Representation learning for histopathology image analysis
Abstract. Nowadays, automatic methods for image representation and analysis have been successfully applied in several medical imaging problems leading to the emergence of novel research areas like digital pathology and bioimage informatics. The main challenge of these methods is to deal with the hig...
- Autores:
-
Arevalo Ovalle, John Edilson
- Tipo de recurso:
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49577
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49577
http://bdigital.unal.edu.co/43047/
- Palabra clave:
- 0 Generalidades / Computer science, information and general works
61 Ciencias médicas; Medicina / Medicine and health
62 Ingeniería y operaciones afines / Engineering
Histopathology
Image representation
Interpretability
Feature learning
Digital pathology
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_eb6827273dd55f6e8d3eca9e066d1095 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/49577 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Representation learning for histopathology image analysis |
title |
Representation learning for histopathology image analysis |
spellingShingle |
Representation learning for histopathology image analysis 0 Generalidades / Computer science, information and general works 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Histopathology Image representation Interpretability Feature learning Digital pathology |
title_short |
Representation learning for histopathology image analysis |
title_full |
Representation learning for histopathology image analysis |
title_fullStr |
Representation learning for histopathology image analysis |
title_full_unstemmed |
Representation learning for histopathology image analysis |
title_sort |
Representation learning for histopathology image analysis |
dc.creator.fl_str_mv |
Arevalo Ovalle, John Edilson |
dc.contributor.author.spa.fl_str_mv |
Arevalo Ovalle, John Edilson |
dc.contributor.spa.fl_str_mv |
Gonzalez Osorio, Fabio Augusto |
dc.subject.ddc.spa.fl_str_mv |
0 Generalidades / Computer science, information and general works 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering |
topic |
0 Generalidades / Computer science, information and general works 61 Ciencias médicas; Medicina / Medicine and health 62 Ingeniería y operaciones afines / Engineering Histopathology Image representation Interpretability Feature learning Digital pathology |
dc.subject.proposal.spa.fl_str_mv |
Histopathology Image representation Interpretability Feature learning Digital pathology |
description |
Abstract. Nowadays, automatic methods for image representation and analysis have been successfully applied in several medical imaging problems leading to the emergence of novel research areas like digital pathology and bioimage informatics. The main challenge of these methods is to deal with the high visual variability of biological structures present in the images, which increases the semantic gap between their visual appearance and their high level meaning. Particularly, the visual variability in histopathology images is also related to the noise added by acquisition stages such as magnification, sectioning and staining, among others. Many efforts have focused on the careful selection of the image representations to capture such variability. This approach requires expert knowledge as well as hand-engineered design to build good feature detectors that represent the relevant visual information. Current approaches in classical computer vision tasks have replaced such design by the inclusion of the image representation as a new learning stage called representation learning. This paradigm has outperformed the state-of-the-art results in many pattern recognition tasks like speech recognition, object detection, and image scene classification. The aim of this research was to explore and define a learning-based histopathology image representation strategy with interpretative capabilities. The main contribution was a novel approach to learn the image representation for cancer detection. The proposed approach learns the representation directly from a Basal-cell carcinoma image collection in an unsupervised way and was extended to extract more complex features from low-level representations. Additionally, this research proposed the digital staining module, a complementary interpretability stage to support diagnosis through a visual identification of discriminant and semantic features. Experimental results showed a performance of 92% in F-Score, improving the state-of-the-art representation by 7%. This research concluded that representation learning improves the feature detectors generalization as well as the performance for the basal cell carcinoma detection task. As additional contributions, a bag of features image representation was extended and evaluated for Alzheimer detection, obtaining 95% in terms of equal error classification rate. Also, a novel perspective to learn morphometric measures in cervical cells based on bag of features was presented and evaluated obtaining promising results to predict nuclei and cytoplasm areas. |
publishDate |
2013 |
dc.date.issued.spa.fl_str_mv |
2013 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T08:57:48Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T08:57:48Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/49577 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/43047/ |
url |
https://repositorio.unal.edu.co/handle/unal/49577 http://bdigital.unal.edu.co/43047/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de Sistemas Ingeniería de Sistemas |
dc.relation.references.spa.fl_str_mv |
Arevalo Ovalle, John Edilson (2013) Representation learning for histopathology image analysis. Maestría thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/49577/1/johnedilsonarevaloovalle.2013.pdf https://repositorio.unal.edu.co/bitstream/unal/49577/2/johnedilsonarevaloovalle.2013.pdf.jpg |
bitstream.checksum.fl_str_mv |
