Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial
ilustraciones, diagramas
- Autores:
-
Martínez Porras, Alejandra Lucía
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86185
- Palabra clave:
- 570 - Biología::571 - Fisiología y temas relacionados
Vibrisas/fisiología
Corteza Motora
Lidocaína
Vibrissae/physiology
Motor Cortex
Lidocaine
Integración sensoriomotora
Vibrisas en roedores
Corteza motora primaria
Conexiones interhemisféricas
Sensorimotor integration
Whiskers in rodents
Primary motor cortex
Interhemispheric connections
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_eb5d7e75fc984f4e2074a39df1cf2c34 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86185 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
dc.title.translated.eng.fl_str_mv |
Participation of commissural projections in the evoked potentials in the primary motor cortex of the vibrissae by somatosensory stimulation |
title |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
spellingShingle |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial 570 - Biología::571 - Fisiología y temas relacionados Vibrisas/fisiología Corteza Motora Lidocaína Vibrissae/physiology Motor Cortex Lidocaine Integración sensoriomotora Vibrisas en roedores Corteza motora primaria Conexiones interhemisféricas Sensorimotor integration Whiskers in rodents Primary motor cortex Interhemispheric connections |
title_short |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
title_full |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
title_fullStr |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
title_full_unstemmed |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
title_sort |
Participación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorial |
dc.creator.fl_str_mv |
Martínez Porras, Alejandra Lucía |
dc.contributor.advisor.spa.fl_str_mv |
Múnera Galarza, Francisco Alejandro |
dc.contributor.author.spa.fl_str_mv |
Martínez Porras, Alejandra Lucía |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Alejandra_Lucia_Martinez_Porras |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::571 - Fisiología y temas relacionados |
topic |
570 - Biología::571 - Fisiología y temas relacionados Vibrisas/fisiología Corteza Motora Lidocaína Vibrissae/physiology Motor Cortex Lidocaine Integración sensoriomotora Vibrisas en roedores Corteza motora primaria Conexiones interhemisféricas Sensorimotor integration Whiskers in rodents Primary motor cortex Interhemispheric connections |
dc.subject.decs.spa.fl_str_mv |
Vibrisas/fisiología Corteza Motora Lidocaína |
dc.subject.decs.eng.fl_str_mv |
Vibrissae/physiology Motor Cortex Lidocaine |
dc.subject.proposal.spa.fl_str_mv |
Integración sensoriomotora Vibrisas en roedores Corteza motora primaria Conexiones interhemisféricas |
dc.subject.proposal.eng.fl_str_mv |
Sensorimotor integration Whiskers in rodents Primary motor cortex Interhemispheric connections |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-29T23:05:17Z |
dc.date.available.none.fl_str_mv |
2024-05-29T23:05:17Z |
dc.date.issued.none.fl_str_mv |
2024-05-11 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86185 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86185 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Bireme |
dc.relation.references.spa.fl_str_mv |
Aboitiz, F. and Montiel, J. (2003). One hundred million years of interhemispheric communication: the history of the corpus callosum. Brazilian journal of medical and biological research, 36:409–420. Ahissar, E. (2008). And motion changes it all. Nature neuroscience, 11(12):1369–1370. An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020a). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study. An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020b). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study. Antonoudiou, P., Tan, Y. L., Kontou, G., Upton, A. L., and Mann, E. O. (2019). Complementary roles for parvalbumin and somatostatin interneurons in the generation of hippocampal gamma oscillations. bioRxiv, page 595546. Aroniadou, V. A. and Keller, A. (1995). Mechanisms of ltp induction in rat motor cortex in vitro. Cerebral Cortex, 5(4):353–362. Axelson, H. W., Winkler, T., Flygt, J., Djupsj¨o, A., H˚anell, A., and Marklund, N. (2013). Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative neurology and neuroscience, 31(1):73–85. Bachiller, A., Gomez-Pilar, J., Poza, J., N´u˜nez, P., G´omez, C., Lubeiro, A., Molina, V., and Hornero, R. (2017). Event-related phase-amplitude coupling: A comparative study. In Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), October 18-21, 2016, Segovia, Spain, pages 757–761. Springer. Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 1(1):11–20. Balakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006). In silico approaches to prediction of aqueous and dmso solubility of drug-like compounds: Trends, problems and solutions. Current Medicinal Chemistry. Baranyi, A. and Feh´er, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Experimental brain research, 33(2):283–298. Basu, K., Appukuttan, S., Manchanda, R., and Sik, A. (2023). Difference in axon diameter and myelin thickness between excitatory and inhibitory callosally projecting axons in mice. Cerebral Cortex, 33(7):4101–4115. Benamer, N., Vidal, M., Balia, M., and Angulo, M. (2020). Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. nat. commun. 11, 5151. Biane, J. S., Takashima, Y., Scanziani, M., Conner, J. M., and Tuszynski, M. H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron, 89(6):1173–1179. Bonnefond, M. and Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PloS one, 10(6):e0128667. Bosman, L. W., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H., Ju, C., Gong, W., Koekkoek, S. K., et al. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in integrative Breshears, J., Sharma, M., Anderson, N., Rashid, S., and Leuthardt, E. C. (2010). Electrocorticographic frequency alteration mapping of speech cortex during an awake craniotomy: case report. Stereotactic and Functional Neurosurgery, 88(1):11–15. Brus-Ramer, M., Carmel, J. B., and Martin, J. H. (2009). Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. Journal of Neuroscience, 29(19):6196–6206. Buzs´aki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience, 13(6):407–420. Buzs´aki, G. and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35:203–225. Carson, R. G. (2020). Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. The Journal of Physiology, 598(21):4781–4802. Castro-Alamancos, M. A. (2013). The motor cortex: a network tuned to 7-14 hz. Frontiers in neural circuits, 7:21. Charan, J. and Kantharia, N. (2013). How to calculate sample size in animal studies? Journal of pharmacology & pharmacotherapeutics, 4(4):303. Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H. W., Rasch, M. J., and Zhang, X. (2017). Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96(6):1403–1418. Chistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M. (2014). Heterosynaptic plasticity: multiple mechanisms and multiple roles. The Neuroscientist, 20(5):483–498. Chung, J. W., Ofori, E., Misra, G., Hess, C. W., and Vaillancourt, D. E. (2017). Betaband activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage, 144:164–173. Cicinelli, P., Traversa, R., Oliveri, M., Palmieri, M. G., Filippi, M. M., Pasqualetti, P., and Rossini, P. M. (2000). Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neuroscience letters, 288(3):171–174. Citri, A. and Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1):18–41. David-J¨urgens, M. and Dinse, H. R. (2010). Effects of aging on paired-pulse behavior of rat somatosensory cortical neurons. Cerebral Cortex, 20(5):1208–1216. Dib-Hajj, S. D., Cummins, T. R., Black, J. A., andWaxman, S. G. (2010). Sodium channels in normal and pathological pain. Annual Review of Neuroscience. Dina, L. (2017). Roger sperry’s split brain experiments. Embryo Project Encyclopedia, 27 Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under ltp and ltd control. PloS one, 6(7):e21928. Doesburg, S. M., Ibrahim, G. M., Smith, M. L., Sharma, R., Viljoen, A., Chu, B., Rutka, J. T., Snead III, O. C., and Pang, E. W. (2013). Altered rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 8(1):e54943. Dooley, J. C., Glanz, R. M., Sokoloff, G., and Blumberg, M. S. (2020). Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex. Dorst, M. C., Tokarska, A., Zhou, M., Lee, K., Stagkourakis, S., Broberger, C., Masmanidis, S., and Silberberg, G. (2020). Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nature Communications, 11(1):5113. Ebbesen, C. L. and Brecht, M. (2017). Motor cortex—to act or not to act? Nature Reviews Neuroscience, 18(11):694–705. Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017a). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89. Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017b). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89. Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L. T., Nguyen, T. N., Smith, K. A., Yao, Z., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729):79–84. Estebanez, L., Hoffmann, D., Voigt, B. C., and Poulet, J. F. (2017). Parvalbuminexpressing gabaergic neurons in primary motor cortex signal reaching. Cell reports, 20(2):308– 318. Falandysz, J., Medyk, M., and Treu, R. (2018). Bio-concentration potential and associations of heavy metals in amanita muscaria (l.) lam. from northern regions of poland. Environmental Science and Pollution Research, 25:25190–25206. Feurra, M., Bianco, G., Santarnecchi, E., Del Testa, M., Rossi, A., and Rossi, S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. Journal of Neuroscience, 31(34):12165–12170. Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience, 32:209–224. Funken, M., Malan, D., Sasse, P., and Bruegmann, T. (2019). Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Frontiers in physiology, 10:498. F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., and Petersen, C. C. H. (2007a). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron. F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R.,Weber, B., and Petersen, C. C. H. (2007b). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron. Gaetz, W., Edgar, J. C., Wang, D., and Roberts, T. P. (2011). Relating meg measured motor cortical oscillations to resting γ-aminobutyric acid (gaba) concentration. Neuroimage, 55(2):616–621. Gao, L., Wu, H., Cheng, W., Lan, B., Ren, H., Zhang, L., and Wang, L. (2021). Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force. Clinical EEG and Neuroscience, 52(6):436–443. Gauthier-Uma˜na, C., Valderrama, M., M´unera, A., and Nava-Mesa, M. O. (2023). Boardftd- pacc: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1):1–17. Gloor, C., Luft, A., and Hosp, J. (2015). Biphasic plasticity of dendritic fields in layer v motor neurons in response to motor learning. Neurobiology of learning and memory, 125:189– 194. Gokin, A. P., Philip, B., and Strichartz, G. R. (2001). Preferential block of small myelinated sensory and motor fibers by lidocaine: In vivoelectrophysiology in the rat sciatic nerve. The Journal of the American Society of Anesthesiologists, 95(6):1441–1454. Greenough, W. T., Larson, J. R., and Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motorsensory forelimb cortex. Behavioral and neural biology, 44(2):301–314. Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS biology, 5(5):e133. Haider, B., Duque, A., Hasenstaub, A. R., and McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17):4535–4545. Hattox, A. M., Priest, C. A., and Keller, A. (2002). Functional circuitry involved in the regulation of whisker movements. Journal of Comparative Neurology, 442(3):266–276. Herreras, O. (2016). Local field potentials: myths and misunderstandings. Frontiers in neural circuits, 10:101. Hess, G. (2004a). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276. Hess, G. (2004b). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276. Hess, G. and Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of neurophysiology, 71 6:2543–7. H¨offken, O., Veit, M., Knossalla, F., Lissek, S., Bliem, B., Ragert, P., Dinse, H. R., and Tegenthoff, M. (2007). Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. The Journal of Physiology, 584(2):463–471. Hooks, B. M. (2017). Sensorimotor convergence in circuitry of the motor cortex. The Neuroscientist, 23(3):251–263. Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., and Shepherd, G. M. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience, 33(2):748–760. Hu, S., Liu, Y., Chen, T., Liu, Z., Yu, Q., Deng, L., Yin, Y., and Hosaka, S. (2013). Emulating the paired-pulse facilitation of a biological synapse with a niox-based memristor. Applied Physics Letters, 102(18):183510. Hussain, S. J., Cohen, L. G., and B¨onstrup, M. (2019). Beta rhythm events predict corticospinal motor output. Scientific Reports, 9(1):18305. Ibarra-Lecue, I., Haegens, S., and Harris, A. Z. (2022). Breaking down a rhythm: Dissecting the mechanisms underlying task-related neural oscillations. Frontiers in Neural Circuits, 16. Ibrahim, G. M., Akiyama, T., Ochi, A., Otsubo, H., Smith, M. L., Taylor, M. J., Donner, E., Rutka, J. T., Snead III, O. C., and Doesburg, S. M. (2012). Disruption of rolandic gammaband functional connectivity by seizures is associated with motor impairments in children with epilepsy. PloS one, 7(6):e39326. Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., and Fukai, T. (2013). A θ–γ oscillation code for neuronal coordination during motor behavior. Journal of Neuroscience, 33(47):18515– 18530. Innocenti, G. M., Vercelli, A., and Caminiti, R. (2014). The diameter of cortical axons depends both on the area of origin and target. Cerebral Cortex, 24(8):2178–2188. Iriki, A., Pavlides, C., Keller, A., and Asanuma, H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. Journal of neurophysiology, 65(6):1435–1441. Ishikawa, M., Otaka, M., Huang, Y. H., Neumann, P. A., Winters, B. D., Grace, A. A., Schl¨uter, O. M., and Dong, Y. (2013). Dopamine triggers heterosynaptic plasticity. Journal of Neuroscience, 33(16):6759–6765. Jensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8):1395– 1399. Jia, Q., Ye, C., Naskar, S., In´acio, A. R., and Lee, M. K. (2022). Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination. Jones, M. W. and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS biology, 3(12):e402. Jones, T. A., Chu, C. J., Grande, L. A., and Gregory, A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19(22):10153–10163. Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., and Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5):403–407. Kaas, J. H. (2014). Mutable Brain: Dynamic and Plastic Features of the Developing and Mature Brain. CRC Press. Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. (1995). Functional mri evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545):155–158. Karameh, F. N., Dahleh, M. A., Brown, E. N., and Massaquoi, S. G. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency eeg phenomena. Biological cybernetics, 95:289–310. Kauer, J. A. and Malenka, R. C. (2006). Ltp: Ampa receptors trading places. Nature neuroscience, 9(5):593–594. Kozai, T. D. Y., Jaquins-Gerstl, A., Vazquez, A. L., Michael, A. C., and Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. Acs Chemical Neuroscience. Krishnan, C. (2019). Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restorative neurology and neuroscience, 37(4):363–374. Lee, C., Cˆot´e, S. L., Raman, N., Chaudhary, H., Mercado, B. C., and Chen, S. X. (2023). Whole-brain mapping of long-range inputs to the vip-expressing inhibitory neurons in the primary motor cortex. Frontiers in Neural Circuits, 17:41. Lee, S.-H., Carvell, G. E., and Simons, D. J. (2008). Motor modulation of afferent somatosensory circuits. Nature Neuroscience. Li, H., Chalavi, S., Rasooli, A., Rodr´ıguez-Nieto, G., Seer, C., Mikkelsen, M., Edden, R. A., Sunaert, S., Peeters, R., Mantini, D., et al. (2023). Baseline gaba+ levels in areas associated with sensorimotor control predict initial and long-term motor learning progress. Human Brain Mapping. Lind´en, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Gr¨un, S., Diesmann, M., and Einevoll, G. T. (2011). Modeling the spatial reach of the lfp. Neuron, 72(5):859–872. Ludvig, N., Baptiste, S. L., Tang, H. M., Medveczky, G., Von Gizycki, H., Charchaflieh, J., Devinsky, O., and Kuzniecky, R. I. (2009). Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications. Epilepsia, 50(4):678–693. Maggiolini, E., Veronesi, C., and Franchi, G. (2007). Plastic changes in the vibrissa motor cortex in adult rats after output suppression in the homotopic cortex. European Journal of Neuroscience, 25(12):3678–3690. Majdi, S., Najafinobar, N., Dunevall, J., Lovric, J., and Ewing, A. G. (2017). Dmso chemically alters cell membranes to slow exocytosis and increase the fraction of partial transmitter released. ChemBioChem, 18(19):1898–1902. Malenka, R. C. (2003). The long-term potential of ltp. Nature Reviews Neuroscience, 4(11):923–926. Manita, S., Suzuki, T., Inoue, M., Kudo, Y., and Miyakawa, H. (2007). Paired-pulse ratio of synaptically induced transporter currents at hippocampal ca1 synapses is not related to release probability. Brain research, 1154:71–79. Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., and Svoboda, K. (2011). Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron, 72(1):111–123. Martin, J. H. and Ghez, C. (1999). Pharmacological inactivation in the analysis of the central control of movement. Journal of neuroscience methods, 86(2):145–159. Matsumoto, R., Kinoshita, M., Taki, J., Hitomi, T., Mikuni, N., Shibasaki, H., Fukuyama, H., Hashimoto, N., and Ikeda, A. (2005). In vivo epileptogenicity of focal cortical dysplasia: a direct cortical paired stimulation study. Epilepsia, 46(11):1744–1749. Melzer, S. and Monyer, H. (2020). Diversity and function of corticopetal and corticofugal gabaergic projection neurons. Nature Reviews Neuroscience, 21(9):499–515. Micheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., and Bock, D. D. (2016). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. elife, 5:e15784. M´unera, A., Cuestas, D., and Troncoso, J. (2012). Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience, 223:140–151. Mu˜noz-Cabrera, J. M., Sandoval-Hern´andez, A. G., Ni˜no, A., B´aez, T., Bustos-Rangel, A., Cardona-G´omez, G. P., M´unera, A., and Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old triple transgenic mice model of alzheimer´ s disease. PloS one, 14(10). Musall, S. (2015). The relation of sensory adaptation and stimulus perception in the rat whisker-system. PhD thesis, University of Zurich. M´unera, A. (2019). Vibrissal primary motor cortex (vm1) functional interactions during motor command generation. Simposio Max Planck, Colombia, Fronteras de la Ciencia, Bogot ´a, DC, Bogot´a, Colombia. Ni, Z., Gunraj, C., Kailey, P., Cash, R. F., and Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21):7314–7321. Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., and Slutzky, M. W. (2024). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. Eneuro. Nishimura, K., Shimada, R., Yamana, K., Kawasaki, R., Nakaya, T., and Ikeda, A. (2022). Effect of ¡i¿meso¡/i¿positioned substituents on the stability and photodynamic activity of lipid-membrane-incorporated porphyrin derivatives. Chemmedchem. Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812):584– 588. Nitsche, M. A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(Pt 3):633. Nowak, M., Zich, C., and Stagg, C. J. (2018). Motor cortical gamma oscillations: what have we learnt and where are we headed? Current behavioral neuroscience reports, 5:136–142. Nu˜nez, A. and Bu˜no, W. (2021). The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Frontiers in cellular neuroscience, 15:649262. Obara, K., Matsuoka, Y., Iwata, N., Abe, Y., Ikegami, Y., Fujii, A., Yoshioka, K., and Tanaka, Y. (2023). Dimethyl sulfoxide enhances acetylcholine-induced contractions in rat urinary bladder smooth muscle by inhibiting acetylcholinesterase activities. Biological and Pharmaceutical Bulletin. Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M., and Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in cellular neuroscience, 7:174. Papale, A. E. and Hooks, B. M. (2018). Circuit changes in motor cortex during motor skill learning. Neuroscience, 368:283–297. Peters, A. J., Liu, H., and Komiyama, T. (2017). Learning in the rodent motor cortex. Annual review of neuroscience, 40:77–97. Pi, H.-J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature, 503(7477):521–524. Pimiento, J., Ram´ırez, E., Mart´ınez, A., and M´unera, A. (2023). La potenciaci ´On de las proyecciones interhemisf´Ericas a la corteza motora primaria de las vibrisas se propaga heterosin´Apticamente al procesamiento de informaci ´On somatosensorial. Congreso Nacional de Neurociencias - COLNE, Cali, colombia. Ram´ırez Mosquera, E. (2021). Estimulaci´on cortical motora contralateral como mecanismo para inducir plasticidad sin´aptica en la corteza motora primaria de las vibrisas. Magister thesis. Raymond, C. R. (2007). Ltp forms 1, 2 and 3: different mechanisms for the ‘long’in long-term potentiation. Trends in neurosciences, 30(4):167–175. Reis, J., Swayne, O. B., Vandermeeren, Y., Camus, M., Dimyan, M. A., Harris-Love, M., Perez, M. A., Ragert, P., Rothwell, J. C., and Cohen, L. G. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. The Journal of physiology, 586(2):325–351. Rema, V., Armstrong-James, M., and Ebner, F. (1998). Experience-dependent plasticity of adult rat s1 cortex requires local nmda receptor activation. Journal of Neuroscience, 18(23):10196–10206. Rock, C. and junior Apicella, A. (2015). Callosal projections drive neuronal-specific responses in the mouse auditory cortex. Journal of Neuroscience, 35(17):6703–6713. Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018a). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167. Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018b). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167. Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E., Bibbig, A., Whittington, M. A., and Traub, R. D. (2006). A beta2-frequency (20–30 hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of Sciences, 103(42):15646–15650. Saito, K., Onishi, H., Miyaguchi, S., Kotan, S., and Fujimoto, S. (2015). Effect of pairedpulse electrical stimulation on the activity of cortical circuits. Frontiers in Human Neuroscience, 9:671. Sakamoto, T., Porter, L. L., and Asanuma, H. (1987). Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain research, 413(2):360–364. Sano, S., Yokono, S., Kinoshita, H., Ogli, K., Satake, H., Kageyama, T., and Kaneshina, S. (1999). Intra-axonal continuous measurement of lidocaine concentration and ph in squid giant axon. Canadian Journal of Anesthesia, 46:1156–1163. Scheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., and Bastiaansen, M. C. (2011). Neuronal dynamics underlying high-and lowfrequency eeg oscillations contribute independently to the human bold signal. Neuron, 69(3):572–583. Schwarz, C. and Chakrabarti, S. (2015). Whisking control by motor cortex. Scholarpedia, 10(3):7466. revision #150634. Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., H¨am¨al¨ainen, M. S., Moore, C. I., and Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proceedings of the National Academy of Sciences, 113(33):E4885–E4894. Slater, B. J. and Isaacson, J. S. (2020). Interhemispheric callosal projections sharpen frequency tuning and enforce response fidelity in primary auditory cortex. Eneuro, 7(4). Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009a). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702. Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009b). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702. Stedehouder, J. and Kushner, S. (2017). Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Molecular psychiatry, 22(1):4–12. Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G., and Classen, J. (2002). Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. The Journal of physiology, 543(2):699–708. Swanson, O. K. and Maffei, A. (2019). From hiring to firing: activation of inhibitory neurons and their recruitment in behavior. Frontiers in molecular neuroscience, 12:168. Szadai, Z., Pi, H.-J., Chevy, Q., ´ Ocsai, K., Albeanu, D. F., Chiovini, B., Szalay, G., Katona, G., Kepecs, A., and R´ozsa, B. (2022). Cortex-wide response mode of vip-expressing inhibitory neurons by reward and punishment. Elife, 11:e78815. Tam, W.-k., Wu, T., Zhao, Q., Keefer, E., and Yang, Z. (2019). Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 1:1–22. Tan, L. L., Oswald, M. J., Heinl, C., Retana Romero, O. A., Kaushalya, S. K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature communications, 10(1):983. Teskey, G. C. and Kolb, B. (2011). Functional organization of rat and mouse motor cortex. In Animal Models of Movement Disorders, pages 117–137. Springer. Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in neuroanatomy, 4:13. Tomasi, S., Caminiti, R., and Innocenti, G. M. (2012). Areal differences in diameter and length of corticofugal projections. Cerebral Cortex, 22(6):1463–1472. Tomassy, G. S., Berger, D. R., Chen, H.