Higher-order time derivative theories. Interpretation, instability and possible stabilization

Higher-derivative field theories are well known to propagate ghost degrees of freedom (DOFs), an instability known as of Ostrogradsky. However, recent advances proposing conditions to stabilize this kind of models, with finitely many unstable DOFs in a non-minimal way, by including a stabilizer DOF...

Full description

Autores:
Valencia Villegas, Juan Mauricio
Tipo de recurso:
Fecha de publicación:
2017
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/63363
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/63363
http://bdigital.unal.edu.co/63666/
Palabra clave:
5 Ciencias naturales y matemáticas / Science
53 Física / Physics
Higher derivatives
Ostrogradskian instability
Quantum theories
Quantization with constraints
Derivadas altas
Inestabilidad de Ostrogradsky
Teorías cuánticas
Cuantización con ligaduras
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_eaddb12fd3b9dd2b6ab71763071a4eb5
oai_identifier_str oai:repositorio.unal.edu.co:unal/63363
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Higher-order time derivative theories. Interpretation, instability and possible stabilization
title Higher-order time derivative theories. Interpretation, instability and possible stabilization
spellingShingle Higher-order time derivative theories. Interpretation, instability and possible stabilization
5 Ciencias naturales y matemáticas / Science
53 Física / Physics
Higher derivatives
Ostrogradskian instability
Quantum theories
Quantization with constraints
Derivadas altas
Inestabilidad de Ostrogradsky
Teorías cuánticas
Cuantización con ligaduras
title_short Higher-order time derivative theories. Interpretation, instability and possible stabilization
title_full Higher-order time derivative theories. Interpretation, instability and possible stabilization
title_fullStr Higher-order time derivative theories. Interpretation, instability and possible stabilization
title_full_unstemmed Higher-order time derivative theories. Interpretation, instability and possible stabilization
title_sort Higher-order time derivative theories. Interpretation, instability and possible stabilization
dc.creator.fl_str_mv Valencia Villegas, Juan Mauricio
dc.contributor.author.spa.fl_str_mv Valencia Villegas, Juan Mauricio
dc.contributor.spa.fl_str_mv López Sarrión, Justo Javier
dc.subject.ddc.spa.fl_str_mv 5 Ciencias naturales y matemáticas / Science
53 Física / Physics
topic 5 Ciencias naturales y matemáticas / Science
53 Física / Physics
Higher derivatives
Ostrogradskian instability
Quantum theories
Quantization with constraints
Derivadas altas
Inestabilidad de Ostrogradsky
Teorías cuánticas
Cuantización con ligaduras
dc.subject.proposal.spa.fl_str_mv Higher derivatives
Ostrogradskian instability
Quantum theories
Quantization with constraints
Derivadas altas
Inestabilidad de Ostrogradsky
Teorías cuánticas
Cuantización con ligaduras
description Higher-derivative field theories are well known to propagate ghost degrees of freedom (DOFs), an instability known as of Ostrogradsky. However, recent advances proposing conditions to stabilize this kind of models, with finitely many unstable DOFs in a non-minimal way, by including a stabilizer DOF and a kinetic coupling between both, have opened the question whether an extension of this methodology to relativistic field theories, also works. In this thesis, the Pais-Uhlenbeck Lagrangian density with a higher derivative scalar field, which leads to an unstable theory, is considered as a basis for a toy model. Upon the requirement for the Lagrangian to be a Lorentz scalar, as well as for the transformation properties of both, the unstable and the stabilizer DOF, to be consistent with a kinetic constraint that controls the instability, it is first concluded that at the level of a free theory the stabilizer must be a vector field. The latter is also motivated to make plausible an extension to interacting higher derivative theories. This is, the kinetic instability should be controled already at the free theory, in such a way that the Feynman propagator does not show a ghost DOF. A Hamiltonization with constraints is considered in order to deal with the imposed kinetic- constraint, which is at the core of the stabilization. This approach allows to examine the properties of the Ostrogradskian instability as it has been done up until now in the literature, therefore making evident the successful extension of the stabilization properties, at least in this toy model. Furthermore, the physical DOFs propagated by the theory are found, and the physical Hamiltonian written in terms of these, turns out to be positive definite and bounded from below in certain region of parameter space. In particular, a very interesting relation between the coupling parameter (α) of the higher-derivative term of the scalar field and the mass of the stabilizer field (m), arises as a requirement for the stabilization. The condition is a lower bound on the former, of the form α 1/m. Such relation was completely unexpected but more meaningful for the physical interpretation of the new higher-derivative structure, because it would show the energy scale at which these new terms may become important.
publishDate 2017
dc.date.issued.spa.fl_str_mv 2017-11-20
dc.date.accessioned.spa.fl_str_mv 2019-07-02T21:42:58Z
dc.date.available.spa.fl_str_mv 2019-07-02T21:42:58Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/63363
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/63666/
url https://repositorio.unal.edu.co/handle/unal/63363
http://bdigital.unal.edu.co/63666/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Física
Departamento de Física
dc.relation.references.spa.fl_str_mv Valencia Villegas, Juan Mauricio (2017) Higher-order time derivative theories. Interpretation, instability and possible stabilization. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/63363/1/Higher-order%20time%20derivative%20theories.%20Interpretation%2c%20instability%20and%20possible%20stabilization.%20Juan%20Valencia.pdf
https://repositorio.unal.edu.co/bitstream/unal/63363/2/Higher-order%20time%20derivative%20theories.%20Interpretation%2c%20instability%20and%20possible%20stabilization.%20Juan%20Valencia.pdf.jpg
bitstream.checksum.fl_str_mv 9fb8a56c9ec323b7071b64c07d3f19b8
720df2ce7713938eb257d4c18d551bee
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090130059689984
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Sarrión, Justo JavierValencia Villegas, Juan Mauricioef2fcefb-71a6-4b65-9a00-144899b3b47c3002019-07-02T21:42:58Z2019-07-02T21:42:58Z2017-11-20https://repositorio.unal.edu.co/handle/unal/63363http://bdigital.unal.edu.co/63666/Higher-derivative field theories are well known to propagate ghost degrees of freedom (DOFs), an instability known as of Ostrogradsky. However, recent advances proposing conditions to stabilize this kind of models, with finitely many unstable DOFs in a non-minimal way, by including a stabilizer DOF and a kinetic coupling between both, have opened the question whether an extension of this methodology to relativistic field theories, also works. In this thesis, the Pais-Uhlenbeck Lagrangian density with a higher derivative scalar field, which leads to an unstable theory, is considered as a basis for a toy model. Upon the requirement for the Lagrangian to be a Lorentz scalar, as well as for the transformation properties of both, the unstable and the stabilizer DOF, to be consistent with a kinetic constraint that controls the instability, it is first concluded that at the level of a free theory the stabilizer must be a vector field. The latter is also motivated to make plausible an extension to interacting higher derivative theories. This is, the kinetic instability should be controled already at the free theory, in such a way that the Feynman propagator does not show a ghost DOF. A Hamiltonization with constraints is considered in order to deal with the imposed kinetic- constraint, which is at the core of the stabilization. This approach allows to examine the properties of the Ostrogradskian instability as it has been done up until now in the literature, therefore making evident the successful extension of the stabilization properties, at least in this toy model. Furthermore, the physical DOFs propagated by the theory are found, and the physical Hamiltonian written in terms of these, turns out to be positive definite and bounded from below in certain region of parameter space. In particular, a very interesting relation between the coupling parameter (α) of the higher-derivative term of the scalar field and the mass of the stabilizer field (m), arises as a requirement for the stabilization. The condition is a lower bound on the former, of the form α 1/m. Such relation was completely unexpected but more meaningful for the physical interpretation of the new higher-derivative structure, because it would show the energy scale at which these new terms may become important.Resumen Las teorías de campos con derivadas altas propagan grados de libertad inestables, ghost DOFs, una inestabilidad conocida como de Ostrogradsky. Sin embargo, avances recientes en que se proponen condiciones para estabilizar modelos de este tipo, con finitos grados de libertad inestables (DOFs), en una extensión no trivial, incluyendo un DOF estabilizador y un acople cinético entre ambos, han abierto nuevamente la pregunta de si una extensión de esta metodología a teorías de campos relativista, también funciona. En esta tesis, la densidad Lagrangiana de Pais-Uhlenbeck con un campo escalar con derivadas altas, que da lugar a un modelo inestable, es considerada como base para un modelo de juguete. Demandando que el Lagrangiano sea un escalar de Lorentz, así como de requerir que las propiedades de transformación de ambos, DOFs inestable y estabilizador, sean consistentes con la ligadura cinética que controla la inestabilidad, se concluye en primera instancia que el campo estabilizador debe ser de hecho un campo vectorial. Esto último es motivado para hacer plausible una extensión a teorías interactuantes con derivadas altas. Es decir, la inestabilidad cinética debe ser controlada al nivel de la teoría libre, de tal manera que el propagador de Feynman no evidencie un ghost DOF. Debido a que la ligadura cinética que se impone al modelo es clave para la estabilización, una formulación Hamiltoniana con ligaduras es adoptada para el análisis. Esta aproximación permite evaluar las propiedades de la inestabilidad de Ostrogradsky como se ha hecho previamente en la literatura, por tanto, haciendo evidente una extensión exitosa de las propiedades de estabilización, al menos en el modelo de juguete considerado. Adicionalmente, se identifican los grados de libertad físicos propagados por la teoría y el Hamiltoniano físico escrito en términos de estos últimos, resulta ser postivo y acotado inferiormente en cierta región del espacio de parámetros. En particular, de demandar la estabilización, resulta una relación muy interesante entre el parámetro de acople del término con derivadas altas (α) del campo escalar inestable y la masa del campo estabilizador (m). La condición es una cota inferior para el primero, del tipo α 1/m. Esta última relación, aunque completamente inesperada, resulta más enriquecedora para la interpretación de la nueva estructura de derivadas altas, porque esta daría idea de la escala de energías a la que estos nuevos términos podrían resultar importantes.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de FísicaDepartamento de FísicaValencia Villegas, Juan Mauricio (2017) Higher-order time derivative theories. Interpretation, instability and possible stabilization. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.5 Ciencias naturales y matemáticas / Science53 Física / PhysicsHigher derivativesOstrogradskian instabilityQuantum theoriesQuantization with constraintsDerivadas altasInestabilidad de OstrogradskyTeorías cuánticasCuantización con ligadurasHigher-order time derivative theories. Interpretation, instability and possible stabilizationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALHigher-order time derivative theories. Interpretation, instability and possible stabilization. Juan Valencia.pdfapplication/pdf726246https://repositorio.unal.edu.co/bitstream/unal/63363/1/Higher-order%20time%20derivative%20theories.%20Interpretation%2c%20instability%20and%20possible%20stabilization.%20Juan%20Valencia.pdf9fb8a56c9ec323b7071b64c07d3f19b8MD51THUMBNAILHigher-order time derivative theories. Interpretation, instability and possible stabilization. Juan Valencia.pdf.jpgHigher-order time derivative theories. Interpretation, instability and possible stabilization. Juan Valencia.pdf.jpgGenerated Thumbnailimage/jpeg3951https://repositorio.unal.edu.co/bitstream/unal/63363/2/Higher-order%20time%20derivative%20theories.%20Interpretation%2c%20instability%20and%20possible%20stabilization.%20Juan%20Valencia.pdf.jpg720df2ce7713938eb257d4c18d551beeMD52unal/63363oai:repositorio.unal.edu.co:unal/633632024-04-28 23:11:20.083Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co