The family of log-skew-normal alpha-power distributions using precipitation data

We present a new set of distributions for positive data based on a skewnormalalpha-power (PSN) model including a new parameter which in turnmakes the log-skew-normal alpha-power (LPSN) model more flexible thanboth the log-normal (LN) model and log-skew-normal (LSN) model. TheLPSN model contains the...

Full description

Autores:
Martínez-Flórez, Guillermo
Vergara-Cardozo, Sandra
González, Luz Mery
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73205
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73205
http://bdigital.unal.edu.co/37680/
Palabra clave:
symmetry
Fisher information matrix
Kurtosis
Likelihood ratio test
Maximum likelihood estimator.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We present a new set of distributions for positive data based on a skewnormalalpha-power (PSN) model including a new parameter which in turnmakes the log-skew-normal alpha-power (LPSN) model more flexible thanboth the log-normal (LN) model and log-skew-normal (LSN) model. TheLPSN model contains the LN model and LSN model as special cases. Furthermore,it models positive data with asymmetry and kurtosis larger thanthe one permitted by the LN distribution. Precipitation data illustrates theusefulness of the LPSN model being less influenced by outliers.