-H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., and Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181):319–324. Torii, T., Sato, A., Iwahashi, M., and Iramina, K. (2019). Using repetitive paired-pulse transcranial magnetic stimulation for evaluation motor cortex excitability. AIP Advances, 9(12). Torp, K. D., Metheny, E., and Simon, L. V. (2022). Lidocaine toxicity. In StatPearls [Internet]. StatPearls Publishing. Tremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91(2):260–292. Urrutia-Pi˜nones, J., Morales-Moraga, C., Sanguinetti-Gonz´alez, N., Escobar, A. P., and Chiu, C. Q. (2022). Long-range gabaergic projections of cortical origin in brain function. Frontiers in Systems Neuroscience, 16:841869. Van Der Cruijsen, J., Manoochehri, M., Jonker, Z. D., Andrinopoulou, E.-R., Frens, M. A., Ribbers, G. M., Schouten, A. C., and Selles, R. W. (2021). Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage, 240:118373. Volgushe, M., Voronin, L. L., Chistiakova, M., and Singer, W. (1997). Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. European Journal of Neuroscience, 9(8):1656–1665. Wang, L., Conner, J. M., Rickert, J., and Tuszynski, M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences, 108(6):2545–2550. Wendiggensen, P., Prochnow, A., Pscherer, C., M¨unchau, A., Frings, C., and Beste, C. (2023). Interplay between alpha and theta band activity enables management of perceptionaction representations for goal-directed behavior. Communications Biology, 6(1):494. Williams, R. H. and Riedemann, T. (2021). Development, diversity, and death of mgederived cortical interneurons. International Journal of Molecular Sciences, 22(17):9297. Wise, S. (2001). Motor cortex. In Smelser, N. J. and Baltes, P. B., editors, International Encyclopedia of the Social & Behavioral Sciences, pages 10137–10140. Pergamon, Oxford. Wong, F. K., Bercsenyi, K., Sreenivasan, V., Portal´es, A., Fern´andez-Otero, M., and Mar´ın, O. (2018). Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 557(7707):668–673. Wu, G. K., Arbuckle, R., Liu, B.-h., Tao, H. W., and Zhang, L. I. (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1):132– 143. Xu, W., de Carvalho, F., and Jackson, A. (2019). Sequential neural activity in primary motor cortex during sleep. Journal of Neuroscience, 39(19):3698–3712. Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275):920–924. Yordanova, J., Falkenstein, M., and Kolev, V. (2020). Aging-related changes in motor response-related theta activity. International Journal of Psychophysiology, 153:95–106. Yordanova, J., Falkenstein, M., and Kolev, V. (2024). Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clinical Neurophysiology, 158:137– 148. Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194. Yu, X. and Zuo, Y. (2011). Spine plasticity in the motor cortex. Current opinion in neurobiology, 21(1):169–174. Zeigler, P. and Keller, A. (2009). Whisking pattern generation. Scholarpedia, 4(12):7271. revision #150519. Zhao, S., Zhou, J., Zhang, Y., and Wang, D.-H. (2023). γ and β band oscillation in working memory given sequential or concurrent multiple items: A spiking network model. eneuro, 10(11). Zhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., Tao, H. W., and Zhang, L. I. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature neuroscience, 17(6):841–850. Zhu, D.-Y., Cao, T.-T., Fan, H.-W., Zhang, M.-Z., Duan, H.-K., Li, J., Zhang, X.-J., Li, Y.-Q., Wang, P., and Chen, T. (2022). The increased in vivo firing of pyramidal cells but not interneurons in the anterior cingulate cortex after neuropathic pain. Molecular Brain, 15(1):1–10. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
123 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Neurociencias |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86185/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86185/4/1010231802.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86185/5/1010231802.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a ae54cb22df3ec91e3fbc2b361d7536cb 4b04c2d15cb24f3464a2f3ae2237a1a1 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089362031247360 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Múnera Galarza, Francisco Alejandro8eaff4d83985b7abb5f6eda6c8090c13Martínez Porras, Alejandra Lucíaa022f810d410f10a5849a5933256d5d0https://www.researchgate.net/profile/Alejandra_Lucia_Martinez_Porras2024-05-29T23:05:17Z2024-05-29T23:05:17Z2024-05-11https://repositorio.unal.edu.co/handle/unal/86185Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEstudiar la integración de la información sensorial y motora es fundamental para comprender cómo logramos coordinar y planear nuestros movimientos con exactitud y ejecutarlos acorde a lo que percibimos del mundo exterior y de nuestro propio cuerpo. Debido a la complejidad de los circuitos involucrados y lo invasivo que puede ser estudiarlos en humanos, el uso de modelos animales resulta fundamental. Un sistema sensoriomotor ampliamente utilizado es el las vibrisas en roedores, debido a las facilidades que brinda para estudiar la integración de información sensorial y motora, la plasticidad sináptica dependiente de experiencia e inducida experimentalmente y el aprendizaje motor. Este sistema es de suma importancia ecológica para los roedores y está formado por estructuras subcorticales y corticales ampliamente interconectadas. Las proyecciones comisurales de la corteza motora primaria de las vibrisas (vM1) a la corteza homotópica contralateral son fundamentales para la sincronización bilateral del batido de las vibrisas. Sin embargo, no hay estudios previos sobre la participación de las conexiones comisurales en el procesamiento somatosensorial en vM1. Por esto, en esta tesis se estudió la participación de las conexiones comisurales en los potenciales provocados en vM1 por estimulación eléctrica del parche de vibrisas; para ello, se compararon las respuestas provocadas en vM1i y vM1d por estimulación en el parche de vibrisas izquierdo (WPi) antes y después de inactivar transitoriamente vM1i mediante una inyección de lidocaína al 2\% (LIDO2) o al 5\% (LIDO5). La lidocaína inyectada en vM1i afectó de manera concentración-dependiente el funcionamiento de vM1 ipsilateral y contralateral. Con LIDO2 disminuyó la respuesta cortical ipsilateral hasta los 20 minutos y aumentó de forma sostenida hasta los 140 min en la contralateral; con LIDO5 disminuyó la respuesta en vM1i de forma sostenida hasta los 140 minutos, mientras que en vM1d aumentó inicialmente y luego disminuyó entre los 80 y 140 minutos. En términos de la respuesta al segundo de un par de pulsos: 1) con IIE de 50 ms, LIDO5 desfacilitó la respuesta en vM1i y vM1d, mientras que LIDO2 solo la desfacilitó inicialmente en vM1d; 2) con IIE de 200 ms, LIDO2 desfacilitó de forma continua la respuesta en vM1i, pero sólo transitoriamente en vM1d; y, 3) con IIE de 400 ms, LIDO2 desfacilitó tardíamente la respuesta en ambas cortezas. Las inyecciones de LIDO2 y LIDO5 en vM1i afectaron la actividad neuronal oscilatoria en ambas cortezas, alterando la potencia espectral y la organización temporal en distintas bandas de frecuencia, tanto en la actividad espontánea como en la provocada por estimulación en el parche de vibrisas izquierdo. En conclusión, la inyección intracortical de lidocaína modifica la actividad del circuito no sólo en la corteza inyectada, sino también en la contralateral; este efecto varía en función de la dosis indicando que la interacción comisural en vM1 tiene un carácter dual, inhibidor y excitador, con capacidad para modular el procesamiento sensorial en el circuito de vM1. Además, las modificaciones dependientes de la dosis en la potencia espectral y la organización temporal de la actividad oscilatoria en diferentes bandas de frecuencia sugieren que tales oscilaciones dependen de diferentes poblaciones de interneuronas inhibidoras con diferentes sensibilidades ante la lidocaína. (Texto tomado de la fuente).Studying the integration of sensory and motor information is essential to understanding how we coordinate and plan our movements accurately and execute them according to what we perceive from the outside world and our own body. Due to the complexity of the circuits involved and the invasiveness of studying them in humans, the use of animal models is crucial. A widely used sensorimotor system is the whisker system in rodents, which offers advantages for studying the integration of sensory and motor information, experience-dependent and experimentally induced synaptic plasticity, and motor learning. This system is of significant ecological importance for rodents and is composed of extensively interconnected subcortical and cortical structures. Commissural projections from the primary motor cortex of the whiskers (vM1) to the contralateral homotopic cortex are fundamental for the bilateral synchronization of whisker movements. However, there are no previous studies on the role of commissural connections in somatosensory processing in vM1. Therefore, this thesis studied the role of commissural connections in the potentials evoked in vM1 by electrical stimulation of the whisker pad. The evoked responses in ipsilateral (vM1i) and contralateral (vM1d) vM1 by stimulation of the left whisker pad (WPi) were compared before and after transiently inactivating vM1i with a 2 % (LIDO2) or 5 % (LIDO5) lidocaine injection. Lidocaine injected into vM1i affected the functioning of both ipsilateral and contralateral vM1 in a concentration-dependent manner. With LIDO2, the ipsilateral cortical response decreased up to 20 minutes and then increased steadily up to 140 minutes in the contralateral cortex; with LIDO5, the response in vM1i decreased consistently up to 140 minutes, while in vM1d it initially increased and then decreased between 80 and 140 minutes. Regarding the response to the second of a pair of pulses, with an inter-interval of 50 ms, LIDO5 decreased the facilitation of the response in vM1i and vM1d, while LIDO2 only initially decreased the facilitation in vM1d. With an inter-interval of 200 ms, LIDO2 continuously decreased the facilitation in vM1i, but only transiently in vM1d. With an inter-interval of 400 ms, LIDO2 decreased the facilitation in both cortices at a later time. LIDO2 and LIDO5 injections in vM1i affected neuronal oscillatory activity in both cortices, altering the spectral power and temporal organization in different frequency bands, in both spontaneous and whisker pad stimulation-induced activity. In conclusion, intracortical lidocaine injection modifies circuit activity not only in the injected cortex but also in the contralateral cortex; this effect varies depending on the dose, indicating that commissural interaction in vM1 has a dual inhibitory and excitatory nature, with the ability to modulate sensory processing in the vM1 circuit. Additionally, dose-dependent modifications in spectral power and the temporal organization of oscillatory activity in different frequency bands suggest that such oscillations depend on different populations of inhibitory interneurons with varying sensitivities to lidocaine.MaestríaMagíster en NeurocienciasNeurofisiología comportamental123 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en NeurocienciasFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::571 - Fisiología y temas relacionadosVibrisas/fisiologíaCorteza MotoraLidocaínaVibrissae/physiologyMotor CortexLidocaineIntegración sensoriomotoraVibrisas en roedoresCorteza motora primariaConexiones interhemisféricasSensorimotor integrationWhiskers in rodentsPrimary motor cortexInterhemispheric connectionsParticipación de las proyecciones comisurales en los potenciales provocados en la corteza motora primaria de las vibrisas por estimulación somatosensorialParticipation of commissural projections in the evoked potentials in the primary motor cortex of the vibrissae by somatosensory stimulationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeAboitiz, F. and Montiel, J. (2003). One hundred million years of interhemispheric communication: the history of the corpus callosum. Brazilian journal of medical and biological research, 36:409–420.Ahissar, E. (2008). And motion changes it all. Nature neuroscience, 11(12):1369–1370.An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020a). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.An, K.-m., Ikeda, T., Hirosawa, T., Hasegawa, C., Yoshimura, Y., Tanaka, S., Saito, D. N., Yaoi, K., Iwasaki, S., and Kikuchi, M. (2020b). Brain oscillatory coupling during motor control as a potential biomarker for autism spectrum disorders: a comparative study.Antonoudiou, P., Tan, Y. L., Kontou, G., Upton, A. L., and Mann, E. O. (2019). Complementary roles for parvalbumin and somatostatin interneurons in the generation of hippocampal gamma oscillations. bioRxiv, page 595546.Aroniadou, V. A. and Keller, A. (1995). Mechanisms of ltp induction in rat motor cortex in vitro. Cerebral Cortex, 5(4):353–362.Axelson, H. W., Winkler, T., Flygt, J., Djupsj¨o, A., H˚anell, A., and Marklund, N. (2013). Plasticity of the contralateral motor cortex following focal traumatic brain injury in the rat. Restorative neurology and neuroscience, 31(1):73–85.Bachiller, A., Gomez-Pilar, J., Poza, J., N´u˜nez, P., G´omez, C., Lubeiro, A., Molina, V., and Hornero, R. (2017). Event-related phase-amplitude coupling: A comparative study. In Converging Clinical and Engineering Research on Neurorehabilitation II: Proceedings of the 3rd International Conference on NeuroRehabilitation (ICNR2016), October 18-21, 2016, Segovia, Spain, pages 757–761. Springer.Bailey, C. H., Giustetto, M., Huang, Y.-Y., Hawkins, R. D., and Kandel, E. R. (2000). Is heterosynaptic modulation essential for stabilizing hebbian plasiticity and memory. Nature Reviews Neuroscience, 1(1):11–20.Balakin, K. V., Savchuk, N. P., and Tetko, I. V. (2006). In silico approaches to prediction of aqueous and dmso solubility of drug-like compounds: Trends, problems and solutions. Current Medicinal Chemistry.Baranyi, A. and Feh´er, O. (1978). Conditioned changes of synaptic transmission in the motor cortex of the cat. Experimental brain research, 33(2):283–298.Basu, K., Appukuttan, S., Manchanda, R., and Sik, A. (2023). Difference in axon diameter and myelin thickness between excitatory and inhibitory callosally projecting axons in mice. Cerebral Cortex, 33(7):4101–4115.Benamer, N., Vidal, M., Balia, M., and Angulo, M. (2020). Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits. nat. commun. 11, 5151.Biane, J. S., Takashima, Y., Scanziani, M., Conner, J. M., and Tuszynski, M. H. (2016). Thalamocortical projections onto behaviorally relevant neurons exhibit plasticity during adult motor learning. Neuron, 89(6):1173–1179.Bonnefond, M. and Jensen, O. (2015). Gamma activity coupled to alpha phase as a mechanism for top-down controlled gating. PloS one, 10(6):e0128667.Bosman, L. W., Houweling, A. R., Owens, C. B., Tanke, N., Shevchouk, O. T., Rahmati, N., Teunissen, W. H., Ju, C., Gong, W., Koekkoek, S. K., et al. (2011). Anatomical pathways involved in generating and sensing rhythmic whisker movements. Frontiers in integrativeBreshears, J., Sharma, M., Anderson, N., Rashid, S., and Leuthardt, E. C. (2010). Electrocorticographic frequency alteration mapping of speech cortex during an awake craniotomy: case report. Stereotactic and Functional Neurosurgery, 88(1):11–15.Brus-Ramer, M., Carmel, J. B., and Martin, J. H. (2009). Motor cortex bilateral motor representation depends on subcortical and interhemispheric interactions. Journal of Neuroscience, 29(19):6196–6206.Buzs´aki, G., Anastassiou, C. A., and Koch, C. (2012). The origin of extracellular fields and currents—eeg, ecog, lfp and spikes. Nature reviews neuroscience, 13(6):407–420.Buzs´aki, G. and Wang, X.-J. (2012). Mechanisms of gamma oscillations. Annual review of neuroscience, 35:203–225.Carson, R. G. (2020). Inter-hemispheric inhibition sculpts the output of neural circuits by co-opting the two cerebral hemispheres. The Journal of Physiology, 598(21):4781–4802.Castro-Alamancos, M. A. (2013). The motor cortex: a network tuned to 7-14 hz. Frontiers in neural circuits, 7:21.Charan, J. and Kantharia, N. (2013). How to calculate sample size in animal studies? Journal of pharmacology & pharmacotherapeutics, 4(4):303.Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H. W., Rasch, M. J., and Zhang, X. (2017). Distinct inhibitory circuits orchestrate cortical beta and gamma band oscillations. Neuron, 96(6):1403–1418.Chistiakova, M., Bannon, N. M., Bazhenov, M., and Volgushev, M. (2014). Heterosynaptic plasticity: multiple mechanisms and multiple roles. The Neuroscientist, 20(5):483–498.Chung, J. W., Ofori, E., Misra, G., Hess, C. W., and Vaillancourt, D. E. (2017). Betaband activity and connectivity in sensorimotor and parietal cortex are important for accurate motor performance. Neuroimage, 144:164–173.Cicinelli, P., Traversa, R., Oliveri, M., Palmieri, M. G., Filippi, M. M., Pasqualetti, P., and Rossini, P. M. (2000). Intracortical excitatory and inhibitory phenomena to paired transcranial magnetic stimulation in healthy human subjects: differences between the right and left hemisphere. Neuroscience letters, 288(3):171–174.Citri, A. and Malenka, R. C. (2008). Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology, 33(1):18–41.David-J¨urgens, M. and Dinse, H. R. (2010). Effects of aging on paired-pulse behavior of rat somatosensory cortical neurons. Cerebral Cortex, 20(5):1208–1216.Dib-Hajj, S. D., Cummins, T. R., Black, J. A., andWaxman, S. G. (2010). Sodium channels in normal and pathological pain. Annual Review of Neuroscience.Dina, L. (2017). Roger sperry’s split brain experiments. Embryo Project Encyclopedia, 27Diwakar, S., Lombardo, P., Solinas, S., Naldi, G., and D’Angelo, E. (2011). Local field potential modeling predicts dense activation in cerebellar granule cells clusters under ltp and ltd control. PloS one, 6(7):e21928.Doesburg, S. M., Ibrahim, G. M., Smith, M. L., Sharma, R., Viljoen, A., Chu, B., Rutka, J. T., Snead III, O. C., and Pang, E. W. (2013). Altered rolandic gamma-band activation associated with motor impairment and ictal network desynchronization in childhood epilepsy. PLoS One, 8(1):e54943.Dooley, J. C., Glanz, R. M., Sokoloff, G., and Blumberg, M. S. (2020). Self-generated whisker movements drive state-dependent sensory input to developing barrel cortex.Dorst, M. C., Tokarska, A., Zhou, M., Lee, K., Stagkourakis, S., Broberger, C., Masmanidis, S., and Silberberg, G. (2020). Polysynaptic inhibition between striatal cholinergic interneurons shapes their network activity patterns in a dopamine-dependent manner. Nature Communications, 11(1):5113.Ebbesen, C. L. and Brecht, M. (2017). Motor cortex—to act or not to act? Nature Reviews Neuroscience, 18(11):694–705.Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017a). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.Ebbesen, C. L., Doron, G., Lenschow, C., and Brecht, M. (2017b). Vibrissa motor cortex activity suppresses contralateral whisking behavior. Nature neuroscience, 20(1):82–89.Economo, M. N., Viswanathan, S., Tasic, B., Bas, E., Winnubst, J., Menon, V., Graybuck, L. T., Nguyen, T. N., Smith, K. A., Yao, Z., et al. (2018). Distinct descending motor cortex pathways and their roles in movement. Nature, 563(7729):79–84.Estebanez, L., Hoffmann, D., Voigt, B. C., and Poulet, J. F. (2017). Parvalbuminexpressing gabaergic neurons in primary motor cortex signal reaching. Cell reports, 20(2):308– 318.Falandysz, J., Medyk, M., and Treu, R. (2018). Bio-concentration potential and associations of heavy metals in amanita muscaria (l.) lam. from northern regions of poland. Environmental Science and Pollution Research, 25:25190–25206.Feurra, M., Bianco, G., Santarnecchi, E., Del Testa, M., Rossi, A., and Rossi, S. (2011). Frequency-dependent tuning of the human motor system induced by transcranial oscillatory potentials. Journal of Neuroscience, 31(34):12165–12170.Fries, P. (2009). Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annual review of neuroscience, 32:209–224.Funken, M., Malan, D., Sasse, P., and Bruegmann, T. (2019). Optogenetic hyperpolarization of cardiomyocytes terminates ventricular arrhythmia. Frontiers in physiology, 10:498.F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R., Weber, B., and Petersen, C. C. H. (2007a). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.F´er´ezou, I., Haiss, F., Gentet, L. J., Aronoff, R.,Weber, B., and Petersen, C. C. H. (2007b). Spatiotemporal dynamics of cortical sensorimotor integration in behaving mice. Neuron.Gaetz, W., Edgar, J. C., Wang, D., and Roberts, T. P. (2011). Relating meg measured motor cortical oscillations to resting γ-aminobutyric acid (gaba) concentration. Neuroimage, 55(2):616–621.Gao, L., Wu, H., Cheng, W., Lan, B., Ren, H., Zhang, L., and Wang, L. (2021). Enhanced descending corticomuscular coupling during hand grip with static force compared with enhancing force. Clinical EEG and Neuroscience, 52(6):436–443.Gauthier-Uma˜na, C., Valderrama, M., M´unera, A., and Nava-Mesa, M. O. (2023). Boardftd- pacc: a graphical user interface for the synaptic and cross-frequency analysis derived from neural signals. Brain Informatics, 10(1):1–17.Gloor, C., Luft, A., and Hosp, J. (2015). Biphasic plasticity of dendritic fields in layer v motor neurons in response to motor learning. Neurobiology of learning and memory, 125:189– 194.Gokin, A. P., Philip, B., and Strichartz, G. R. (2001). Preferential block of small myelinated sensory and motor fibers by lidocaine: In vivoelectrophysiology in the rat sciatic nerve. The Journal of the American Society of Anesthesiologists, 95(6):1441–1454.Greenough, W. T., Larson, J. R., and Withers, G. S. (1985). Effects of unilateral and bilateral training in a reaching task on dendritic branching of neurons in the rat motorsensory forelimb cortex. Behavioral and neural biology, 44(2):301–314.Gross, J., Schnitzler, A., Timmermann, L., and Ploner, M. (2007). Gamma oscillations in human primary somatosensory cortex reflect pain perception. PLoS biology, 5(5):e133.Haider, B., Duque, A., Hasenstaub, A. R., and McCormick, D. A. (2006). Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. Journal of Neuroscience, 26(17):4535–4545.Hattox, A. M., Priest, C. A., and Keller, A. (2002). Functional circuitry involved in the regulation of whisker movements. Journal of Comparative Neurology, 442(3):266–276.Herreras, O. (2016). Local field potentials: myths and misunderstandings. Frontiers in neural circuits, 10:101.Hess, G. (2004a). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.Hess, G. (2004b). Synaptic plasticity of local connections in rat motor cortex. Acta neurobiologiae experimentalis, 64(2):271–276.Hess, G. and Donoghue, J. P. (1994). Long-term potentiation of horizontal connections provides a mechanism to reorganize cortical motor maps. Journal of neurophysiology, 71 6:2543–7.H¨offken, O., Veit, M., Knossalla, F., Lissek, S., Bliem, B., Ragert, P., Dinse, H. R., and Tegenthoff, M. (2007). Sustained increase of somatosensory cortex excitability by tactile coactivation studied by paired median nerve stimulation in humans correlates with perceptual gain. The Journal of Physiology, 584(2):463–471.Hooks, B. M. (2017). Sensorimotor convergence in circuitry of the motor cortex. The Neuroscientist, 23(3):251–263.Hooks, B. M., Mao, T., Gutnisky, D. A., Yamawaki, N., Svoboda, K., and Shepherd, G. M. (2013). Organization of cortical and thalamic input to pyramidal neurons in mouse motor cortex. Journal of Neuroscience, 33(2):748–760.Hu, S., Liu, Y., Chen, T., Liu, Z., Yu, Q., Deng, L., Yin, Y., and Hosaka, S. (2013). Emulating the paired-pulse facilitation of a biological synapse with a niox-based memristor. Applied Physics Letters, 102(18):183510.Hussain, S. J., Cohen, L. G., and B¨onstrup, M. (2019). Beta rhythm events predict corticospinal motor output. Scientific Reports, 9(1):18305.Ibarra-Lecue, I., Haegens, S., and Harris, A. Z. (2022). Breaking down a rhythm: Dissecting the mechanisms underlying task-related neural oscillations. Frontiers in Neural Circuits, 16.Ibrahim, G. M., Akiyama, T., Ochi, A., Otsubo, H., Smith, M. L., Taylor, M. J., Donner, E., Rutka, J. T., Snead III, O. C., and Doesburg, S. M. (2012). Disruption of rolandic gammaband functional connectivity by seizures is associated with motor impairments in children with epilepsy. PloS one, 7(6):e39326.Igarashi, J., Isomura, Y., Arai, K., Harukuni, R., and Fukai, T. (2013). A θ–γ oscillation code for neuronal coordination during motor behavior. Journal of Neuroscience, 33(47):18515– 18530.Innocenti, G. M., Vercelli, A., and Caminiti, R. (2014). The diameter of cortical axons depends both on the area of origin and target. Cerebral Cortex, 24(8):2178–2188.Iriki, A., Pavlides, C., Keller, A., and Asanuma, H. (1991). Long-term potentiation of thalamic input to the motor cortex induced by coactivation of thalamocortical and corticocortical afferents. Journal of neurophysiology, 65(6):1435–1441.Ishikawa, M., Otaka, M., Huang, Y. H., Neumann, P. A., Winters, B. D., Grace, A. A., Schl¨uter, O. M., and Dong, Y. (2013). Dopamine triggers heterosynaptic plasticity. Journal of Neuroscience, 33(16):6759–6765.Jensen, O. and Tesche, C. D. (2002). Frontal theta activity in humans increases with memory load in a working memory task. European journal of Neuroscience, 15(8):1395– 1399.Jia, Q., Ye, C., Naskar, S., In´acio, A. R., and Lee, M. K. (2022). Posteromedial thalamic nucleus activity significantly contributes to perceptual discrimination.Jones, M. W. and Wilson, M. A. (2005). Theta rhythms coordinate hippocampal–prefrontal interactions in a spatial memory task. PLoS biology, 3(12):e402.Jones, T. A., Chu, C. J., Grande, L. A., and Gregory, A. D. (1999). Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. Journal of Neuroscience, 19(22):10153–10163.Joundi, R. A., Jenkinson, N., Brittain, J.-S., Aziz, T. Z., and Brown, P. (2012). Driving oscillatory activity in the human cortex enhances motor performance. Current Biology, 22(5):403–407.Kaas, J. H. (2014). Mutable Brain: Dynamic and Plastic Features of the Developing and Mature Brain. CRC Press.Kami, A., Meyer, G., Jezzard, P., Adams, M. M., Turner, R., and Ungerleider, L. G. (1995). Functional mri evidence for adult motor cortex plasticity during motor skill learning. Nature, 377(6545):155–158.Karameh, F. N., Dahleh, M. A., Brown, E. N., and Massaquoi, S. G. (2006). Modeling the contribution of lamina 5 neuronal and network dynamics to low frequency eeg phenomena. Biological cybernetics, 95:289–310.Kauer, J. A. and Malenka, R. C. (2006). Ltp: Ampa receptors trading places. Nature neuroscience, 9(5):593–594.Kozai, T. D. Y., Jaquins-Gerstl, A., Vazquez, A. L., Michael, A. C., and Cui, X. T. (2015). Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. Acs Chemical Neuroscience.Krishnan, C. (2019). Effect of paired-pulse stimulus parameters on the two phases of short interval intracortical inhibition in the quadriceps muscle group. Restorative neurology and neuroscience, 37(4):363–374.Lee, C., Cˆot´e, S. L., Raman, N., Chaudhary, H., Mercado, B. C., and Chen, S. X. (2023). Whole-brain mapping of long-range inputs to the vip-expressing inhibitory neurons in the primary motor cortex. Frontiers in Neural Circuits, 17:41.Lee, S.-H., Carvell, G. E., and Simons, D. J. (2008). Motor modulation of afferent somatosensory circuits. Nature Neuroscience.Li, H., Chalavi, S., Rasooli, A., Rodr´ıguez-Nieto, G., Seer, C., Mikkelsen, M., Edden, R. A., Sunaert, S., Peeters, R., Mantini, D., et al. (2023). Baseline gaba+ levels in areas associated with sensorimotor control predict initial and long-term motor learning progress. Human Brain Mapping.Lind´en, H., Tetzlaff, T., Potjans, T. C., Pettersen, K. H., Gr¨un, S., Diesmann, M., and Einevoll, G. T. (2011). Modeling the spatial reach of the lfp. Neuron, 72(5):859–872.Ludvig, N., Baptiste, S. L., Tang, H. M., Medveczky, G., Von Gizycki, H., Charchaflieh, J., Devinsky, O., and Kuzniecky, R. I. (2009). Localized transmeningeal muscimol prevents neocortical seizures in rats and nonhuman primates: therapeutic implications. Epilepsia, 50(4):678–693.Maggiolini, E., Veronesi, C., and Franchi, G. (2007). Plastic changes in the vibrissa motor cortex in adult rats after output suppression in the homotopic cortex. European Journal of Neuroscience, 25(12):3678–3690.Majdi, S., Najafinobar, N., Dunevall, J., Lovric, J., and Ewing, A. G. (2017). Dmso chemically alters cell membranes to slow exocytosis and increase the fraction of partial transmitter released. ChemBioChem, 18(19):1898–1902.Malenka, R. C. (2003). The long-term potential of ltp. Nature Reviews Neuroscience, 4(11):923–926.Manita, S., Suzuki, T., Inoue, M., Kudo, Y., and Miyakawa, H. (2007). Paired-pulse ratio of synaptically induced transporter currents at hippocampal ca1 synapses is not related to release probability. Brain research, 1154:71–79.Mao, T., Kusefoglu, D., Hooks, B. M., Huber, D., Petreanu, L., and Svoboda, K. (2011). Long-range neuronal circuits underlying the interaction between sensory and motor cortex. Neuron, 72(1):111–123.Martin, J. H. and Ghez, C. (1999). Pharmacological inactivation in the analysis of the central control of movement. Journal of neuroscience methods, 86(2):145–159.Matsumoto, R., Kinoshita, M., Taki, J., Hitomi, T., Mikuni, N., Shibasaki, H., Fukuyama, H., Hashimoto, N., and Ikeda, A. (2005). In vivo epileptogenicity of focal cortical dysplasia: a direct cortical paired stimulation study. Epilepsia, 46(11):1744–1749.Melzer, S. and Monyer, H. (2020). Diversity and function of corticopetal and corticofugal gabaergic projection neurons. Nature Reviews Neuroscience, 21(9):499–515.Micheva, K. D., Wolman, D., Mensh, B. D., Pax, E., Buchanan, J., Smith, S. J., and Bock, D. D. (2016). A large fraction of neocortical myelin ensheathes axons of local inhibitory neurons. elife, 5:e15784.M´unera, A., Cuestas, D., and Troncoso, J. (2012). Peripheral facial nerve lesions induce changes in the firing properties of primary motor cortex layer 5 pyramidal cells. Neuroscience, 223:140–151.Mu˜noz-Cabrera, J. M., Sandoval-Hern´andez, A. G., Ni˜no, A., B´aez, T., Bustos-Rangel, A., Cardona-G´omez, G. P., M´unera, A., and Arboleda, G. (2019). Bexarotene therapy ameliorates behavioral deficits and induces functional and molecular changes in very-old triple transgenic mice model of alzheimer´ s disease. PloS one, 14(10).Musall, S. (2015). The relation of sensory adaptation and stimulus perception in the rat whisker-system. PhD thesis, University of Zurich.M´unera, A. (2019). Vibrissal primary motor cortex (vm1) functional interactions during motor command generation. Simposio Max Planck, Colombia, Fronteras de la Ciencia, Bogot ´a, DC, Bogot´a, Colombia.Ni, Z., Gunraj, C., Kailey, P., Cash, R. F., and Chen, R. (2014). Heterosynaptic modulation of motor cortical plasticity in human. Journal of Neuroscience, 34(21):7314–7321.Nie, J. Z., Flint, R. D., Prakash, P., Hsieh, J. K., Mugler, E. M., Tate, M. C., Rosenow, J. M., and Slutzky, M. W. (2024). High-gamma activity is coupled to low-gamma oscillations in precentral cortices and modulates with movement and speech. Eneuro.Nishimura, K., Shimada, R., Yamana, K., Kawasaki, R., Nakaya, T., and Ikeda, A. (2022). Effect of ¡i¿meso¡/i¿positioned substituents on the stability and photodynamic activity of lipid-membrane-incorporated porphyrin derivatives. Chemmedchem.Nishiyama, M., Hong, K., Mikoshiba, K., Poo, M.-M., and Kato, K. (2000). Calcium stores regulate the polarity and input specificity of synaptic modification. Nature, 408(6812):584– 588.Nitsche, M. A. and Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. The Journal of physiology, 527(Pt 3):633.Nowak, M., Zich, C., and Stagg, C. J. (2018). Motor cortical gamma oscillations: what have we learnt and where are we headed? Current behavioral neuroscience reports, 5:136–142.Nu˜nez, A. and Bu˜no, W. (2021). The theta rhythm of the hippocampus: from neuronal and circuit mechanisms to behavior. Frontiers in cellular neuroscience, 15:649262.Obara, K., Matsuoka, Y., Iwata, N., Abe, Y., Ikegami, Y., Fujii, A., Yoshioka, K., and Tanaka, Y. (2023). Dimethyl sulfoxide enhances acetylcholine-induced contractions in rat urinary bladder smooth muscle by inhibiting acetylcholinesterase activities. Biological and Pharmaceutical Bulletin.Oswald, M. J., Tantirigama, M. L., Sonntag, I., Hughes, S. M., and Empson, R. M. (2013). Diversity of layer 5 projection neurons in the mouse motor cortex. Frontiers in cellular neuroscience, 7:174.Papale, A. E. and Hooks, B. M. (2018). Circuit changes in motor cortex during motor skill learning. Neuroscience, 368:283–297.Peters, A. J., Liu, H., and Komiyama, T. (2017). Learning in the rodent motor cortex. Annual review of neuroscience, 40:77–97.Pi, H.-J., Hangya, B., Kvitsiani, D., Sanders, J. I., Huang, Z. J., and Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature, 503(7477):521–524.Pimiento, J., Ram´ırez, E., Mart´ınez, A., and M´unera, A. (2023). La potenciaci ´On de las proyecciones interhemisf´Ericas a la corteza motora primaria de las vibrisas se propaga heterosin´Apticamente al procesamiento de informaci ´On somatosensorial. Congreso Nacional de Neurociencias - COLNE, Cali, colombia.Ram´ırez Mosquera, E. (2021). Estimulaci´on cortical motora contralateral como mecanismo para inducir plasticidad sin´aptica en la corteza motora primaria de las vibrisas. Magister thesis.Raymond, C. R. (2007). Ltp forms 1, 2 and 3: different mechanisms for the ‘long’in long-term potentiation. Trends in neurosciences, 30(4):167–175.Reis, J., Swayne, O. B., Vandermeeren, Y., Camus, M., Dimyan, M. A., Harris-Love, M., Perez, M. A., Ragert, P., Rothwell, J. C., and Cohen, L. G. (2008). Contribution of transcranial magnetic stimulation to the understanding of cortical mechanisms involved in motor control. The Journal of physiology, 586(2):325–351.Rema, V., Armstrong-James, M., and Ebner, F. (1998). Experience-dependent plasticity of adult rat s1 cortex requires local nmda receptor activation. Journal of Neuroscience, 18(23):10196–10206.Rock, C. and junior Apicella, A. (2015). Callosal projections drive neuronal-specific responses in the mouse auditory cortex. Journal of Neuroscience, 35(17):6703–6713.Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018a). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.Rock, C., Zurita, H., Lebby, S., Wilson, C. J., and Apicella, A. j. (2018b). Cortical circuits of callosal gabaergic neurons. Cerebral Cortex, 28(4):1154–1167.Roopun, A. K., Middleton, S. J., Cunningham, M. O., LeBeau, F. E., Bibbig, A., Whittington, M. A., and Traub, R. D. (2006). A beta2-frequency (20–30 hz) oscillation in nonsynaptic networks of somatosensory cortex. Proceedings of the National Academy of Sciences, 103(42):15646–15650.Saito, K., Onishi, H., Miyaguchi, S., Kotan, S., and Fujimoto, S. (2015). Effect of pairedpulse electrical stimulation on the activity of cortical circuits. Frontiers in Human Neuroscience, 9:671.Sakamoto, T., Porter, L. L., and Asanuma, H. (1987). Long-lasting potentiation of synaptic potentials in the motor cortex produced by stimulation of the sensory cortex in the cat: a basis of motor learning. Brain research, 413(2):360–364.Sano, S., Yokono, S., Kinoshita, H., Ogli, K., Satake, H., Kageyama, T., and Kaneshina, S. (1999). Intra-axonal continuous measurement of lidocaine concentration and ph in squid giant axon. Canadian Journal of Anesthesia, 46:1156–1163.Scheeringa, R., Fries, P., Petersson, K.-M., Oostenveld, R., Grothe, I., Norris, D. G., Hagoort, P., and Bastiaansen, M. C. (2011). Neuronal dynamics underlying high-and lowfrequency eeg oscillations contribute independently to the human bold signal. Neuron, 69(3):572–583.Schwarz, C. and Chakrabarti, S. (2015). Whisking control by motor cortex. Scholarpedia, 10(3):7466. revision #150634.Sherman, M. A., Lee, S., Law, R., Haegens, S., Thorn, C. A., H¨am¨al¨ainen, M. S., Moore, C. I., and Jones, S. R. (2016). Neural mechanisms of transient neocortical beta rhythms: Converging evidence from humans, computational modeling, monkeys, and mice. Proceedings of the National Academy of Sciences, 113(33):E4885–E4894.Slater, B. J. and Isaacson, J. S. (2020). Interhemispheric callosal projections sharpen frequency tuning and enforce response fidelity in primary auditory cortex. Eneuro, 7(4).Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009a). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.Sohal, V. S., Zhang, F., Yizhar, O., and Deisseroth, K. (2009b). Parvalbumin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247):698–702.Stedehouder, J. and Kushner, S. (2017). Myelination of parvalbumin interneurons: a parsimonious locus of pathophysiological convergence in schizophrenia. Molecular psychiatry, 22(1):4–12.Stefan, K., Kunesch, E., Benecke, R., Cohen, L. G., and Classen, J. (2002). Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. The Journal of physiology, 543(2):699–708.Swanson, O. K. and Maffei, A. (2019). From hiring to firing: activation of inhibitory neurons and their recruitment in behavior. Frontiers in molecular neuroscience, 12:168.Szadai, Z., Pi, H.-J., Chevy, Q., ´ Ocsai, K., Albeanu, D. F., Chiovini, B., Szalay, G., Katona, G., Kepecs, A., and R´ozsa, B. (2022). Cortex-wide response mode of vip-expressing inhibitory neurons by reward and punishment. Elife, 11:e78815.Tam, W.-k., Wu, T., Zhao, Q., Keefer, E., and Yang, Z. (2019). Human motor decoding from neural signals: a review. BMC Biomedical Engineering, 1:1–22.Tan, L. L., Oswald, M. J., Heinl, C., Retana Romero, O. A., Kaushalya, S. K., Monyer, H., and Kuner, R. (2019). Gamma oscillations in somatosensory cortex recruit prefrontal and descending serotonergic pathways in aversion and nociception. Nature communications, 10(1):983.Teskey, G. C. and Kolb, B. (2011). Functional organization of rat and mouse motor cortex. In Animal Models of Movement Disorders, pages 117–137. Springer.Thomson, A. M. (2010). Neocortical layer 6, a review. Frontiers in neuroanatomy, 4:13.Tomasi, S., Caminiti, R., and Innocenti, G. M. (2012). Areal differences in diameter and length of corticofugal projections. Cerebral Cortex, 22(6):1463–1472.Tomassy, G. S., Berger, D. R., Chen, H.-H., Kasthuri, N., Hayworth, K. J., Vercelli, A., Seung, H. S., Lichtman, J. W., and Arlotta, P. (2014). Distinct profiles of myelin distribution along single axons of pyramidal neurons in the neocortex. Science, 344(6181):319–324.Torii, T., Sato, A., Iwahashi, M., and Iramina, K. (2019). Using repetitive paired-pulse transcranial magnetic stimulation for evaluation motor cortex excitability. AIP Advances, 9(12).Torp, K. D., Metheny, E., and Simon, L. V. (2022). Lidocaine toxicity. In StatPearls [Internet]. StatPearls Publishing.Tremblay, R., Lee, S., and Rudy, B. (2016). Gabaergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91(2):260–292.Urrutia-Pi˜nones, J., Morales-Moraga, C., Sanguinetti-Gonz´alez, N., Escobar, A. P., and Chiu, C. Q. (2022). Long-range gabaergic projections of cortical origin in brain function. Frontiers in Systems Neuroscience, 16:841869.Van Der Cruijsen, J., Manoochehri, M., Jonker, Z. D., Andrinopoulou, E.-R., Frens, M. A., Ribbers, G. M., Schouten, A. C., and Selles, R. W. (2021). Theta but not beta power is positively associated with better explicit motor task learning. NeuroImage, 240:118373.Volgushe, M., Voronin, L. L., Chistiakova, M., and Singer, W. (1997). Relations between long-term synaptic modifications and paired-pulse interactions in the rat neocortex. European Journal of Neuroscience, 9(8):1656–1665.Wang, L., Conner, J. M., Rickert, J., and Tuszynski, M. H. (2011). Structural plasticity within highly specific neuronal populations identifies a unique parcellation of motor learning in the adult brain. Proceedings of the National Academy of Sciences, 108(6):2545–2550.Wendiggensen, P., Prochnow, A., Pscherer, C., M¨unchau, A., Frings, C., and Beste, C. (2023). Interplay between alpha and theta band activity enables management of perceptionaction representations for goal-directed behavior. Communications Biology, 6(1):494.Williams, R. H. and Riedemann, T. (2021). Development, diversity, and death of mgederived cortical interneurons. International Journal of Molecular Sciences, 22(17):9297.Wise, S. (2001). Motor cortex. In Smelser, N. J. and Baltes, P. B., editors, International Encyclopedia of the Social & Behavioral Sciences, pages 10137–10140. Pergamon, Oxford.Wong, F. K., Bercsenyi, K., Sreenivasan, V., Portal´es, A., Fern´andez-Otero, M., and Mar´ın, O. (2018). Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature, 557(7707):668–673.Wu, G. K., Arbuckle, R., Liu, B.-h., Tao, H. W., and Zhang, L. I. (2008). Lateral sharpening of cortical frequency tuning by approximately balanced inhibition. Neuron, 58(1):132– 143.Xu, W., de Carvalho, F., and Jackson, A. (2019). Sequential neural activity in primary motor cortex during sleep. Journal of Neuroscience, 39(19):3698–3712.Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated with lifelong memories. Nature, 462(7275):920–924.Yordanova, J., Falkenstein, M., and Kolev, V. (2020). Aging-related changes in motor response-related theta activity. International Journal of Psychophysiology, 153:95–106.Yordanova, J., Falkenstein, M., and Kolev, V. (2024). Aging alters functional connectivity of motor theta networks during sensorimotor reactions. Clinical Neurophysiology, 158:137– 148.Yu, H., Ba, S., Guo, Y., Guo, L., and Xu, G. (2022). Effects of motor imagery tasks on brain functional networks based on eeg mu/beta rhythm. Brain Sciences, 12(2):194.Yu, X. and Zuo, Y. (2011). Spine plasticity in the motor cortex. Current opinion in neurobiology, 21(1):169–174.Zeigler, P. and Keller, A. (2009). Whisking pattern generation. Scholarpedia, 4(12):7271. revision #150519.Zhao, S., Zhou, J., Zhang, Y., and Wang, D.-H. (2023). γ and β band oscillation in working memory given sequential or concurrent multiple items: A spiking network model. eneuro, 10(11).Zhou, M., Liang, F., Xiong, X. R., Li, L., Li, H., Xiao, Z., Tao, H. W., and Zhang, L. I. (2014). Scaling down of balanced excitation and inhibition by active behavioral states in auditory cortex. Nature neuroscience, 17(6):841–850.Zhu, D.-Y., Cao, T.-T., Fan, H.-W., Zhang, M.-Z., Duan, H.-K., Li, J., Zhang, X.-J., Li, Y.-Q., Wang, P., and Chen, T. (2022). The increased in vivo firing of pyramidal cells but not interneurons in the anterior cingulate cortex after neuropathic pain. Molecular Brain, 15(1):1–10.InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86185/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1010231802.2024.pdf1010231802.2024.pdfTesis de Maestría en Neurocienciasapplication/pdf11029721https://repositorio.unal.edu.co/bitstream/unal/86185/4/1010231802.2024.pdfae54cb22df3ec91e3fbc2b361d7536cbMD54THUMBNAIL1010231802.2024.pdf.jpg1010231802.2024.pdf.jpgGenerated Thumbnailimage/jpeg4811https://repositorio.unal.edu.co/bitstream/unal/86185/5/1010231802.2024.pdf.jpg4b04c2d15cb24f3464a2f3ae2237a1a1MD55unal/86185oai:repositorio.unal.edu.co:unal/861852024-05-29 23:11:11.332Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |