Soluciones simétricas de algunos problemas elípticos

In this paper we study solutions to the Neumann problem (I)         ∆u=  F(u)   in Ω,    ∂u/∂n =  G(u)  on Ω,                                                and the Dirichlet problema      (II)    ∆u=F(u)   in  Ω,               u=c        n  ∂Ω      where Ω is a bounded domain in Rn with a smooth bo...

Full description

Autores:
Quintero H., José Raúl
Tipo de recurso:
Article of journal
Fecha de publicación:
1993
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/43591
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/43591
http://bdigital.unal.edu.co/33689/
Palabra clave:
Bounded domain
soft limit
derivative
continuous function
hyperplane
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_ea792e5b4a1889df5f911e1b3248c9a1
oai_identifier_str oai:repositorio.unal.edu.co:unal/43591
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quintero H., José Raúlc9d21feb-3cc1-4e98-87ad-8ae455d8dfa93002019-06-28T12:10:41Z2019-06-28T12:10:41Z1993https://repositorio.unal.edu.co/handle/unal/43591http://bdigital.unal.edu.co/33689/In this paper we study solutions to the Neumann problem (I)         ∆u=  F(u)   in Ω,    ∂u/∂n =  G(u)  on Ω,                                                and the Dirichlet problema      (II)    ∆u=F(u)   in  Ω,               u=c        n  ∂Ω      where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω  ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If  Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and  g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω  is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn  is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/33579Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426Quintero H., José Raúl (1993) Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426 .Soluciones simétricas de algunos problemas elípticosArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTBounded domainsoft limitderivativecontinuous functionhyperplaneORIGINAL33579-124684-1-PB.pdfapplication/pdf4875378https://repositorio.unal.edu.co/bitstream/unal/43591/1/33579-124684-1-PB.pdf0ec3caf5f9d8220929f078bcaa9f7af3MD51THUMBNAIL33579-124684-1-PB.pdf.jpg33579-124684-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg6150https://repositorio.unal.edu.co/bitstream/unal/43591/2/33579-124684-1-PB.pdf.jpg8cf34407738234a51b80ad8e025f46f5MD52unal/43591oai:repositorio.unal.edu.co:unal/435912023-02-13 23:04:18.697Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Soluciones simétricas de algunos problemas elípticos
title Soluciones simétricas de algunos problemas elípticos
spellingShingle Soluciones simétricas de algunos problemas elípticos
Bounded domain
soft limit
derivative
continuous function
hyperplane
title_short Soluciones simétricas de algunos problemas elípticos
title_full Soluciones simétricas de algunos problemas elípticos
title_fullStr Soluciones simétricas de algunos problemas elípticos
title_full_unstemmed Soluciones simétricas de algunos problemas elípticos
title_sort Soluciones simétricas de algunos problemas elípticos
dc.creator.fl_str_mv Quintero H., José Raúl
dc.contributor.author.spa.fl_str_mv Quintero H., José Raúl
dc.subject.proposal.spa.fl_str_mv Bounded domain
soft limit
derivative
continuous function
hyperplane
topic Bounded domain
soft limit
derivative
continuous function
hyperplane
description In this paper we study solutions to the Neumann problem (I)         ∆u=  F(u)   in Ω,    ∂u/∂n =  G(u)  on Ω,                                                and the Dirichlet problema      (II)    ∆u=F(u)   in  Ω,               u=c        n  ∂Ω      where Ω is a bounded domain in Rn with a smooth boundary ∂ Ω  ∂/ ∂n is the derivative with respect to the outward normal n and c ϵ R. If  Ω is the unit ball and if either F(t) = f(t) and G(t) = g(t) or F(t) = /(t) . t and G(t) = 9(t) . t where f is a strictly increasing continuous function and  g is a strictly decreasing continuous function, we prove that solutions to problems (I) and (II) are radially symmetric about the origen. If Ω  is the unit ball and F is a continuous function that does not change sign, we prove that solutions of (II) are radially symmetric about the origen. If Ω ⊂ Rn  is a symmetric bounded domain with respect to a hyperplane T and f ϵ C(Ω x R,R), g ϵC (∂Ω x R, R) are functions that satisfy the same monoton..icity properties in the second variable as before, then we prove that solutions are symmetric with respect to the hyperplane T. If F satisfies the same condition as in the first case and G ≡ 0, we prove that the only solutions of (I) are constant functions. Furthermore, we find a formula for solutions of (I) in the unitary ball that allow us to deduce some non-existence results. We find conditions on F and G in order for (I) to have no solutions in any bounded domain.
publishDate 1993
dc.date.issued.spa.fl_str_mv 1993
dc.date.accessioned.spa.fl_str_mv 2019-06-28T12:10:41Z
dc.date.available.spa.fl_str_mv 2019-06-28T12:10:41Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/43591
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/33689/
url https://repositorio.unal.edu.co/handle/unal/43591
http://bdigital.unal.edu.co/33689/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/33579
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426
dc.relation.references.spa.fl_str_mv Quintero H., José Raúl (1993) Soluciones simétricas de algunos problemas elípticos. Revista Colombiana de Matemáticas; Vol. 27, núm. 1-2 (1993); 95-109 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/43591/1/33579-124684-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/43591/2/33579-124684-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 0ec3caf5f9d8220929f078bcaa9f7af3
8cf34407738234a51b80ad8e025f46f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089626560757760