bb09a731eade1949b29bda39968358ad 2b58d55195c122f7011bc0dd38a95b8c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089955231662080 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gonzalez Osorio, Fabio AugustoArevalo Ovalle, John Edilsone48aeebb-5062-4b15-bf4d-5abfd0618c1f3002019-06-29T08:57:48Z2019-06-29T08:57:48Z2013https://repositorio.unal.edu.co/handle/unal/49577http://bdigital.unal.edu.co/43047/Abstract. Nowadays, automatic methods for image representation and analysis have been successfully applied in several medical imaging problems leading to the emergence of novel research areas like digital pathology and bioimage informatics. The main challenge of these methods is to deal with the high visual variability of biological structures present in the images, which increases the semantic gap between their visual appearance and their high level meaning. Particularly, the visual variability in histopathology images is also related to the noise added by acquisition stages such as magnification, sectioning and staining, among others. Many efforts have focused on the careful selection of the image representations to capture such variability. This approach requires expert knowledge as well as hand-engineered design to build good feature detectors that represent the relevant visual information. Current approaches in classical computer vision tasks have replaced such design by the inclusion of the image representation as a new learning stage called representation learning. This paradigm has outperformed the state-of-the-art results in many pattern recognition tasks like speech recognition, object detection, and image scene classification. The aim of this research was to explore and define a learning-based histopathology image representation strategy with interpretative capabilities. The main contribution was a novel approach to learn the image representation for cancer detection. The proposed approach learns the representation directly from a Basal-cell carcinoma image collection in an unsupervised way and was extended to extract more complex features from low-level representations. Additionally, this research proposed the digital staining module, a complementary interpretability stage to support diagnosis through a visual identification of discriminant and semantic features. Experimental results showed a performance of 92% in F-Score, improving the state-of-the-art representation by 7%. This research concluded that representation learning improves the feature detectors generalization as well as the performance for the basal cell carcinoma detection task. As additional contributions, a bag of features image representation was extended and evaluated for Alzheimer detection, obtaining 95% in terms of equal error classification rate. Also, a novel perspective to learn morphometric measures in cervical cells based on bag of features was presented and evaluated obtaining promising results to predict nuclei and cytoplasm areas.Los métodos automáticos para la representación y análisis de imágenes se han aplicado con éxito en varios problemas de imagen médica que conducen a la aparición de nuevas áreas de investigación como la patología digital. El principal desafío de estos métodos es hacer frente a la alta variabilidad visual de las estructuras biológicas presentes en las imágenes, lo que aumenta el vacío semántico entre su apariencia visual y su significado de alto nivel. Particularmente, la variabilidad visual en imágenes de histopatología también está relacionada con el ruido añadido por etapas de adquisición tales como magnificación, corte y tinción entre otros. Muchos esfuerzos se han centrado en la selección de la representacion de las imágenes para capturar dicha variabilidad. Este enfoque requiere el conocimiento de expertos y el diseño de ingeniería para construir buenos detectores de características que representen la información visual relevante. Los enfoques actuales en tareas de visión por computador han reemplazado ese diseño por la inclusión de la representación en la etapa de aprendizaje. Este paradigma ha superado los resultados del estado del arte en muchas de las tareas de reconocimiento de patrones tales como el reconocimiento de voz, la detección de objetos y la clasificación de imágenes. El objetivo de esta investigación es explorar y definir una estrategia basada en el aprendizaje de la representación para imágenes histopatológicas con capacidades interpretativas. La contribución principal de este trabajo es un enfoque novedoso para aprender la representación de la imagen para la detección de cáncer. El enfoque propuesto aprende la representación directamente de una colección de imágenes de carcinoma basocelular en forma no supervisada que permite extraer características más complejas a partir de las representaciones de bajo nivel. También se propone el módulo de tinción digital, una nueva etapa de interpretabilidad para apoyar el diagnóstico a través de una identificación visual de las funciones discriminantes y semánticas. Los resultados experimentales mostraron un rendimiento del 92% en términos de F-Score, mejorando la representación del estado del arte en un 7%. Esta investigación concluye que el aprendizaje de la representación mejora la generalización de los detectores de características así como el desempeño en la detección de carcinoma basocelular. Como contribuciones adicionales, una representación de bolsa de caracteristicas (BdC) fue ampliado y evaluado para la detección de la enfermedad de Alzheimer, obteniendo un 95% en términos de EER. Además, una nueva perspectiva para aprender medidas morfométricas en las células del cuello uterino basado en BdC fue presentada y evaluada obteniendo resultados prometedores para predecir las areás del nucleo y el citoplasma.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ingeniería Departamento de Ingeniería de Sistemas e Industrial Ingeniería de SistemasIngeniería de SistemasArevalo Ovalle, John Edilson (2013) Representation learning for histopathology image analysis. Maestría thesis, Universidad Nacional de Colombia.0 Generalidades / Computer science, information and general works61 Ciencias médicas; Medicina / Medicine and health62 Ingeniería y operaciones afines / EngineeringHistopathologyImage representationInterpretabilityFeature learningDigital pathologyRepresentation learning for histopathology image analysisTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALjohnedilsonarevaloovalle.2013.pdfapplication/pdf10536306https://repositorio.unal.edu.co/bitstream/unal/49577/1/johnedilsonarevaloovalle.2013.pdfbb09a731eade1949b29bda39968358adMD51THUMBNAILjohnedilsonarevaloovalle.2013.pdf.jpgjohnedilsonarevaloovalle.2013.pdf.jpgGenerated Thumbnailimage/jpeg4192https://repositorio.unal.edu.co/bitstream/unal/49577/2/johnedilsonarevaloovalle.2013.pdf.jpg2b58d55195c122f7011bc0dd38a95b8cMD52unal/49577oai:repositorio.unal.edu.co:unal/495772023-12-10 23:06:44.585Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |