory and methodology. Systems Engineering, 14(1):1–16, 2011. Sree Rama Kumar Yeddanapudi, Yuan Li, James D McCalley, Ali A Chowdhury, and Ward T Jewell. Risk-based allocation of distribution system maintenance resources. IEEE Transactions on Power Systems, 23(2):287–295, 2008. Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007. Wen Zhao, Shikai Yu, Xiangyi Zha, Ning Wang, Qiumei Pang, Tongzeng Li, and Aixin Li. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. MedRxiv, 2020. Mohammad R Zolfaghari and Elnaz Peyghaleh. Implementation of equity in resource allocation for regional earthquake risk mitigation using two-stage stochastic programming. Risk analysis, 35(3):434–458, 2015. |
dc.rights.spa.fl_str_mv |
Derechos reservados al autor, 2021 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional Derechos reservados al autor, 2021 http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 63 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemática Aplicada |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81293/1/1014258959.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/81293/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81293/3/1014258959.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
e64c06672af3a3ae713929233ed24a00 8153f7789df02f0a4c9e079953658ab2 8dbbe37af30ff59cb7029b9a0b0c8c22 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089637064343552 |
spelling |
Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2021http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Perdomo, Jonatan2f9d2cf2487ee9d391eb9f4ab72124edPrieto Velandia, Jeisson Andreseefaf29a018590528fe786e97d5880deAlife: Grupo de Investigación en Vida ArtificialLeón Guzmán, ElizabethMalagon Oviedo, Rafael Antonio2022-03-22T13:13:36Z2022-03-22T13:13:36Z2022-01-17https://repositorio.unal.edu.co/handle/unal/81293Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, mapas, tablasIn any serious disaster, a gap develops between resource needs and resource availability. In a severe pandemic, this gap will be worse due to global supply chain disruptions or delays and the fact that governments and aid organizations will be overwhelmed responding to all who need assistance. Then, determining the locations of the resources (i.e., budget for antivirals and preventive vaccinations, Intensive Care Unit (ICU), ventilators, non-intensive Care Unit (non-ICU), doctors) to be used during a pandemic is a strategic decision that directly affects the success of pandemic response operations. The resource allocation could be done using a risk management perspective, where a demand point has one (or more) associated risk (i.e., geographic spread, overall poverty, medical preconditions) and the objective is to choose the amount to be invested in several interventions such that the overall risk exposed by the demand points is minimized according to budget constraints and health benefits. Due to the randomness and uncertainty of conditions, not only one but a set of risks may adversely affect the allocation of resources in the geographical space. Then, the objectives (one objective for each risk exposed) must be optimized simultaneously. However, there exists a trade-off among objectives, i.e., an improvement gained for one objective is only achieved by making concessions to another objective. This thesis aims to build a mathematically and computational grounded solution to the Multi-objective risk-based Resource Allocation problem suitable to be used for supporting decision making in the formulation of management and response policies during a pandemic. The risk management is studied in a complex network located in some space (city or town being studied). The risk in some specific place (demand point) is modeled not only by the vulnerability factor related to the severity of infection but also by the infectious disease transmission dynamics that emerged from the local interactions between people. The solution is framed in the current COVID-19 pandemic in Bogotá, the largest and most crowded city in Colombia.En cualquier desastre grave, se desarrolla una brecha entre la necesidad y la disponibilidad de recursos. En una pandemia, esta brecha se agravará debido a las interrupciones o retrasos de la cadena de suministro global y al hecho de que los gobiernos y las organizaciones de ayuda se ven abrumados para responder a todos los que necesitan asistencia. Entonces, determinar la ubicación de los recursos (por ejemplo, presupuesto para antivirales y vacunas preventivas, Unidad de Cuidados Intensivos (UCI), ventiladores, Unidad de Cuidados No Intensivos (no UCI), médicos) que se utilizarán durante una pandemia es una decisión estratégica que afecta directamente el éxito de las operaciones de respuesta ante una pandemia. La asignación de recursos se puede realizar utilizando una perspectiva de gestión de riesgos, donde un lugar de demanda tiene uno (o más) riesgos asociados (por ejemplo, propagación del virus, pobreza, precondiciones médicas) y el objetivo es escoger la cantidad que se invertirá en varias intervenciones tal que el riesgo expuesto por los puntos de demanda se minimiza de acuerdo con las limitaciones presupuestarias y los beneficios para la salud. Debido a la aleatoriedad y a la incertidumbre de las condiciones, no solo uno, sino un conjunto de riesgos pueden afectar negativamente la asignación de recursos en el espacio geográfico. Entonces, los objetivos (un objetivo por cada riesgo expuesto) deben optimizarse simultáneamente. Sin embargo, existe una compensación entre los objetivos, es decir, una mejora obtenida para un objetivo solo se logra haciendo concesiones en otro objetivo. Esta tesis tiene como proposito construir una solución con base matemática y computacional para el problema de la asignación de recursos basado en múltiples riesgos adecuada para apoyar a la toma de decisiones en la formulación de políticas de gestión y respuesta a pandemias. La gestión de riesgo es estudiada en una red compleja ubicada en algún espacio (ciudad o pueblo en estudio). El riesgo en algún lugar específico (punto de demanda) se modela no solo por factores de vulnerabilidad relacionados con la gravedad de la infección, sino también por las dinámicas de transmisión de la enfermedad que surgen por la interacción entre personas. La solución se enmarca en la actual pandemia de COVID-19 en Bogotá, la ciudad más grande y densamente poblada de Colombia. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - Matemática AplicadaRisk-based OptimizationOptimización basada en riesgosx, 63 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - Matemática AplicadaDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasInfecciones por CoronavirusGestión de RiesgosGestión de RecursosCoronavirus InfectionsRisk ManagementResources ManagementRisk managementRisk-based optimizationResource allocationPandemic responseMulti-objective optimizationComplex systemsCOVID-19Urban spatial analysisGestión del riesgoOptimización basada en riesgosAsignación de recursosRespuesta a pandemiasOptimización multiobjetivoSistemas complejosCOVID-19Análisis espacial urbanoRisk-based resource allocation for management and pandemic response: The COVID-19 Case in Bogotá, ColombiaAsignación de recursos basada en riesgo para la gestión y respuesta ante una pandemia: El Caso del COVID-19 en Bogotá, Colombia EspañolTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRajib Acharya and Akash Porwal. A vulnerability index for the management of and response to the COVID-19 epidemic in India: an ecological study. The Lancet Global Health, 8(9):e1142–e1151, 2020.Óscar Alfonso. Densidades divergentes y segregación socio-espacial en la Bogotá de hoy: un análisis a partir de un índice de calidad de la densidad. In VIII Seminario Internacional de Investigación en Urbanismo, Barcelona-Balneário Camboriú, Junio 2016, 2016.Ethem Alpaydin. Introduction to machine learning. MIT press, 2020.Nezih Altay and Walter G Green III. OR/MS research in disaster operations management. European journal of operational research, 175(1):475–493, 2006.Gary An, Qi Mi, Joyeeta Dutta-Moscato, and Yoram Vodovotz. Agent-based models in translational systems biology. WIREs Systems Biology and Medicine, 1(2):159–171, 2009.John E Angus. The probability integral transform and related results. SIAM review, 36(4):652–654, 1994.P. G. Balaji and D. Srinivasan. An introduction to multi-agent systems. Studies in Computational Intelligence, 310:1–27, 2010.E Lee Daugherty Biddison, Ruth Faden, Howard S Gwon, Darren P Mareiniss, Alan C Regenberg, Monica Schoch-Spana, Jack Schwartz, and Eric S Toner. Too many patients… a framework to guide statewide allocation of scarce mechanical ventilation during disasters. Chest, 155(4):848–854, 2019.Sheryl L Chang, Nathan Harding, Cameron Zachreson, Oliver M Cliff, and Mikhail Prokopenko. Modelling transmission and control of the COVID-19 pandemic in Australia. Nature communications, 11(1):1–13, 2020Mark IC Chen, Vernon JM Lee, Ian Barr, Cui Lin, Rachelle Goh, Caroline Lee, Baldev Singh, Jessie Tan, Wei-Yen Lim, Alex R Cook, et al. Risk factors for pandemic (H1N1) 2009 virus seroconversion among hospital staff, Singapore. Emerging infectious diseases, 16(10):1554, 2010.Ran Cheng, Yaochu Jin, Markus Olhofer, and Bernhard Sendhoff. A reference vector guided evolutionary algorithm for many-objective optimization. IEEE Transactions on Evolutionary Computation, 20(5):773–791, 2016.Matteo Chinazzi, Jessica T Davis, Marco Ajelli, Corrado Gioannini, Maria Litvinova, Stefano Merler, Ana Pastore y Piontti, Kunpeng Mu, Luca Rossi, Kaiyuan Sun, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science, 368(6489):395–400, 2020.Philip Cooley, Bruce Y Lee, Shawn Brown, James Cajka, Bernadette Chasteen, Laxminarayana Ganapathi, James H Stark, William D Wheaton, Diane K Wagener, and Donald S Burke. Protecting health care workers: a pandemic simulation based on Allegheny County. Influenza and other respiratory viruses, 4(2):61–72, 2010.Damon P Coppola. Introduction to international disaster management. Elsevier, 2006.Indraneel Das and John E Dennis. Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM journal on optimization, 8(3):631–657, 1998.Michael Day. Covid-19: four fifths of cases are asymptomatic, China figures indicate, 2020.Maria Cristina de Mattos Almeida, Waleska Teixeira Caiaffa, Renato Martins Assunçao, and Fernando Augusto Proietti. Spatial vulnerability to dengue in a Brazilian urban area during a 7-year surveillance. Journal of Urban Health, 84(3):334–345, 2007.Kalyanmoy Deb. Multi-objective optimisation using evolutionary algorithms: an introduction. In Multi-objective evolutionary optimisation for product design and manufacturing, pages 3–34. Springer, 2011.Kalyanmoy Deb, Ram Bhushan Agrawal, et al. Simulated binary crossover for continuous search space. Complex systems, 9(2):115–148, 1995.Kalyanmoy Deb and Mayank Goyal. A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and informatics, 26:30–45, 1996.Kalyanmoy Deb and Himanshu Jain. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE transactions on evolutionary computation, 18(4):577–601, 2013.Departamento Administrativo Nacional de Estadística. COLOMBIA - Censo Nacional de Población y Vivienda - CNPV - 2018, 2018.Departamento Administrativo Nacional de Estadística. Pobreza multidimensional en Colombia, 2018.Departamento Administrativo Nacional de Estadística. Índice de vulnerabilidad por manzana con el uso de variables demográficas y comorbilidades, 2020.UN DHA. Internationally agreed glossary of basic terms related to disaster management. UN DHA (United Nations Department of Humanitarian Affairs), Geneva, 1992.Max Egenhofer. A mathematical framework for the definition of topological relations. In Proc. the fourth international symposium on spatial data handing, pages 803–813, 1990.Peter Emerson. The original Borda count and partial voting. Social Choice and Welfare, 40(2):353–358, 2013.Wayne TA Enanoria, Fengchen Liu, Jennifer Zipprich, Kathleen Harriman, Sarah Ackley, Seth Blumberg, Lee Worden, and Travis C Porco. The effect of contact investigations and public health interventions in the control and prevention of measles transmission: a simulation study. PloS one, 11(12):e0167160, 2016.Joshua M Epstein, Ramesh Pankajakshan, and Ross A Hammond. Combining computational fluid dynamics and agent-based modeling: A new approach to evacuation planning. PloS one, 6(5):e20139, 2011.María Elena Escobar-Ospina and Jonatan Gómez. ”Artificial Life and Therapeutic Vaccines Against Cancers that Originate in Viruses”, pages 149–305. Springer International Publishing, Cham, 2019.Diana Farrell, Biniam Gebre, Claudia Hudspeth, and Andrew Sellgren. Risk-based resource allocation. McKinsey Center for Government, 2013.Neil Ferguson, Daniel Laydon, Gemma Nedjati Gilani, Natsuko Imai, Kylie Ainslie, Marc Baguelin, Sangeeta Bhatia, Adhiratha Boonyasiri, ZULMA Cucunuba Perez, Gina Cuomo-Dannenburg, et al. Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality and healthcare demand. 2020.Neil M Ferguson, Derek AT Cummings, Simon Cauchemez, Christophe Fraser, Steven Riley, Aronrag Meeyai, Sopon Iamsirithaworn, and Donald S Burke. Strategies for containing an emerging influenza pandemic in Southeast Asia. Nature, 437(7056):209–214, 2005.Barry E Flanagan, Edward W Gregory, Elaine J Hallisey, Janet L Heitgerd, and Brian Lewis. A social vulnerability index for disaster management. Journal of homeland security and emergency management, 8(1), 2011.Seth Flaxman, Swapnil Mishra, Axel Gandy, H Juliette T Unwin, Helen Coupland, Thomas A Mellan, Harrison Zhu, Tresnia Berah, Jeffrey W Eaton, Pablo NP Guzman, et al. Estimating the number of infections and the impact of non-pharmaceutical interventions on covid-19 in european countries: technical description update. arXiv preprint arXiv:2004.11342, 2020.Sandro Galea, Matthew Riddle, and George A Kaplan. Causal thinking and complex system approaches in epidemiology. International journal of epidemiology, 39(1):97–106, 2010.Geoffrey P Garnett, Simon Cousens, Timothy B Hallett, Richard Steketee, and Neff Walker. Mathematical models in the evaluation of health programmes. The Lancet, 378(9790):515–525, 2011.Edward Goldstein and Marc Lipsitch. Temporal rise in the proportion of younger adults and older adolescents among coronavirus disease (covid-19) cases following the introduction of physical distancing measures, germany, march to april 2020. Eurosurveillance, 25(17):2000596, 2020.Jonatan Gomez, Jeisson Prieto, Elizabeth Leon, and Arles Rodríguez. INFEKTA—An agent-based model for transmission of infectious diseases: The COVID-19 case in Bogotá, Colombia. PloS one, 16(2):e0245787, 2021.Joel Grus. Data science from scratch: first principles with python. O’Reilly Media, 2019.Michael Hagenlocher and Marcia C Castro. Mapping malaria risk and vulnerability in the United Republic of Tanzania: a spatial explicit model. Population health metrics, 13(1):1–14, 2015.Michael Hagenlocher, Stefan Kienberger, Stefan Lang, and Thomas Blaschke. Implications of spatial scales and reporting units for the spatial modelling of vulnerability to vector borne diseases. GI_Forum, 2014:197, 2014.M Elizabeth Halloran, Ira M Longini, Azhar Nizam, and Yang Yang. Containing bioterrorist smallpox. Science, 298(5597):1428–1432, 2002.International Labour Organisation. COVID-19 crisis and the informal economy: immediate responses and policy challenges. 2020.Mark Jit and Marc Brisson. Modelling the epidemiology of infectious diseases for decision analysis. Pharmacoeconomics, 29(5):371–386, 2011.Rachel E Jordan, Peymane Adab, and KK Cheng. Covid-19: risk factors for severe disease and death, 2020.Sung-mok Jung, Andrei R Akhmetzhanov, Katsuma Hayashi, Natalie M Linton, Yichi Yang, Baoyin Yuan, Tetsuro Kobayashi, Ryo Kinoshita, and Hiroshi Nishiura. Realtime estimation of the risk of death from novel coronavirus (COVID-19) infection: inference using exported cases. Journal of clinical medicine, 9(2):523, 2020.Naoki Katoh and Toshihide Ibaraki. Resource allocation problems. In Handbook of combinatorial optimization, pages 905–1006. Springer, 1998.Rebecca Katz. Use of revised International Health Regulations during influenza A (H1N1) epidemic, 2009. Emerging infectious diseases, 15(8):1165, 2009.Ilan Kelman. Lost for words amongst disaster risk science vocabulary? International Journal of Disaster Risk Science, 9(3):281–291, 2018.Ilan Kelman. COVID-19: what is the disaster? Social Anthropology, 2020.William Ogilvy Kermack and Anderson G McKendrick. A contribution to the mathematical theory of epidemics. Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115(772):700–721, 1927.Stefan Kienberger and Michael Hagenlocher. Spatial-explicit modeling of social vulnerability to malaria in East Africa. International journal of health geographics, 13(1):1–16, 2014.István Z Kiss, Joel C Miller, Péter L Simon, et al. Mathematics of epidemics on networks. Cham: Springer, 598, 2017.Mikko Kivelä, Raj Kumar Pan, Kimmo Kaski, János Kertész, Jari Saramäki, and Márton Karsai. Multiscale analysis of spreading in a large communication network. Journal of Statistical Mechanics: Theory and Experiment, 2012(03):P03005, 2012.Maciej Komosinski and Andrew Adamatzky. Artificial Life Models in Software. Springer Publishing Company, Incorporated, 2nd edition, 2014.Melik Koyuncu and Rizvan Erol. Optimal resource allocation model to mitigate the impact of pandemic influenza: a case study for Turkey. Journal of medical systems, 34(1):61–70, 2010.James Ladyman, James Lambert, and Karoline Wiesner. What is a complex system European Journal for Philosophy of Science, 3(1):33–67, 2013.Pat Langley. Systematic and nonsystematic search strategies. In Artificial Intelligence Planning Systems, pages 145–152. Elsevier, 1992.Joshua Lederberg, Margaret A Hamburg, Mark S Smolinski, et al. Microbial threats to health: emergence, detection, and response. National Academies Press, 2003.J Lessler, WJ Edmunds, ME Halloran, TD Hollingsworth, and AL Lloyd. Seven challenges for model-driven data collection in experimental and observational studies. Epidemics, 10:78–82, 2015.Mo Li, Ping Guo, Vijay P Singh, and Gaiqiang Yang. An uncertainty-based framework for agricultural water-land resources allocation and risk evaluation. Agricultural Water Management, 177:10–23, 2016.Jingzhou Liu, Jinshan Wu, and ZR Yang. The spread of infectious disease on complex networks with household-structure. Physica A: Statistical Mechanics and its Applications, 341:273–280, 2004.Douglas A Luke and Katherine A Stamatakis. Systems science methods in public health: dynamics, networks, and agents. Annual review of public health, 33:357–376, 2012.Nita Madhav, Ben Oppenheim, Mark Gallivan, Prime Mulembakani, Edward Rubin, and Nathan Wolfe. Pandemics: risks, impacts, and mitigation. In Disease Control Priorities: Improving Health and Reducing Poverty. 3rd edition. The International Bank for Reconstruction and Development/The World Bank, 2017.David McLoughlin. A framework for integrated emergency management. Public administration review, 45:165–172, 1985.Emanuela Merelli, Matteo Rucco, Peter Sloot, and Luca Tesei. Topological characterization of complex systems: Using persistent entropy. Entropy, 17(10):6872–6892, 2015.Robert A Meyers. Encyclopedia of Complexity and Systems Science. Springer, New York, NY, 2009.Swasti Vardhan Mishra, Amiya Gayen, and Sk Mafizul Haque. COVID-19 and urban vulnerability in India. Habitat international, 103:102230, 2020.Melanie Mitchell and Mark Newman. Complex Systems Theory and Evolution. Oxford University Press, 2005.D Mitlin. Dealing with COVID-19 in the towns and cities of the global South. IIED Blogs, 27, 2020.Clyde L Monma, Alexander Schrijver, Michael J Todd, and Victor K Wei. Convex resource allocation problems on directed acyclic graphs: duality, complexity, special cases, and extensions. Mathematics of Operations Research, 15(4):736–748, 1990.Melinda Moore, Bill Gelfeld, and Christopher Paul Adeyemi Okunogbe. Identifying future disease hot spots: infectious disease vulnerability index. Rand health quarterly, 6(3), 2017.Stephen S Morse. Factors in the emergence of infectious diseases. In Plagues and politics, pages 8–26. Springer, 2001.Joël Mossong, Niel Hens, Mark Jit, Philippe Beutels, Kari Auranen, Rafael Mikolajczyk, Marco Massari, Stefania Salmaso, Gianpaolo Scalia Tomba, Jacco Wallinga, et al. Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS medicine, 5(3), 2008.Enrique Mu and Milagros Pereyra-Rojas. Practical decision making: an introduction to the Analytic Hierarchy Process (AHP) using super decisions V2. Springer, 2016.Colleen Murphy and Paolo Gardoni. Determining public policy and resource allocation priorities for mitigating natural hazards: A capabilities-based approach. Science and Engineering Ethics, 13(4):489–504, 2007.Megan Murray. Determinants of cluster distribution in the molecular epidemiology of tuberculosis. Proceedings of the National Academy of Sciences, 99(3):1538–1543, 2002.Observatorio de Salud de Bogotá. Casos confirmados de COVID-19 en Bogotá, 2020.Ben Oppenheim, Mark Gallivan, Nita K Madhav, Naor Brown, Volodymyr Serhiyenko, Nathan D Wolfe, and Patrick Ayscue. Assessing global preparedness for the next pandemic: development and application of an Epidemic Preparedness Index. BMJ global health, 4(1):e001157, 2019.Pan American Health Organization. Leadership during a pandemic: What your municipality can do, 2009.World Health Organization. International health regulations (2005). World Health Organization, 2008.World Health Organization. Report of the review committee on the functioning of the international health regulations (2005) in relation to pandemic (H1N1) 2009. Sixty-fourth World Health Assembly: World Health Organization, pages 49–50, 2011.Jeisson Prieto and Jonatan Gomez. Multi-objective risk-based resource allocation for urban pandemic preparedness: The covid-19 case in bogotá, colombia. medRxiv, 2021.Jeisson Prieto, Jonatan Gomez, and Elizabeth Leon. Multi-objective evolutionary algorithm for DNA codeword design. In Proceedings of the Genetic and Evolutionary Computation Conference, pages 604–611, 2019.Jeisson Prieto, Rafael Malagón, Jonatan Gomez, and Elizabeth León. Urban vulnerability assessment for pandemic surveillance—the covid-19 case in bogotá, colombia. Sustainability, 13(6):3402, 2021.United Nations Development Programme. Covid-19 pandemic humanity needs leadership and solidarity to defeat the coronavirus, 2020.Yuming Qiu, Ping Ge, and Solomon C Yim. Risk-based resource allocation for collaborative system design in a distributed environment. Journal of Mechanical Design, 130(6), 2008.Luca Quadrifoglio. A bottom-up risk-based resource allocation methodology to counter terrorism. International journal of society systems science, 1(1):4–25, 2008.J Ray, PT Boggs, DM Gay, MN Lemaster, and ME Ehlen. Risk-based decision making for staggered bioterrorist attacks: Resource allocation and risk reduction in “reload” scenarios. Sandia Report, SAND2009-6008, 2009.Alireza Rezaei and Sadra Tahsili. Urban vulnerability assessment using AHP. Advances in Civil Engineering, 2018, 2018.Arles Rodríguez, Jonatan Gómez, and Ada Diaconescu. Towards failure-resistant mobile distributed systems inspired by swarm intelligence and trophallaxis. In Artificial Life Conference Proceedings 13, pages 448–455. MIT Press, 2015.Arles Rodríguez, Jonatan Gómez, and Ada Diaconescu. Exploring complex networks with failure-prone agents. In Mexican International Conference on Artificial Intelligence, pages 81–98. Springer, 2016.Carlos Romero. Risk programming for agricultural resource allocation: A multidimensional risk approach. Annals of Operations Research, 94(1-4):57–68, 2000.Stuart Russell and Peter Norvig. Artificial intelligence a modern approach. Prentice-Hall, New Jersey, third edition, 2010.Jorge Salas and Víctor Yepes. Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179:544–558, 2018.Jorge Salas and Víctor Yepes. VisualUVAM: A decision support system addressing the curse of dimensionality for the multi-scale assessment of urban vulnerability in Spain. Sustainability, 11(8):2191, 2019.Marcel Salathé and James H Jones. Dynamics and control of diseases in networks with community structure. PLoS computational biology, 6(4), 2010.Hiroki Sayama. Introduction to the modeling and analysis of complex systems. Binghamton University, SUNY, 2015.SF Schultz. Disaster relief logistics: benefits of and impediments to horizontal cooperation between humanitarian organizations. PhD thesis, Tese. Technischen Universität Berlin, 2008.Oliver Schutze, Xavier Esquivel, Adriana Lara, and Carlos A Coello Coello. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 16(4):504–522, 2012.David W Scott. Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons, 2015.Secretaría Distrital de Movilidad. Observatorio de Movilidad Bogotá D.C. 2017, 2017.Secretaría Distrital de Planeación. Monografías de las localidades Bogotá D.C. 2011, 2011.Secretaría Distrital de Planeación. Información, cartografía y estadística, 2016.Secretaría Distrital de Planeación. Monografías de las localidades Bogotá D.C. 2017, 2017.Secretaría Distrital de Planeación. Población UPZ Bogotá, 2017.Secretaría Distrital de Planeación. Determinantes de la distribución espacial de la informalidad laboral en Bogotá, 2018.Clara Stegehuis, Remco Van Der Hofstad, and Johan SH Van Leeuwaarden. Epidemic spreading on complex networks with community structures. Scientific reports, 6(1):1–7, 2016.Subgerencia Técnica y Servicios Bogotá D.C. Trazados Troncales de TRANSMILENIO, 2019.Jennifer A Summers, Nick Wilson, Michael G Baker, and G Dennis Shanks. Mortality risk factors for pandemic influenza on New Zealand troop ship, 1918. Emerging infectious diseases, 16(12):1931, 2010.HJ Sun and ZY Gao. Dynamical behaviors of epidemics on scale-free networks with community structure. Physica A: Statistical Mechanics and its Applications, 381:491–496, 2007.Li Sun, Gail W DePuy, and Gerald W Evans. Multi-objective optimization models for patient allocation during a pandemic influenza outbreak. Computers & Operations Research, 51:350–359, 2014.Ye Tian, Ran Cheng, Xingyi Zhang, Fan Cheng, and Yaochu Jin. An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Transactions on Evolutionary Computation, 22(4):609–622, 2017.Ye Tian, Ran Cheng, Xingyi Zhang, Miqing Li, and Yaochu Jin. Diversity Assessment of Multi-Objective Evolutionary Algorithms: Performance Metric and Benchmark Problems [Research Frontier]. IEEE Computational Intelligence Magazine, 14(3):61–74, 2019.UN Habitat. UN-habitat COVID-19 response plan, 2020.Remco Van Der Hofstad. Random Graphs and Complex Networks Vol. I., volume I. Cambridge Series in Statistical and Probabilistic Mathematics, 2017.Durk-Jouke van der Zee. Approaches for simulation model simplification. In 2017 Winter Simulation Conference (WSC), pages 4197–4208. IEEE, 2017.Esther van Kleef, Julie V Robotham, Mark Jit, Sarah R Deeny, and William J Edmunds. Modelling the transmission of healthcare associated infections: a systematic review. BMC infectious diseases, 13(1):294, 2013.Pantea Vaziri, Rachel A Davidson, Linda K Nozick, and Mahmood Hosseini. Resource allocation for regional earthquake risk mitigation: a case study of Tehran, Iran. Natural hazards, 53(3):527–546, 2010.Robert Verity, Lucy C Okell, Ilaria Dorigatti, Peter Winskill, Charles Whittaker, Natsuko Imai, Gina Cuomo-Dannenburg, Hayley Thompson, Patrick GT Walker, Han Fu, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. The Lancet infectious diseases, 20(6):669–677, 2020.Rozann Whitaker. Criticisms of the Analytic Hierarchy Process: Why they often make no sense. Mathematical and Computer Modelling, 46(7-8):948–961, 2007.Lander Willem, Frederik Verelst, Joke Bilcke, Niel Hens, and Philippe Beutels. Lessons from a decade of individual-based models for infectious disease transmission: a systematic review (2006-2015). BMC infectious diseases, 17(1):612, 2017.Henry H Willis. Guiding resource allocations based on terrorism risk. Risk Analysis: An International Journal, 27(3):597–606, 2007.Jerome M Wolgin. Resource allocation and risk: A case study of smallholder agriculture in Kenya. American Journal of Agricultural Economics, 57(4):622–630, 1975.World Health Organization. Coronavirus disease 2019 (COVID-19): Situation report, 40, 2020.Bo Xu, Moritz UG Kraemer, and Data Curation Group. Open access epidemiological data from the COVID-19 outbreak. The Lancet. Infectious Diseases, 2020.Zhenyu Yan and Yacov Y Haimes. Risk-based multiobjective resource allocation in hierarchical systems with multiple decisionmakers. Part I: Theory and methodology. Systems Engineering, 14(1):1–16, 2011.Sree Rama Kumar Yeddanapudi, Yuan Li, James D McCalley, Ali A Chowdhury, and Ward T Jewell. Risk-based allocation of distribution system maintenance resources. IEEE Transactions on Power Systems, 23(2):287–295, 2008.Qingfu Zhang and Hui Li. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731, 2007.Wen Zhao, Shikai Yu, Xiangyi Zha, Ning Wang, Qiumei Pang, Tongzeng Li, and Aixin Li. Clinical characteristics and durations of hospitalized patients with COVID-19 in Beijing: a retrospective cohort study. MedRxiv, 2020.Mohammad R Zolfaghari and Elnaz Peyghaleh. Implementation of equity in resource allocation for regional earthquake risk mitigation using two-stage stochastic programming. Risk analysis, 35(3):434–458, 2015.EstudiantesInvestigadoresMaestrosPúblico generalResponsables políticosORIGINAL1014258959.2022.pdf1014258959.2022.pdfTesis de Maestría en Ciencias - Matemática Aplicadaapplication/pdf10336667https://repositorio.unal.edu.co/bitstream/unal/81293/1/1014258959.2022.pdfe64c06672af3a3ae713929233ed24a00MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81293/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1014258959.2022.pdf.jpg1014258959.2022.pdf.jpgGenerated Thumbnailimage/jpeg4502https://repositorio.unal.edu.co/bitstream/unal/81293/3/1014258959.2022.pdf.jpg8dbbe37af30ff59cb7029b9a0b0c8c22MD53unal/81293oai:repositorio.unal.edu.co:unal/812932024-08-04 23:10:30.499Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |