Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas
ilustraciones, diagramas, figuras
- Autores:
-
Meza Elizalde, María Constanza
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85466
- Palabra clave:
- 570 - Biología::577 - Ecología
570 - Biología::578 - Historia natural de los organismos y temas relacionados
Resiliencia (Ecología)
Ecología del fuego
Resilience (Ecology)
Fire ecology
Incendios forestales
Adaptación (Biología)
Estrés (Fisiología)
Forest fires
Adaptation (biology)
Stress (Physiology)
Ecología del fuego
Combustibles forestales
Rasgos de plantas
Orinoquía
Incendios forestales
Fire Ecology
Forest fuels
Plant traits
Orinoco Basin
Forest fires
Forest fuels load
Ecología de sistemas
Systems ecology
Wildfire
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ea0b29b7883f5191775d4a98766d0113 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85466 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
dc.title.translated.eng.fl_str_mv |
Forest fire effects on the resilience of lowland tropical forest |
title |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
spellingShingle |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas 570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados Resiliencia (Ecología) Ecología del fuego Resilience (Ecology) Fire ecology Incendios forestales Adaptación (Biología) Estrés (Fisiología) Forest fires Adaptation (biology) Stress (Physiology) Ecología del fuego Combustibles forestales Rasgos de plantas Orinoquía Incendios forestales Fire Ecology Forest fuels Plant traits Orinoco Basin Forest fires Forest fuels load Ecología de sistemas Systems ecology Wildfire |
title_short |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
title_full |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
title_fullStr |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
title_full_unstemmed |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
title_sort |
Efectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajas |
dc.creator.fl_str_mv |
Meza Elizalde, María Constanza |
dc.contributor.advisor.none.fl_str_mv |
Armenteras Pascual, Dolors |
dc.contributor.author.none.fl_str_mv |
Meza Elizalde, María Constanza |
dc.contributor.researchgroup.spa.fl_str_mv |
Ecología del Paisaje y Modelación de Ecosistemas - ECOLMOD |
dc.contributor.orcid.spa.fl_str_mv |
Meza Elizalde, María Contanza [0000000298332980] |
dc.contributor.researchgate.spa.fl_str_mv |
Meza Elizalde, Maria Constanza [Maria-Constanza-Meza-Elizalde] |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados |
topic |
570 - Biología::577 - Ecología 570 - Biología::578 - Historia natural de los organismos y temas relacionados Resiliencia (Ecología) Ecología del fuego Resilience (Ecology) Fire ecology Incendios forestales Adaptación (Biología) Estrés (Fisiología) Forest fires Adaptation (biology) Stress (Physiology) Ecología del fuego Combustibles forestales Rasgos de plantas Orinoquía Incendios forestales Fire Ecology Forest fuels Plant traits Orinoco Basin Forest fires Forest fuels load Ecología de sistemas Systems ecology Wildfire |
dc.subject.lcc.spa.fl_str_mv |
Resiliencia (Ecología) Ecología del fuego |
dc.subject.lcc.eng.fl_str_mv |
Resilience (Ecology) Fire ecology |
dc.subject.lemb.spa.fl_str_mv |
Incendios forestales Adaptación (Biología) Estrés (Fisiología) |
dc.subject.lemb.eng.fl_str_mv |
Forest fires Adaptation (biology) Stress (Physiology) |
dc.subject.proposal.spa.fl_str_mv |
Ecología del fuego Combustibles forestales Rasgos de plantas Orinoquía Incendios forestales |
dc.subject.proposal.eng.fl_str_mv |
Fire Ecology Forest fuels Plant traits Orinoco Basin Forest fires Forest fuels load |
dc.subject.wikidata.spa.fl_str_mv |
Ecología de sistemas |
dc.subject.wikidata.eng.fl_str_mv |
Systems ecology Wildfire |
description |
ilustraciones, diagramas, figuras |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-26T17:50:12Z |
dc.date.available.none.fl_str_mv |
2024-01-26T17:50:12Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85466 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85466 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Ager, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017 Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.x Albert, C., Thuiller, W., Gilles, N., Soundant, A., Boucher, F., PATRICK, S., & Lavorel, S. (2010). Intraspecific functional variability : extent , structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.x Altomare M, Vasconcelos HL, Raymundo D, et al (2021) Assessing the fire resilience of the savanna tree component through a functional approach. Acta Oecologica 111:103728. https://doi.org/10.1016/j.actao.2021.103728 Álvarez, F. S., Finegan, B., Delgado, D., Ramos, Z., Utrera, L. P., & Granda, V. (2021). Dispersal limitation, soil, and fire affect functional properties of tropical secondary forests on abandoned cattle ranching landscapes. Perspectives in Plant Ecology, Evolution and Systematics, 52(July). https://doi.org/10.1016/j.ppees.2021.125632 Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108 Araque, O., JAIMEZ, R., Azócar, C., Espinoza, W., & Tezara, W. (2009). RELACIONES ENTRE ANATOMÍA FOLIAR, INTERCAMBIO DE GASES Y CRECIMIENTO EN JUVENILES DE CUATRO ESPECIES FORESTALES. Interciencia, 34(10), 725–729. Araújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J. A., Fauset, S., Vieira, T. C. S., Galbraith, D. R., & Gloor, M. U. (2021). Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 279(October 2020), 151829. https://doi.org/10.1016/j.flora.2021.151829 Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002 Armenteras D, Dávalos LM, Barreto JS, et al (2021a) Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci Adv 7:. https://doi.org/10.1126/sciadv.abd3357 Armenteras, D., González-Alonso, F., & Aguilera, C. F. (2009). Geographic and temporal distribution of fi re in Colombia using thermal anomalies data. Caldasia, 31(February), 303–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0366-52322009000200007&lng=en&nrm=iso&tlng=en Armenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347 Armenteras, D, Gónzález, T., Meza, M., Ramiréz - Delgado, J. P., Cabrera, E., Galindo, G., & Yepes, A. (2017). Causas de Degradación Forestal en Colombia: Una primera aproximación. Universidad Nacional de Colombia Sede Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia-IDEAM, Programa ONU-REDD. Armenteras, Dolors, Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347 Armenteras, Dolors, & Vargas, O. (2016). Landscape Patterns and Restoration Scenarios : Bridging Scales. Acta Biológica Colombiana, 21(1), 229–240. Balch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.x Balch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., Davidson, E. A., Lefebvre, P., Oliveira-santos, C., Rocha, W., Cury, R. T. S., Parsons, A., & Carvalho, K. S. (2015). The Susceptibility of Southeastern Amazon Forests to Fire : Insights from a Large-Scale Burn Experiment. 65(9), 893–905. https://doi.org/10.1093/biosci/biv106 Barker, J. W., Price, O. F., & Jenkins, M. E. (2022). High severity fire promotes a more flammable eucalypt forest structure. Austral Ecology, 47(3), 519–529. https://doi.org/10.1111/aec.13134 Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(June 2008), 1787–1794. https://doi.org/10.1098/rstb.2007.0013 Barrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K. T., Ruiz‐Benito, P., Zavala, M. A., & Kunstler, G. (2023). Functional traits and climate drive interspecific differences in disturbance‐induced tree mortality. Global Change Biology, December 2022, 2836–2851. https://doi.org/10.1111/gcb.16630 Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x Bell, D. T. (2001). Ecological response syndromes in the flora of Southwestern Western Australia: Fire Resprouters versus Reseeders. The Botanical Review, 67(DECEMBER 2001), 417–440. Bellingham, P. J. (2000). Resprouting as a life history strategy in woody plant communities. Oikos, 89(2), 409–416. https://doi.org/10.1080/00131857.2017.1516140 Berenguer E, Gardner TA, Ferreira J, et al (2018) Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. J Ecol 106:2190–2203. https://doi.org/10.1111/1365-2745.12991 Bhaskar, R., Arreola, F., Mora, F., Martinez-yrizar, A., Martinez-ramos, M., & Balvanera, P. (2017). Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. Forest Ecology and Management, 426(September 2017), 61–71. https://doi.org/10.1016/j.foreco.2017.09.028 Bernhardt-Römermann M, Baeten L, Craven D, et al (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Chang Biol 21:3726–3737. https://doi.org/10.1111/gcb.12993 Bhaskar R, Arreola F, Mora F, et al (2018) Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. For Ecol Manage 426:61–71. https://doi.org/10.1016/j.foreco.2017.09.028 Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST. doi:10.1007/s11749-018-0599-x Bond, W. J., Midgley, G. F., & Woodward, F. I. (2003). What controls South African vegetation - Climate or fire? South African Journal of Botany, 69(1), 79–91. https://doi.org/10.1016/S0254-6299(15)30362-8 Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.x Bradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.x Brando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6347–6352. https://doi.org/10.1073/pnas.1305499111 Brando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R., & Coe, M. T. (2016). Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 22(7), 2516–2525. https://doi.org/10.1111/gcb.13172 Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, B., Keeley, J. O. N. E., Ditomaso, J. M., Hobbs, R. J., Pellant, M., Pyke, D., Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, J. B., & Keeley, J. O. N. E. (2004). Effects of Invasive Alien Plants on Fire Regimes. 54(7), 677–688. Brown, J. (1974). Handbook for inventorying downed woody material. Brown, J. K., Oberheu, R. D., & Johnston, C. M. (1981). Handbook for inventorying surface fuels and biomass in the interior West. Brown, James K., & Bevins, C. D. (1986). Surface Fuel Loadings and Predicted Fire Behavior for Vegetation Types in the Northern Rocky Mountains. In United States Forest Service. Cadotte. (2006). Dispersal and Species Diversity: A Meta-Analysis. The American Naturalist, 167(6), 913. https://doi.org/10.2307/3844747 Cardoso, A. W., Oliveras, I., Abernethy, K. A., Jeffery, K. J., Lehmann, D., Ndong, J. E., Mcgregor, I., Belcher, C. M., Bond, W. J., & Malhi, Y. S. (2017). Grass Species Flammability , Not Biomass , Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. 1(November), 1–14. https://doi.org/10.3389/ffgc.2017.00006 Cardoso, M., Nobre, C. A., Sampaio, G., & Valeriano, D. M. (2009). Modelling of the decrease of tropical-forest resilience in Amazonia as affected by deforestation and fires. April. Carrijo, J. N., Maracahipes, L., Scalon, M. C., Silvério, D. V., Abadia, A. C., Fagundes, M. V., Veríssimo, A. A., Gonçalves, L. A., Carrijo, D., Martins, J., & Lenza, E. (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 284(March). https://doi.org/10.1016/j.flora.2021.151925 Casanoves, F., Pla, L., & Di Rienzo, J. A. (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos (Issue January). Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1 Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2(2), art24. doi:10.1890/es10-00117.1 Chapin, F. S. (1993). EVOLUTION OF SUITES OF TRAITS IN RESPONSE TO ENVIRONMENTAL STRESS of low-resource environments share a common suite Most plants characteristic and nutrient low rates of growth , of traits , absorption , including and high concentrations low rates of tissu. The American Naturalist, 142(July), S78–S92. Chapin, F. S., Schulze, E. D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21(1), 423–447. https://doi.org/10.1146/annurev.es.21.110190.002231 Chapin, S. (1991). Integrated Responses of Plants to Stress. BioScience, 41(January 1991), 29–36. https://doi.org/10.2307/1311538 Chapin, S., Zavaleta, E. S., Eviner, V. T., Naylor, R., Vitousek, P. M., Reynolds, H., Hooper, D., Lavorel, S., Sala, O., Hobbie, S. E., Mack, M., & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6), 234–242. https://doi.org/10.1093/asj/sjx227 Chazdon, R. L., Finegan, B., Capers, R. S., Salgado-Negret, B., Casanoves, F., Boukili, V., & Norden, N. (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42(1), 31–40. https://doi.org/10.1111/j.1744-7429.2009.00566.x Clarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2012). Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197(1), 19–35. https://doi.org/10.1111/nph.12001 Cochrane, M. (2003). Fire science for rainforests. 421(February), 913–919. Cochrane, M. A. (2009). Tropical Fire Ecology. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8 Cochrane, M. A., Alencar, A., Schulze, M. D., Jr, C. M. S., Nepstad, C., Lefebvre, P., Davidson, E. A., Cochranel, M. A., Alencar, A., & Schulze, M. D. (1999). Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2898051 Linked references are available on JSTOR for this article : You m. 284(5421), 1832–1835. Cochrane, M. A., & Schulze, M. D. (1999a). Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon : Effects on Forest Structure , Biomass , and Species Composition ’. Biotropica, 31(March 1999), 2–16. Cochrane, M. A., & Schulze, M. D. (1999b). Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.x Cornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124 Correa-gómez, D. F., & Stevenson, P. R. (2010). ESTRUCTURA Y DIVERSIDAD DE BOSQUES DE LOS LLANOS ORIENTALES COLOMBIANOS ( RESERVA TOMO GRANDE , VICHADA ) Structure and diversity of riparian forests in a seasonal savanna of the Llanos Orientales. 1, 31–48. Corrêa Scalon, M., Maia Chaves Bicalho Domingos, F., Jonatar Alves da Cruz, W., Marimon Júnior, B. H., Schwantes Marimon, B., & Oliveras, I. (2020). Diversity of functional trade-offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 31(1), 139–150. https://doi.org/10.1111/jvs.12823 Cousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3 , C4 , and crassulacean acid metabolism plants. 816–830. https://doi.org/10.1111/tpj.14664 Da Silva, A. P. G., Mews, H. A., Marimon-Junior, B. H., De Oliveira, E. A., Morandi, P. S., Oliveras, I., & Marimon, B. S. (2017). Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 45(4), 378–386. https://doi.org/10.1017/S0376892918000127 de Almeida Souza, A. H., Batalha, M. A., Casagrande, J. C., Rivaben, R., Assunção, V. A., Pott, A., & Alves Damasceno-Júnior, G. (2019). Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. Journal of Vegetation Science, 30(3), 521–532. https://doi.org/10.1111/jvs.12719 De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.x De Pauw K, Meeussen C, Govaert S, et al (2021) Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J Ecol 109:2629–2648. https://doi.org/10.1111/1365-2745.13671 Del Tredici, P. (2001). Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67(2), 121–140. https://doi.org/10.1007/BF02858075 Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., Montserrat-Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M. C., Shirvany, F. A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3), 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x Díaz, Sandra, Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489 Díaz, Sandra, Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., & Robson, M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 104(52), 20684–20689. Duane, A., Castellnou, M., & Brotons, L. (2021). Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 165(3–4), 1–21. https://doi.org/10.1007/s10584-021-03066-4 Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.2307/2963459 Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global increase in wildfire risk due to climate-driven declines in fuel moisture. Global Change Biology, 28(4), 1544–1559. https://doi.org/10.1111/gcb.16006 Espelta JM, Cruz-Alonso V, Alfaro-Sánchez R, et al (2020) Functional diversity enhances tree growth and reduces herbivory damage in secondary broadleaf forests, but does not influence resilience to drought. J Appl Ecol 57:2362–2372. https://doi.org/10.1111/1365-2664.13728 FAO. (2005). Actualización de la evaluación de los recursos forestales mundiales a 2005. Términos y definiciones. Fernández-garcía, V., Marcos, E., Fulé, P. Z., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137 Finegan, B., Peña-CLaros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P., Fernandez, F., Licona, J.-C., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests ? Testing three alternative hypotheses. Journal of Eco, 103, 191–201. https://doi.org/10.1111/1365-2745.12346 Fichtler E, Licona J, Poorter L, et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.x Flexas, J., Carriquí, M., Coopman, R. E., Gago, J., Galmés, J., Martorell, S., Morales, F., & Diaz-Espejo, A. (2014). Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48. https://doi.org/10.1016/j.plantsci.2014.06.011 Flores BM, Fagoaga R, Nelson BW, Holmgren M (2016) Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J Appl Ecol 53:1597–1603. https://doi.org/10.1111/1365-2664.12687 Flores BM, Holmgren M, Xu C, et al (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114:4442–4446. https://doi.org/10.1073/pnas.1617988114 Flores BM, Piedade MTF, Nelson BW (2014) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:319–327. https://doi.org/10.1080/17550874.2012.716086 Flory, S. L., Bauer, J., Phillips, R. P., & Clay, K. (2017). Effects of a non-native grass invasion decline over time. Journal of Ecology, 105(6), 1475–1484. https://doi.org/10.1111/1365-2745.12850 Flory, S. L., Clay, K., Emery, S. M., Robb, J. R., & Winters, B. (2015). Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 52(4), 992–1000. https://doi.org/10.1111/1365-2664.12437 François-Nicolas Robinne, Janice Burns, Promode Kant, Mike D. Flannigan, Michael Kleine, Bill de Groot, D. M. W. (2017). Global Fire Challenges in a Warming World (Issue 32). Freeman JE, Kobziar LN (2011) Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21:61–74. https://doi.org/10.1890/09-0948.1 Freeman JE, Kobziar LN, Leone EH, Williges K (2019) Drivers of plant functional group richness and beta diversity in fire‐dependent pine savannas. Divers Distrib 25:1024–1044. https://doi.org/10.1111/ddi.12926 Fréjaville, T., Vilà-Cabrera, A., Curt, T., & Carcaillet, C. (2017). Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere, 9(12). https://doi.org/10.1002/ecs2.2493 Gassón, R. A. (2002). Orinoquia: The archaeology of the Orinoco River basin. Journal of World Prehistory, 16(3), 237–311. https://doi.org/10.1023/A:1020978518142 Gill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951 González, T. M., González-Trujillo, J. D., Muñoz, A., & Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005 Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 891–899. Hacke UG, Sperry JS, Pockman WT, et al (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. https://doi.org/10.1007/s004420100628 Hammond DH, Varner JM, Kush JS, Fan Z (2015) Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere 6:. https://doi.org/10.1890/ES15-00065.1 Haltenhoff, H. (2005). Manual de Efectos del Fuego y Evaluación de Daños (Vol. 2903). Harmon, M. E., & Hua, C. (1991). Coarse Woody Debris Dynamics i n Two Old-Growth Ecosystems Comparing a deciduous forest in China and a conifer forest in Oregon. BioScience, 41, 604–610. Henn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2017). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 871(November), 1–11. https://doi.org/10.3389/fpls.2017.01548 Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. In Forest Ecology and Management (Vol. 271, pp. 81–90). https://doi.org/10.1016/j.foreco.2012.02.005 Hoffmann, W. A., Orthen, B., Kielse, P., & Vargas Do Nascimento, P. K. (2003). Comparative Fire Ecology of Tropical Savanna and Forest Trees Author. Functional Ecology, 17(6), 720–726. Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1973), 1–23. Holling, C. S. (1978). Adaptive environmental assessment and management. Holling, C. S. (1986). The Resilience of Terrestrial Ecosystems. Sustainable Development of the Biosphere, 292–320. Holling, C. S. (2001). Understanding the Complexity of Economic , Ecological , and Social Systems. Ecosystems, 4, 390–405. https://doi.org/10.1007/s10021-001-0101-5 Hsieh, T.C., Ma., K. and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution , 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613 IDEAM. (2019). Boletín de predicción climática y recomendación sectorial para planear y decidir. Iwasa, Y., & Kubo, T. (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41–65. Janssen TAJ, Hölttä T, Fleischer K, et al (2020) Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant Cell Environ 43:965–980. https://doi.org/10.1111/pce.13687 Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2015). Changing disturbance regimes , ecological memory , and forest resilience. https://doi.org/10.1002/fee.1311 Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049 Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002 Kembel, S. W., & Cahill, J. J. (2011). Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities. PLoS ONE, 6(6), 12–15. https://doi.org/10.1371/journal.pone.0019992 Kerns, B. K., Tortorelli, C., Day, M. A., Nietupski, T., Barros, A. M. G., Kim, J. B., & Krawchuk, M. A. (2020). Invasive grasses: A new perfect storm for forested ecosystems? Forest Ecology and Management, 463(November 2019), 117985. https://doi.org/10.1016/j.foreco.2020.117985 Krix, D., & Murray, B. (2017). Landscape variation in plant leaf fl ammability is driven by leaf traits responding to environmental gradients. Ecosphere, 9(February), 1–13. https://doi.org/10.1002/ecs2.2093 Kuusk V, Niinemets Ü, Valladares F (2018) Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Funct Ecol 32:1479–1491. https://doi.org/10.1111/1365-2435.13087 Laliberté, A. E., Legendre, P., Shipley, B., & Laliberté, M. E. (2022). Package ‘ FD .’ Laliberte, E., Declerck, F., Metcalfe, J., Catterall, C. P., & Sa, D. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. 76–86. https://doi.org/10.1111/j.1461-0248.2009.01403.x Lasso, C. A., S, U. J., F, T., & A, R. (2010). Biodiversidad de la cuenca del Orinoco. In Biodiversidad en la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad. Lasso, C., Trujillo, F., & Morales - Betancourt, M. A. (2020). Biodiversidad de la Reserva Natural Bojonawi, Vichada, Colombia: río Orinoco y planicie de inundación (Serie Edit, Issue June). Lavorel, S, & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits : Functional Ecology, 16, 545–556. Lavorel, Sandra, McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. TREE, 12(11), 474–478. Lavorel S, Grigulis K, McIntyre S, et al (2008) Assessing functional diversity in the field - Methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x Lawes MJ, Midgley J, Lamont BB, Clarke PJ (2012) Tansley review Resprouting as a key functional trait : how buds , protection and resources drive persistence after fire Author for correspondence : https://doi.org/10.1111/nph.12001 Lebrija-Trejos, E., Pérez-GarcíA, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386–398. https://doi.org/10.1890/08-1449.1 Levin, S. A., & Paine, R. T. (1974). Disturbance , Patch Formation , and Community Structure A =. Proceedings of the National Academy of Sciences, 71(7), 2744–2747. Liu Z, Jiang F, Li F, Jin G (2019) Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. For Ecol Manage 434:63–75 Lourenço‐de‐Moraes, R., Campos, F. S., Ferreira, R. B., Beard, K. H., Solé, M., Llorente, G. A., & Bastos, R. P. (2019). Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography. doi:10.1111/jbi.13727 Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Nez-Ramos, M. M., Meave, J. A., Paz, H., Perez-Garcia, E. A., Romero-Perez, I. E., Tauro, A., & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211–1216. https://doi.org/10.1890/12-1850.1 Lutes, D. C., & Keane, R. E. (2006). Fuel Load (FL) sampling method. In USDA Forest Service - General Technical Report RMRS-GTR (Issues 164 RMRS-GTR). Lydersen, J. M., Collins, B. M., Knapp, E. E., Roller, G. B., & Stephens, S. (2015). Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire, 24(4), 484–494. https://doi.org/10.1071/WF13066 Maracahipes, L., Marimon, B. S., Lenza, E., Marimon-Junior, B. H., De Oliveira, E. A., Mews, H. A., Gomes, L., & Feldpausch, T. R. (2014). Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(5–6), 260–270. https://doi.org/10.1016/j.flora.2014.02.008 Martins, F. Q., & Batalha, M. A. (2006). Pollination systems and floral traits in cerrado woody species of the upper taquari region (central Brazil). Brazilian Journal of Biology, 66(2 A), 543–552. https://doi.org/10.1590/S1519-69842006000300021 Mason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097 Meza-Elizalde MC, Armenteras-Pascual D (2021) Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. For Ecol Manage 498:119546. https://doi.org/10.1016/j.foreco.2021.119546 McColl-Gausden, S. C., Bennett, L. T., Clarke, H. G., Ababei, D. A., & Penman, T. D. (2022). The fuel–climate–fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Global Change Biology, 28(17), 5211–5226. https://doi.org/10.1111/gcb.16283 McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403 Meza-Elizalde, M. C., & Armenteras-Pascual, D. (2021). Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. Forest Ecology and Management, 498(June), 119546. https://doi.org/10.1016/j.foreco.2021.119546 Meza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003 Meza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003 Michelaki, C., Fyllas, N. M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., & Dimitrakopoulos, P. G. (2020). Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies. Science of the Total Environment, 718, 137437. https://doi.org/10.1016/j.scitotenv.2020.137437 Miller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360 Molina, E., Espelta, J. M., Pino, J., Bagaria, G., & Armenteras, D. (2017). Influence of clay licks on the diversity and structure of an Amazonian forest. Biotropica, 50(5), 740–749. https://doi.org/10.1111/btp.12568 Montenegro, A. L., & Vargas, O. (2008). Atributos vitales de especies de borde en fragmentos de bosque altoandino (Reserva forestal municipal de Cogua, Colombia). Revista Biología Tropical, 56(June), 705–720. http://www.infoandina.org/sites/default/files/recursos/la_restauracion_ecologica_en_practica.pdf Mori, A. S., Lertzman, K. P., & Gustafsson, L. (2017). Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology, 54(1), 12–27. https://doi.org/10.1111/1365-2664.12669 Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004 Mouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. (2004). Functional regularity : A neglected aspect of functional diversity Functional regularity : a neglected aspect of functional diversity. Oecologia, 142(February), 353–359. https://doi.org/10.1007/s00442-004-1744-7 Myers, R. L. (2006). Convivir con el fuego: Manteniendo los ecosistemas y los medios de subsistencia mediante el Manejo Integral del Fuego. Nadal, M., Flexas, J., & Gulías, J. (2017). Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters, 21(9), 1372–1379. https://doi.org/10.1111/ele.13103 Nelson, K. N., Turner, M. G., Romme, W. H., & Tinker, D. B. (2016). Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests. Ecological Applications, 26(8), 2422–2436. https://doi.org/10.1002/eap.1412 Nepstad, D., Carvalho, G., Cristina, A., Alencar, A., Paulo, Ä., Bishop, J., Moutinho, P., Lefebvre, P., Lopes, U., Jr, S., & Prins, E. (2001). Road paving , ® re regime feedbacks , and the future of Amazon forests. 154. Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G. (2007). MORTALITY OF LARGE TREES AND LIANAS FOLLOWING EXPERIMENTAL DROUGHT IN AN AMAZON FOREST. In Ecology (Vol. 88, Issue 9). NeSmith, J. E., Twine, W., & Holdo, R. M. (2021). Interspecific variation in post-disturbance growth responses of a savanna tree community and its implications for escaping the fire trap. Biotropica, 53(3), 896–905. https://doi.org/10.1111/btp.12936 Nóbrega, C. C., Brando, P. M., Silvério, D. V., Maracahipes, L., & de Marco, P. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(January). https://doi.org/10.1016/j.foreco.2019.117497 Ojeda, F., Brun, F. G., Vergara, J. J., & Ojeda, F. (2005). Fire , rain and the selection of seeder and resprouter life-histories in fire-recruiting , woody plants. New Phytologist, 168, 155–165. Oksanen, J; FG Blanchet; R Kindt; P Legendre; PR Minchin; RB O'Hara; GL Simpson; P Solymos; MH; Stevens & HH Wagner. 2013. Vegan: Community Ecology Package. R PackageVersion. 2.0-10. https://github.com/vegandevs/ vegan. 10/05/19. Pachepsky, L. B., & Acock, B. (1998). EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY WITH THE 2DLEAF MODEL EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY. Biotronics, 27, 1–14. Parks, S. A., Miller, C., Holsinger, L. M., Baggett, L. S., & Bird, B. J. (2016). Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 25(2), 182–190. https://doi.org/10.1071/WF15107 Pausas, J. G. (2015). Bark thickness and fire regime. Functional Ecology, 29(3), 315–327. https://doi.org/10.1111/1365-2435.12372 Pausas, J. G. (2017). Bark thickness and fire regime: another twist. New Phytologist, 213(1), 13–15. https://doi.org/10.1111/nph.14277 Pausas, J. G. (2019). Generalized fire response strategies in plants and animals. Oikos, 128(2), 147–153. https://doi.org/10.1111/oik.05907 Pausas, J. G., & Bradstock, R. A. (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16(3), 330–340. https://doi.org/10.1111/j.1466-8238.2006.00283.x Pausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E., Hoffman, W., Kenny, B., Lloret, F., & Trabaud, L. (2004). Plant functional traits in relation to fire in crown-fire ecosystems. Ecology, 85(4), 1085–1100. https://doi.org/10.1890/02-4094 Pausas, J. G., & Keeley, J. E. (2017). Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 22(12), 1008–1015. https://doi.org/10.1016/j.tplants.2017.08.010 Peeler, J. L., & Smithwick, E. A. H. (2018). Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (Bromus tectorum) invasion within lower montane forests? Diversity and Distributions, 24(9), 1308–1320. https://doi.org/10.1111/ddi.12765 Peláez, B. C., López, B. L., González, J. M., Camey, J. M. R., & Merino, E. G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57). https://doi.org/10.29298/rmcf.v11i57.617 Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225 Pickett, S. T. ., Kolasa, J., Armesto, J., & Collins, S. L. (1989). The ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54, 129–136. Pickett, S. T. ., & White, P. S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. https://doi.org/10.1016/B978-0-12-554520-4.50002-2 Pinard, M. A., Putz, F. E., & Licona, J. C. (2016). Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247–252. Pinzón, J., & Spence, J. R. (2010). Bark-dwelling spider assemblages (Araneae) in the boreal forest: Dominance, diversity, composition and life-histories. Journal of Insect Conservation, 14(5), 439–458. https://doi.org/10.1007/s10841-010-9273-7 Poorter, L., Mcneil, A., Hurtado, V. H., Prins, H. H. T., & Putz, F. E. (2014). Bark traits and life-history strategies of tropical dry- and moist forest trees. Functional Ecology, 28(1), 232–242. https://doi.org/10.1111/1365-2435.12158 Prieto, I., Querejeta, J. I., Segrestin, J., Volaire, F., & Roumet, C. (2017). Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Functional Ecology, 32(3), 612–625. https://doi.org/10.1111/1365-2435.13025 Quintero-Gradilla, S. D., Jardel-Peláez, E. J., Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3). https://doi.org/10.21829/myb.2019.2531888 Rangel-Ch., J. O. y A. Garzón. 1994. Aspectos de la estructura, de la diversidad y de la dinámica de la vegetación del parque regional Ucumari. Pp. 59-84. En: Rangel-Ch. (Ed.), Ucumarí: un caso típico de la diversidad biótica andina.Universidad Nacional de Colombia. Instituto de Ciencias Naturales, Corporación Autónoma Regional de Risaralda. Pereira, Colombia. Rangel-Ch., J. O y A. Velázquez. 1997. Métodos de estudio de la vegetación. Pp. 59-87. En: Rangel- Ch. J.O (Ed.), Colombia Diversidad Biótica II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Ideam. Bogotá, D. C., Colombia Reed, C. C., Hood, S. M., Cluck, D. R., & Smith, S. L. (2023). Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions. Fire Ecology, 19(1). https://doi.org/10.1186/s42408-023-00175-6 Resco de Dios, V., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., & Goulden, M. L. (2015). A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 203, 64–73. https://doi.org/10.1016/j.agrformet.2015.01.002 Riaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301–1315. https://doi.org/10.1139/x02-052 Ricotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486. https://doi.org/10.1016/j.baae.2005.02.008 Ristok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., & Eisenhauer, N. (2020). Plant diversity effects on herbivory are mediated by soil biodiversity and plant chemistry. iDiv, 1–18. Riutta, T., Slade, E. M., Morecroft, M. D., Bebber, D. P., & Malhi, Y. (2014). Living on the edge: Quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 29(6), 949–961. https://doi.org/10.1007/s10980-014-0025-z Robinne, F. N., Bladon, K. D., Miller, C., Parisien, M. A., Mathieu, J., & Flannigan, M. D. (2017). A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 610–611, 1193–1206. https://doi.org/10.1016/j.scitotenv.2017.08.112 Romero-Ruiz, M., Etter, A., Sarmiento, A., & Tansey, K. (2010). Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology, 16(7), 2013–2023. https://doi.org/10.1111/j.1365-2486.2009.02081.x Romero-ruiz, M. H., Flantua, S. G. A., Tansey, K., & Berrio, J. C. (2011). Landscape transformations in savannas of northern South America : Land use / cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776. https://doi.org/10.1016/j.apgeog.2011.08.010 Romero, C. (2014). Bark structure and functional ecology. Bark: Use, Management, and Commerce in Africa, 17(1967), 5–25. Rykiel, E. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365. Salazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021 Salgado-Negret, B. (2007). Definición de tipos funcionales de especies arbóreas y caracterización de su respuesta a diferentes intensidades de perturbación en un bosque muy húmedo tropical Mesoamericano. Centro Agronómico Tropical de Investigación y Enseñanza - CATIE. Salgado, B. (2015). La Ecología Funcional de la biodiversidad: estudio, manejo y conservación como aproximación al protocolos y aplicaciones (B. S. Negret (ed.); Editorial). Silva CVJ, Aragão LEOC, Barlow J, et al (2018) Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos Trans R Soc B Biol Sci 373:20180043. https://doi.org/10.1098/rstb.2018.0043 Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. In USDA Forest Service - Research Paper RMRS-RP (Issues 29 RMRS-RP). https://doi.org/10.2737/RMRS-RP-29 Scott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service - General Technical Report RMRS-GTR, 153 RMRS-GTR, 1–76. https://doi.org/10.2737/RMRS-GTR-153 Shlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., & Swaty, R. (2005). Fire , ecosystems and people : Threats and strategies for global biodiversity Introduction : Fire is a Global Conservation Issue. The George Wright Forum, 22 (4), 78–87. Silva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., Berenguer, E., Brasil, I., Brown, I. F., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten, L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., … Xaud, H. A. M. (2017). Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760). https://doi.org/10.1098/rstb.2017.0043 Sikkink, P. G., & Keane, R. E. (2012). Predicting Fire Severity Using Surface Fuels and Moisture. http://www.fs.fed.us/rm/publications Silvério, D. V., Brando, P. M., Balch, J. K., Putz, F. E., Nepstad, D. C., Oliveira-Santos, C., & Bustamante, M. M. C. (2013). Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1619). https://doi.org/10.1098/rstb.2012.0427 Slijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261–269. https://doi.org/10.1016/j.foreco.2014.09.040 Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol Evol 31:67–80. https://doi.org/10.1016/j.tree.2015.11.005 Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2017). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889 Streit, H., Menezes, L. S., Pillar, V. D., & Overbeck, G. E. (2022). Intraspecific trait variation of grassland species in response to grazing depends on resource acquisition strategy. Journal of Vegetation Science, 33(3), 1–12. https://doi.org/10.1111/jvs.13129 Suding, K., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D. E., Hooper, D., Jackson, S., & Navas, M. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14(May), 1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.x Sullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2017). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424(February), 236–245. https://doi.org/10.1016/j.foreco.2017.04.039 Sullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2018). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424, 236–245. https://doi.org/10.1016/j.foreco.2018.04.039 Tortorelli, C. M., Krawchuk, M. A., & Kerns, B. K. (2020). Expanding the invasion footprint: Ventenata dubia and relationships to wildfire, environment, and plant communities in the Blue Mountains of the Inland Northwest, USA. Applied Vegetation Science, 23(4), 562–574. https://doi.org/10.1111/avsc.12511 Tortorelli, C. M., Kim, J. B., Vaillant, N. M., Riley, K., Dye, A., Nietupski, T. C., Vogler, K. C., Lemons, R., Day, M., Krawchuk, M. A., & Kerns, B. K. (2023). Feeding the fire: Annual grass invasion facilitates modeled fire spread across Inland Northwest forest-mosaic landscapes. Ecosphere, 14(2), 1–19. https://doi.org/10.1002/ecs2.4413 Tuo, B., Yan, E. R., Guo, C., Ci, H., Berg, M. P., & Cornelissen, J. H. C. (2021). Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition. Ecology, 102(10), 1–11. https://doi.org/10.1002/ecy.3480 Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91 (10), 2833–2849. https://doi.org/10.1358/dot.2011.47.2.1576694 Van Leeuwen, T. T., Van Der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho, J. A., Cook, G. D., De Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305–7329. https://doi.org/10.5194/bg-11-7305-2014 Van Der Werf G (2018) Fire greenhouse gas emissions (in CO2 equivalents) for various fire categories based on the Global Fire Emissions Database (GFED4s). In: Glob. Fire Data. https://www.globalfiredata.org/ Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378. https://doi.org/10.1111/j.1469-8137.2006.01757.x Veldman, J. W., & Putz, F. E. (2011). Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation, 144(5), 1419–1429. https://doi.org/10.1016/j.biocon.2011.01.011 Vetaas OR, Shrestha KB, Sharma LN (2021) Changes in plant species richness after cessation of forest disturbance. Appl Veg Sci 24:1–11. https://doi.org/10.1111/avsc.12545 Verdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6), 1316–1323. https://doi.org/10.1111/j.1365-2745.2007.01300.x Villar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón, T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In Ecología del bosque mediterráneo en un mundo cambiante . Violle, C., Navas, M., Vile, D., Kazakou, E., & Fortunel, C. (2007). Let the concept of trait be functional ! Oikos, 116(January), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x Walker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience , Adaptability and Transformability in Social – ecological Systems. Ecology and Society, 9(2), 5. Welles, S. R., & Funk, J. L. (2021). Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. Annals of Botany, 127(4), 461–471. https://doi.org/10.1093/aob/mcaa173 White, P. S., & Jentsch, A. (2001). The Search for Generality in Studies of Disturbance and Woodward, F., & Cramer, W. (1996). Plant functional types and climatic changes : Introduction. Journal of V, 7, 306–308. Wotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics, 16(2), 107–131. https://doi.org/10.1007/s10651-007-0084-2 Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., & Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.x Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 12, 821–827. Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. http://hdl.handle.net/10255/dryad.235. Zhang S, Zang R (2021) Tropical forests are vulnerable in terms of functional redundancy. Biol Conserv 262:109326. https://doi.org/10.1016/j.biocon.2021.109326 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxviii, 308 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.region.none.fl_str_mv |
Orinoquía |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Doctorado en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85466/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85466/3/1022358943.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/85466/4/1022358943.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e7c12ac92c52c9baffcb9376b6fa781d 09e64471f12532199aeddb81b2d64c12 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089497099370496 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Armenteras Pascual, Dolors1044389ab0f3e65ac61f1ef47f4eaf62Meza Elizalde, María Constanzafa6f340c9a3d7db433e3ebcf0644c832Ecología del Paisaje y Modelación de Ecosistemas - ECOLMODMeza Elizalde, María Contanza [0000000298332980]Meza Elizalde, Maria Constanza [Maria-Constanza-Meza-Elizalde]2024-01-26T17:50:12Z2024-01-26T17:50:12Z2023https://repositorio.unal.edu.co/handle/unal/85466Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, figurasEn las últimas décadas, se ha observado un aumento en la frecuencia e intensidad de los incendios forestales en los bosques inundables neotropicales, que se encuentran inmersos en la matriz de sabana. Esto plantea preocupaciones sobre los efectos en la diversidad y resiliencia de estos ecosistemas. Con el objetivo de comprender el impacto de los incendios forestales en la resiliencia de los bosques inundables de la cuenca del Orinoco, se llevó a cabo un estudio para analizar los cambios en la composición, estructura y diversidad taxonómica y funcional después de incendios de moderada y alta severidad e intensidad. También se investigaron los rasgos funcionales de evitación, resistencia y regeneración en especies forestales que podrían conferirles una ventaja de respuesta al fuego: haciendo análisis interespecíficos para las especies más dominantes e intraespecíficos para el saladillo rojo (Caraipa llanorum). Por último, se realizó un análisis multitemporal para evaluar la evolución de los combustibles vivos y leñosos muertos a tres, cinco y siete años posteriores a los incendios. El fuego provocó una homogeneización tanto taxonómica como funcional en la comunidad de árboles y palmas de los bosques, lo que redujo la diversidad y favoreció a especies con características similares. Se observó que el fuego filtró especies con rasgos de resistencia, como cortezas más gruesas, características caducifolias y mayor espesor foliar, que les brindan capacidad de supervivencia. A nivel intraespecífico, se identificó que el saladillo, tiene estrategias adquisitivas en bosques no quemados y estrategias conservativas en bosques quemados y sábanas propensas al fuego. Finalmente, se encontró que el fuego también provocó una disminución significativa en la cobertura del dosel y la biomasa aérea, así como una simplificación estructural del bosque. Estos cambios se asociaron con un aumento en la invasión de pastos y una mayor carga de combustible leñoso en bosques quemados, lo que aumenta su vulnerabilidad a futuros incendios. Los hallazgos de este estudio resaltan la importancia de comprender los efectos de los incendios forestales en los ecosistemas sensibles al fuego, como los bosques inundables. Adicionalmente, Asimismo, muestran que los bosques son altamente dinámicos después de la perturbación por incendios, lo que subraya la necesidad de un monitoreo continuo para la toma de decisiones oportunas de gestión tendientes a reducir el riesgo a incendios forestales y garantizar la conservación efectiva de la diversidad y funcionalidad de estos ecosistemas. (Texto tomado de la fuente)In recent decades, an increase in the frequency and intensity of forest fires has been observed in the neotropical floodplain forests, which are immersed in the savanna matrix. This raises concerns about the effects on the diversity and resilience of these ecosystems. With the aim of understanding the impact of forest fires on the resilience of the Orinoco floodplain forests, a study was conducted to analyze the changes in composition, structure, and taxonomic and functional diversity following fires of moderate and high severity and intensity. Functional traits related to avoidance, resistance, and regeneration were also investigated in forest species that could confer them a fire response advantage, conducting interspecific analysis for the dominant species and intraspecific analysis for the red saladillo (Caraipa llanorum). Finally, a multi-temporal analysis was performed to assess the evolution of live and dead fuel components three, five, and seven years after the fires. The fires resulted in both taxonomic and functional homogenization in the tree and palm community of the forests, reducing diversity and favoring species with similar traits. It was observed that the fires filtered species with resistance traits such as thicker bark, deciduous characteristics, and greater leaf thickness, which provide them with survival capacity. At the intraspecific level, it was identified that the saladillo species adopts acquisitive strategies in unburned forests and conservative strategies in burned forests and fire-prone savannas. Moreover, the fires also led to a significant reduction in canopy coverage and aboveground biomass, as well as structural simplification of the forest. These changes were associated with increased grass invasion and a higher load of woody fuel in burned forests, which increases their vulnerability to future fires. The findings of this study highlight the importance of understanding the effects of forest fires on fire-prone ecosystems like floodplain forests. Additionally, they demonstrate that forests are highly dynamic following fire disturbances, emphasizing the need for continuous monitoring to make timely management decisions to reduce the risk of forest fires and ensure effective conservation of the diversity and functionality of these ecosystems.DoctoradoDoctor en Ciencias - BiologíaEcologíaxxviii, 308 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::577 - Ecología570 - Biología::578 - Historia natural de los organismos y temas relacionadosResiliencia (Ecología)Ecología del fuegoResilience (Ecology)Fire ecologyIncendios forestalesAdaptación (Biología)Estrés (Fisiología)Forest firesAdaptation (biology)Stress (Physiology)Ecología del fuegoCombustibles forestalesRasgos de plantasOrinoquíaIncendios forestalesFire EcologyForest fuelsPlant traitsOrinoco BasinForest firesForest fuels loadEcología de sistemasSystems ecologyWildfireEfectos de los incendios forestales sobre la resiliencia de bosques tropicales de tierras bajasForest fire effects on the resilience of lowland tropical forestTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDOrinoquíaAger, A. A., A. Day, M., Finney, M. A., Vance-Borland, K., & Vaillant, N. M. (2014). Analyzing the transmission of wildfire exposure on a fire-prone landscape in Oregon, USA. Forest Ecology and Management, 334, 377–390. https://doi.org/10.1016/j.foreco.2014.09.017Albert, C. H., Thuiller, W., Yoccoz, N. G., Douzet, R., Aubert, S., & Lavorel, S. (2010). A multi-trait approach reveals the structure and the relative importance of intra- vs. interspecific variability in plant traits. Functional Ecology, 24(6), 1192–1201. https://doi.org/10.1111/j.1365-2435.2010.01727.xAlbert, C., Thuiller, W., Gilles, N., Soundant, A., Boucher, F., PATRICK, S., & Lavorel, S. (2010). Intraspecific functional variability : extent , structure and sources of variation. Journal of Ecology, 98, 604–613. https://doi.org/10.1111/j.1365-2745.2010.01651.xAltomare M, Vasconcelos HL, Raymundo D, et al (2021) Assessing the fire resilience of the savanna tree component through a functional approach. Acta Oecologica 111:103728. https://doi.org/10.1016/j.actao.2021.103728Álvarez, F. S., Finegan, B., Delgado, D., Ramos, Z., Utrera, L. P., & Granda, V. (2021). Dispersal limitation, soil, and fire affect functional properties of tropical secondary forests on abandoned cattle ranching landscapes. Perspectives in Plant Ecology, Evolution and Systematics, 52(July). https://doi.org/10.1016/j.ppees.2021.125632Andela, N., Morton, D. C., Giglio, L., Chen, Y., Van Der Werf, G. R., Kasibhatla, P. S., DeFries, R. S., Collatz, G. J., Hantson, S., Kloster, S., Bachelet, D., Forrest, M., Lasslop, G., Li, F., Mangeon, S., Melton, J. R., Yue, C., & Randerson, J. T. (2017). A human-driven decline in global burned area. Science, 356(6345), 1356–1362. https://doi.org/10.1126/science.aal4108Araque, O., JAIMEZ, R., Azócar, C., Espinoza, W., & Tezara, W. (2009). RELACIONES ENTRE ANATOMÍA FOLIAR, INTERCAMBIO DE GASES Y CRECIMIENTO EN JUVENILES DE CUATRO ESPECIES FORESTALES. Interciencia, 34(10), 725–729.Araújo, I., Marimon, B. S., Scalon, M. C., Cruz, W. J. A., Fauset, S., Vieira, T. C. S., Galbraith, D. R., & Gloor, M. U. (2021). Intraspecific variation in leaf traits facilitates the occurrence of trees at the Amazonia–Cerrado transition. Flora: Morphology, Distribution, Functional Ecology of Plants, 279(October 2020), 151829. https://doi.org/10.1016/j.flora.2021.151829Armenteras-Pascual, D., Retana-Alumbreros, J., Molowny-Horas, R., Roman-Cuesta, R. M., Gonzalez-Alonso, F., & Morales-Rivas, M. (2011). Characterising fire spatial pattern interactions with climate and vegetation in Colombia. Agricultural and Forest Meteorology, 151(3), 279–289. https://doi.org/10.1016/j.agrformet.2010.11.002Armenteras D, Dávalos LM, Barreto JS, et al (2021a) Fire-induced loss of the world’s most biodiverse forests in Latin America. Sci Adv 7:. https://doi.org/10.1126/sciadv.abd3357Armenteras, D., González-Alonso, F., & Aguilera, C. F. (2009). Geographic and temporal distribution of fi re in Colombia using thermal anomalies data. Caldasia, 31(February), 303–318. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0366-52322009000200007&lng=en&nrm=iso&tlng=enArmenteras, D., Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347Armenteras, D, Gónzález, T., Meza, M., Ramiréz - Delgado, J. P., Cabrera, E., Galindo, G., & Yepes, A. (2017). Causas de Degradación Forestal en Colombia: Una primera aproximación. Universidad Nacional de Colombia Sede Bogotá, Instituto de Hidrología, Meteorología y Estudios Ambientales de Colombia-IDEAM, Programa ONU-REDD.Armenteras, Dolors, Meza, M. C., González, T. M., Oliveras, I., Balch, J. K., & Retana, J. (2021). Fire threatens the diversity and structure of tropical gallery forests. Ecosphere, 12(1). https://doi.org/10.1002/ecs2.3347Armenteras, Dolors, & Vargas, O. (2016). Landscape Patterns and Restoration Scenarios : Bridging Scales. Acta Biológica Colombiana, 21(1), 229–240.Balch, J. R. K., Nepstad, D. C., Brando, P. M., Curran, L. M., Portela, O., de Carvalho, O., & Lefebvre, P. (2008). Negative fire feedback in a transitional forest of southeastern Amazonia. Global Change Biology, 14(10), 2276–2287. https://doi.org/10.1111/j.1365-2486.2008.01655.xBalch, J. K., Brando, P. M., Nepstad, D. C., Coe, M. T., Silvério, D., Massad, T. J., Davidson, E. A., Lefebvre, P., Oliveira-santos, C., Rocha, W., Cury, R. T. S., Parsons, A., & Carvalho, K. S. (2015). The Susceptibility of Southeastern Amazon Forests to Fire : Insights from a Large-Scale Burn Experiment. 65(9), 893–905. https://doi.org/10.1093/biosci/biv106Barker, J. W., Price, O. F., & Jenkins, M. E. (2022). High severity fire promotes a more flammable eucalypt forest structure. Austral Ecology, 47(3), 519–529. https://doi.org/10.1111/aec.13134Barlow, J., & Peres, C. A. (2008). Fire-mediated dieback and compositional cascade in an Amazonian forest. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(June 2008), 1787–1794. https://doi.org/10.1098/rstb.2007.0013Barrere, J., Reineking, B., Cordonnier, T., Kulha, N., Honkaniemi, J., Peltoniemi, M., Korhonen, K. T., Ruiz‐Benito, P., Zavala, M. A., & Kunstler, G. (2023). Functional traits and climate drive interspecific differences in disturbance‐induced tree mortality. Global Change Biology, December 2022, 2836–2851. https://doi.org/10.1111/gcb.16630Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.xBell, D. T. (2001). Ecological response syndromes in the flora of Southwestern Western Australia: Fire Resprouters versus Reseeders. The Botanical Review, 67(DECEMBER 2001), 417–440.Bellingham, P. J. (2000). Resprouting as a life history strategy in woody plant communities. Oikos, 89(2), 409–416. https://doi.org/10.1080/00131857.2017.1516140Berenguer E, Gardner TA, Ferreira J, et al (2018) Seeing the woods through the saplings: Using wood density to assess the recovery of human-modified Amazonian forests. J Ecol 106:2190–2203. https://doi.org/10.1111/1365-2745.12991Bhaskar, R., Arreola, F., Mora, F., Martinez-yrizar, A., Martinez-ramos, M., & Balvanera, P. (2017). Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. Forest Ecology and Management, 426(September 2017), 61–71. https://doi.org/10.1016/j.foreco.2017.09.028Bernhardt-Römermann M, Baeten L, Craven D, et al (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Chang Biol 21:3726–3737. https://doi.org/10.1111/gcb.12993Bhaskar R, Arreola F, Mora F, et al (2018) Forest Ecology and Management Response diversity and resilience to extreme events in tropical dry secondary forests ☆. For Ecol Manage 426:61–71. https://doi.org/10.1016/j.foreco.2017.09.028Bivand, R. S., & Wong, D. W. S. (2018). Comparing implementations of global and local indicators of spatial association. TEST. doi:10.1007/s11749-018-0599-xBond, W. J., Midgley, G. F., & Woodward, F. I. (2003). What controls South African vegetation - Climate or fire? South African Journal of Botany, 69(1), 79–91. https://doi.org/10.1016/S0254-6299(15)30362-8Borchert R, Rivera G, Hagnauer W (2002) Modification of vegetative phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica 34:27–39. https://doi.org/10.1111/j.1744-7429.2002.tb00239.xBradstock, R. A. (2010). A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography, 19(2), 145–158. https://doi.org/10.1111/j.1466-8238.2009.00512.xBrando, P. M., Balch, J. K., Nepstad, D. C., Morton, D. C., Putz, F. E., Coe, M. T., Silvério, D., Macedo, M. N., Davidson, E. A., Nóbrega, C. C., Alencar, A., & Soares-Filho, B. S. (2014). Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6347–6352. https://doi.org/10.1073/pnas.1305499111Brando, P. M., Oliveria-Santos, C., Rocha, W., Cury, R., & Coe, M. T. (2016). Effects of experimental fuel additions on fire intensity and severity: unexpected carbon resilience of a neotropical forest. Global Change Biology, 22(7), 2516–2525. https://doi.org/10.1111/gcb.13172Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, B., Keeley, J. O. N. E., Ditomaso, J. M., Hobbs, R. J., Pellant, M., Pyke, D., Brooks, M. L., Antonio, C. M. D., Richardson, D. M., Grace, J. B., & Keeley, J. O. N. E. (2004). Effects of Invasive Alien Plants on Fire Regimes. 54(7), 677–688.Brown, J. (1974). Handbook for inventorying downed woody material.Brown, J. K., Oberheu, R. D., & Johnston, C. M. (1981). Handbook for inventorying surface fuels and biomass in the interior West.Brown, James K., & Bevins, C. D. (1986). Surface Fuel Loadings and Predicted Fire Behavior for Vegetation Types in the Northern Rocky Mountains. In United States Forest Service.Cadotte. (2006). Dispersal and Species Diversity: A Meta-Analysis. The American Naturalist, 167(6), 913. https://doi.org/10.2307/3844747Cardoso, A. W., Oliveras, I., Abernethy, K. A., Jeffery, K. J., Lehmann, D., Ndong, J. E., Mcgregor, I., Belcher, C. M., Bond, W. J., & Malhi, Y. S. (2017). Grass Species Flammability , Not Biomass , Drives Changes in Fire Behavior at Tropical Forest-Savanna Transitions. 1(November), 1–14. https://doi.org/10.3389/ffgc.2017.00006Cardoso, M., Nobre, C. A., Sampaio, G., & Valeriano, D. M. (2009). Modelling of the decrease of tropical-forest resilience in Amazonia as affected by deforestation and fires. April.Carrijo, J. N., Maracahipes, L., Scalon, M. C., Silvério, D. V., Abadia, A. C., Fagundes, M. V., Veríssimo, A. A., Gonçalves, L. A., Carrijo, D., Martins, J., & Lenza, E. (2021). Functional traits as indicators of ecological strategies of savanna woody species under contrasting substrate conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 284(March). https://doi.org/10.1016/j.flora.2021.151925Casanoves, F., Pla, L., & Di Rienzo, J. A. (2011). Valoración y análisis de la diversidad funcional y su relación con los servicios ecosistémicos (Issue January).Chao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M., & Inouye, B. D. (2011). Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere, 2(2), art24. doi:10.1890/es10-00117.1Chapin, F. S. (1993). EVOLUTION OF SUITES OF TRAITS IN RESPONSE TO ENVIRONMENTAL STRESS of low-resource environments share a common suite Most plants characteristic and nutrient low rates of growth , of traits , absorption , including and high concentrations low rates of tissu. The American Naturalist, 142(July), S78–S92.Chapin, F. S., Schulze, E. D., & Mooney, H. A. (1990). The ecology and economics of storage in plants. Annual Review of Ecology and Systematics, 21(1), 423–447. https://doi.org/10.1146/annurev.es.21.110190.002231Chapin, S. (1991). Integrated Responses of Plants to Stress. BioScience, 41(January 1991), 29–36. https://doi.org/10.2307/1311538Chapin, S., Zavaleta, E. S., Eviner, V. T., Naylor, R., Vitousek, P. M., Reynolds, H., Hooper, D., Lavorel, S., Sala, O., Hobbie, S. E., Mack, M., & Díaz, S. (2000). Consequences of changing biodiversity. Nature, 405(6), 234–242. https://doi.org/10.1093/asj/sjx227Chazdon, R. L., Finegan, B., Capers, R. S., Salgado-Negret, B., Casanoves, F., Boukili, V., & Norden, N. (2010). Composition and dynamics of functional groups of trees during tropical forest succession in northeastern Costa Rica. Biotropica, 42(1), 31–40. https://doi.org/10.1111/j.1744-7429.2009.00566.xClarke, P. J., Lawes, M. J., Midgley, J. J., Lamont, B. B., Ojeda, F., Burrows, G. E., Enright, N. J., & Knox, K. J. E. (2012). Resprouting as a key functional trait: How buds, protection and resources drive persistence after fire. New Phytologist, 197(1), 19–35. https://doi.org/10.1111/nph.12001Cochrane, M. (2003). Fire science for rainforests. 421(February), 913–919.Cochrane, M. A. (2009). Tropical Fire Ecology. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77381-8Cochrane, M. A., Alencar, A., Schulze, M. D., Jr, C. M. S., Nepstad, C., Lefebvre, P., Davidson, E. A., Cochranel, M. A., Alencar, A., & Schulze, M. D. (1999). Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests Published by : American Association for the Advancement of Science Stable URL : https://www.jstor.org/stable/2898051 Linked references are available on JSTOR for this article : You m. 284(5421), 1832–1835.Cochrane, M. A., & Schulze, M. D. (1999a). Fire as a Recurrent Event in Tropical Forests of the Eastern Amazon : Effects on Forest Structure , Biomass , and Species Composition ’. Biotropica, 31(March 1999), 2–16.Cochrane, M. A., & Schulze, M. D. (1999b). Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition. Biotropica, 31(1), 2–16. https://doi.org/10.1111/j.1744-7429.1999.tb00112.xCornelissen, J. H. C., Amsterdam, V. U., Lavorel, S., & Diaz, S. (2003). Handbook of protocols for standardised and easy measurement of plant functional traits worldwide A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. January. https://doi.org/10.1071/BT02124Correa-gómez, D. F., & Stevenson, P. R. (2010). ESTRUCTURA Y DIVERSIDAD DE BOSQUES DE LOS LLANOS ORIENTALES COLOMBIANOS ( RESERVA TOMO GRANDE , VICHADA ) Structure and diversity of riparian forests in a seasonal savanna of the Llanos Orientales. 1, 31–48.Corrêa Scalon, M., Maia Chaves Bicalho Domingos, F., Jonatar Alves da Cruz, W., Marimon Júnior, B. H., Schwantes Marimon, B., & Oliveras, I. (2020). Diversity of functional trade-offs enhances survival after fire in Neotropical savanna species. Journal of Vegetation Science, 31(1), 139–150. https://doi.org/10.1111/jvs.12823Cousins, A. B., Mullendore, D. L., & Sonawane, B. V. (2020). Recent developments in mesophyll conductance in C3 , C4 , and crassulacean acid metabolism plants. 816–830. https://doi.org/10.1111/tpj.14664Da Silva, A. P. G., Mews, H. A., Marimon-Junior, B. H., De Oliveira, E. A., Morandi, P. S., Oliveras, I., & Marimon, B. S. (2017). Recurrent wildfires drive rapid taxonomic homogenization of seasonally flooded Neotropical forests. Environmental Conservation, 45(4), 378–386. https://doi.org/10.1017/S0376892918000127de Almeida Souza, A. H., Batalha, M. A., Casagrande, J. C., Rivaben, R., Assunção, V. A., Pott, A., & Alves Damasceno-Júnior, G. (2019). Fire can weaken or trigger functional responses of trees to flooding in wetland forest patches. Journal of Vegetation Science, 30(3), 521–532. https://doi.org/10.1111/jvs.12719De Cáceres, M., Legendre, P., & Moretti, M. (2010). Improving indicator species analysis by combining groups of sites. Oikos, 119(10), 1674–1684. https://doi.org/10.1111/j.1600-0706.2010.18334.xDe Pauw K, Meeussen C, Govaert S, et al (2021) Taxonomic, phylogenetic and functional diversity of understorey plants respond differently to environmental conditions in European forest edges. J Ecol 109:2629–2648. https://doi.org/10.1111/1365-2745.13671Del Tredici, P. (2001). Sprouting in temperate trees: A morphological and ecological review. Botanical Review, 67(2), 121–140. https://doi.org/10.1007/BF02858075Díaz, S., Hodgson, J. G., Thompson, K., Cabido, M., Cornelissen, J. H. C., Jalili, A., Montserrat-Martí, G., Grime, J. P., Zarrinkamar, F., Asri, Y., Band, S. R., Basconcelo, S., Castro-Díez, P., Funes, G., Hamzehee, B., Khoshnevi, M., Pérez-Harguindeguy, N., Pérez-Rontomé, M. C., Shirvany, F. A., … Zak, M. R. (2004). The plant traits that drive ecosystems: Evidence from three continents. Journal of Vegetation Science, 15(3), 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.xDíaz, Sandra, Kattge, J., Cornelissen, J. H. C., Wright, I. J., Lavorel, S., Dray, S., Reu, B., Kleyer, M., Wirth, C., Colin Prentice, I., Garnier, E., Bönisch, G., Westoby, M., Poorter, H., Reich, P. B., Moles, A. T., Dickie, J., Gillison, A. N., Zanne, A. E., … Gorné, L. D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167–171. https://doi.org/10.1038/nature16489Díaz, Sandra, Lavorel, S., De Bello, F., Quétier, F., Grigulis, K., & Robson, M. (2007). Incorporating plant functional diversity effects in ecosystem service assessments. PNAS, 104(52), 20684–20689.Duane, A., Castellnou, M., & Brotons, L. (2021). Towards a comprehensive look at global drivers of novel extreme wildfire events. Climatic Change, 165(3–4), 1–21. https://doi.org/10.1007/s10584-021-03066-4Dufrêne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67(3), 345–366. https://doi.org/10.2307/2963459Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global increase in wildfire risk due to climate-driven declines in fuel moisture. Global Change Biology, 28(4), 1544–1559. https://doi.org/10.1111/gcb.16006Espelta JM, Cruz-Alonso V, Alfaro-Sánchez R, et al (2020) Functional diversity enhances tree growth and reduces herbivory damage in secondary broadleaf forests, but does not influence resilience to drought. J Appl Ecol 57:2362–2372. https://doi.org/10.1111/1365-2664.13728FAO. (2005). Actualización de la evaluación de los recursos forestales mundiales a 2005. Términos y definiciones.Fernández-garcía, V., Marcos, E., Fulé, P. Z., Santana, V. M., & Calvo, L. (2020). Fire regimes shape diversity and traits of vegetation under different climatic conditions. Science of the Total Environment, 137137. https://doi.org/10.1016/j.scitotenv.2020.137137Finegan, B., Peña-CLaros, M., de Oliveira, A., Ascarrunz, N., Bret-Harte, M. S., Carreño-Rocabado, G., Casanoves, F., Díaz, S., Velepucha, P., Fernandez, F., Licona, J.-C., Lorenzo, L., Salgado-Negret, B., Vaz, M., & Poorter, L. (2015). Does functional trait diversity predict above-ground biomass and productivity of tropical forests ? Testing three alternative hypotheses. Journal of Eco, 103, 191–201. https://doi.org/10.1111/1365-2745.12346Fichtler E, Licona J, Poorter L, et al (2010) The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol 481–492. https://doi.org/10.1111/j.1469-8137.2009.03092.xFlexas, J., Carriquí, M., Coopman, R. E., Gago, J., Galmés, J., Martorell, S., Morales, F., & Diaz-Espejo, A. (2014). Stomatal and mesophyll conductances to CO2 in different plant groups: Underrated factors for predicting leaf photosynthesis responses to climate change? Plant Science, 226, 41–48. https://doi.org/10.1016/j.plantsci.2014.06.011Flores BM, Fagoaga R, Nelson BW, Holmgren M (2016) Repeated fires trap Amazonian blackwater floodplains in an open vegetation state. J Appl Ecol 53:1597–1603. https://doi.org/10.1111/1365-2664.12687Flores BM, Holmgren M, Xu C, et al (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proc Natl Acad Sci U S A 114:4442–4446. https://doi.org/10.1073/pnas.1617988114Flores BM, Piedade MTF, Nelson BW (2014) Fire disturbance in Amazonian blackwater floodplain forests. Plant Ecol Divers 7:319–327. https://doi.org/10.1080/17550874.2012.716086Flory, S. L., Bauer, J., Phillips, R. P., & Clay, K. (2017). Effects of a non-native grass invasion decline over time. Journal of Ecology, 105(6), 1475–1484. https://doi.org/10.1111/1365-2745.12850Flory, S. L., Clay, K., Emery, S. M., Robb, J. R., & Winters, B. (2015). Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 52(4), 992–1000. https://doi.org/10.1111/1365-2664.12437François-Nicolas Robinne, Janice Burns, Promode Kant, Mike D. Flannigan, Michael Kleine, Bill de Groot, D. M. W. (2017). Global Fire Challenges in a Warming World (Issue 32).Freeman JE, Kobziar LN (2011) Tracking postfire successional trajectories in a plant community adapted to high-severity fire. Ecol Appl 21:61–74. https://doi.org/10.1890/09-0948.1Freeman JE, Kobziar LN, Leone EH, Williges K (2019) Drivers of plant functional group richness and beta diversity in fire‐dependent pine savannas. Divers Distrib 25:1024–1044. https://doi.org/10.1111/ddi.12926Fréjaville, T., Vilà-Cabrera, A., Curt, T., & Carcaillet, C. (2017). Aridity and competition drive fire resistance trait covariation in mountain trees. Ecosphere, 9(12). https://doi.org/10.1002/ecs2.2493Gassón, R. A. (2002). Orinoquia: The archaeology of the Orinoco River basin. Journal of World Prehistory, 16(3), 237–311. https://doi.org/10.1023/A:1020978518142Gill, A. M., & Zylstra, P. (2005). Flammability of Australian forests. Australian Forestry, 68(2), 87–93. https://doi.org/10.1080/00049158.2005.10674951González, T. M., González-Trujillo, J. D., Muñoz, A., & Armenteras, D. (2021). Differential effects of fire on the occupancy of small mammals in neotropical savanna-gallery forests. Perspectives in Ecology and Conservation, 19(2), 179–188. https://doi.org/10.1016/j.pecon.2021.03.005Grime, J. P. (1998). Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology, 86, 891–899.Hacke UG, Sperry JS, Pockman WT, et al (2001) Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia 126:457–461. https://doi.org/10.1007/s004420100628Hammond DH, Varner JM, Kush JS, Fan Z (2015) Contrasting sapling bark allocation of five southeastern USA hardwood tree species in a fire prone ecosystem. Ecosphere 6:. https://doi.org/10.1890/ES15-00065.1Haltenhoff, H. (2005). Manual de Efectos del Fuego y Evaluación de Daños (Vol. 2903).Harmon, M. E., & Hua, C. (1991). Coarse Woody Debris Dynamics i n Two Old-Growth Ecosystems Comparing a deciduous forest in China and a conifer forest in Oregon. BioScience, 41, 604–610.Henn, J. J., Buzzard, V., Enquist, B. J., Halbritter, A. H., Klanderud, K., Maitner, B. S., Michaletz, S. T., Pötsch, C., Seltzer, L., Telford, R. J., Yang, Y., Zhang, L., & Vandvik, V. (2017). Intraspecific trait variation and phenotypic plasticity mediate alpine plant species response to climate change. Frontiers in Plant Science, 871(November), 1–11. https://doi.org/10.3389/fpls.2017.01548Hicke, J. A., Johnson, M. C., Hayes, J. L., & Preisler, H. K. (2012). Effects of bark beetle-caused tree mortality on wildfire. In Forest Ecology and Management (Vol. 271, pp. 81–90). https://doi.org/10.1016/j.foreco.2012.02.005Hoffmann, W. A., Orthen, B., Kielse, P., & Vargas Do Nascimento, P. K. (2003). Comparative Fire Ecology of Tropical Savanna and Forest Trees Author. Functional Ecology, 17(6), 720–726.Holling, C. S. (1973). Resilience and Stability of Ecological Systems. Annual Review of Ecology and Systematics, 4(1973), 1–23.Holling, C. S. (1978). Adaptive environmental assessment and management.Holling, C. S. (1986). The Resilience of Terrestrial Ecosystems. Sustainable Development of the Biosphere, 292–320.Holling, C. S. (2001). Understanding the Complexity of Economic , Ecological , and Social Systems. Ecosystems, 4, 390–405. https://doi.org/10.1007/s10021-001-0101-5Hsieh, T.C., Ma., K. and Chao, A. 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution , 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613IDEAM. (2019). Boletín de predicción climática y recomendación sectorial para planear y decidir.Iwasa, Y., & Kubo, T. (1997). Optimal size of storage for recovery after unpredictable disturbances. Evolutionary Ecology, 11, 41–65.Janssen TAJ, Hölttä T, Fleischer K, et al (2020) Wood allocation trade-offs between fiber wall, fiber lumen, and axial parenchyma drive drought resistance in neotropical trees. Plant Cell Environ 43:965–980. https://doi.org/10.1111/pce.13687Johnstone, J. F., Allen, C. D., Franklin, J. F., Frelich, L. E., Harvey, B. J., Higuera, P. E., Mack, M. C., Meentemeyer, R. K., Metz, M. R., Perry, G. L. W., Schoennagel, T., & Turner, M. G. (2015). Changing disturbance regimes , ecological memory , and forest resilience. https://doi.org/10.1002/fee.1311Keeley, J. E. (2009). Fire intensity, fire severity and burn severity: A brief review and suggested usage. International Journal of Wildland Fire, 18(1), 116–126. https://doi.org/10.1071/WF07049Keeley, J. E., Pausas, J. G., Rundel, P. W., Bond, W. J., & Bradstock, R. A. (2011). Fire as an evolutionary pressure shaping plant traits. Trends in Plant Science, 16(8), 406–411. https://doi.org/10.1016/j.tplants.2011.04.002Kembel, S. W., & Cahill, J. J. (2011). Independent Evolution of Leaf and Root Traits within and among Temperate Grassland Plant Communities. PLoS ONE, 6(6), 12–15. https://doi.org/10.1371/journal.pone.0019992Kerns, B. K., Tortorelli, C., Day, M. A., Nietupski, T., Barros, A. M. G., Kim, J. B., & Krawchuk, M. A. (2020). Invasive grasses: A new perfect storm for forested ecosystems? Forest Ecology and Management, 463(November 2019), 117985. https://doi.org/10.1016/j.foreco.2020.117985Krix, D., & Murray, B. (2017). Landscape variation in plant leaf fl ammability is driven by leaf traits responding to environmental gradients. Ecosphere, 9(February), 1–13. https://doi.org/10.1002/ecs2.2093Kuusk V, Niinemets Ü, Valladares F (2018) Structural controls on photosynthetic capacity through juvenile-to-adult transition and needle ageing in Mediterranean pines. Funct Ecol 32:1479–1491. https://doi.org/10.1111/1365-2435.13087Laliberté, A. E., Legendre, P., Shipley, B., & Laliberté, M. E. (2022). Package ‘ FD .’Laliberte, E., Declerck, F., Metcalfe, J., Catterall, C. P., & Sa, D. (2010). Land-use intensification reduces functional redundancy and response diversity in plant communities. 76–86. https://doi.org/10.1111/j.1461-0248.2009.01403.xLasso, C. A., S, U. J., F, T., & A, R. (2010). Biodiversidad de la cuenca del Orinoco. In Biodiversidad en la cuenca del Orinoco: bases científicas para la identificación de áreas prioritarias para la conservación y uso sostenible de la biodiversidad.Lasso, C., Trujillo, F., & Morales - Betancourt, M. A. (2020). Biodiversidad de la Reserva Natural Bojonawi, Vichada, Colombia: río Orinoco y planicie de inundación (Serie Edit, Issue June).Lavorel, S, & Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits : Functional Ecology, 16, 545–556.Lavorel, Sandra, McIntyre, S., Landsberg, J., & Forbes, T. D. A. (1997). Plant functional classifications: from general groups to specific groups based on response to disturbance. TREE, 12(11), 474–478.Lavorel S, Grigulis K, McIntyre S, et al (2008) Assessing functional diversity in the field - Methodology matters! Funct Ecol 22:134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.xLawes MJ, Midgley J, Lamont BB, Clarke PJ (2012) Tansley review Resprouting as a key functional trait : how buds , protection and resources drive persistence after fire Author for correspondence : https://doi.org/10.1111/nph.12001Lebrija-Trejos, E., Pérez-GarcíA, E. A., Meave, J. A., Bongers, F., & Poorter, L. (2010). Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology, 91(2), 386–398. https://doi.org/10.1890/08-1449.1Levin, S. A., & Paine, R. T. (1974). Disturbance , Patch Formation , and Community Structure A =. Proceedings of the National Academy of Sciences, 71(7), 2744–2747.Liu Z, Jiang F, Li F, Jin G (2019) Coordination of intra and inter-species leaf traits according to leaf phenology and plant age for three temperate broadleaf species with different shade tolerances. For Ecol Manage 434:63–75Lourenço‐de‐Moraes, R., Campos, F. S., Ferreira, R. B., Beard, K. H., Solé, M., Llorente, G. A., & Bastos, R. P. (2019). Functional traits explain amphibian distribution in the Brazilian Atlantic Forest. Journal of Biogeography. doi:10.1111/jbi.13727Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Nez-Ramos, M. M., Meave, J. A., Paz, H., Perez-Garcia, E. A., Romero-Perez, I. E., Tauro, A., & Bongers, F. (2013). Successional changes in functional composition contrast for dry and wet tropical forest. Ecology, 94(6), 1211–1216. https://doi.org/10.1890/12-1850.1Lutes, D. C., & Keane, R. E. (2006). Fuel Load (FL) sampling method. In USDA Forest Service - General Technical Report RMRS-GTR (Issues 164 RMRS-GTR).Lydersen, J. M., Collins, B. M., Knapp, E. E., Roller, G. B., & Stephens, S. (2015). Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. International Journal of Wildland Fire, 24(4), 484–494. https://doi.org/10.1071/WF13066Maracahipes, L., Marimon, B. S., Lenza, E., Marimon-Junior, B. H., De Oliveira, E. A., Mews, H. A., Gomes, L., & Feldpausch, T. R. (2014). Post-fire dynamics of woody vegetation in seasonally flooded forests (impucas) in the Cerrado-Amazonian Forest transition zone. Flora: Morphology, Distribution, Functional Ecology of Plants, 209(5–6), 260–270. https://doi.org/10.1016/j.flora.2014.02.008Martins, F. Q., & Batalha, M. A. (2006). Pollination systems and floral traits in cerrado woody species of the upper taquari region (central Brazil). Brazilian Journal of Biology, 66(2 A), 543–552. https://doi.org/10.1590/S1519-69842006000300021Mason, N. W. H., & De Bello, F. (2013). Functional diversity: A tool for answering challenging ecological questions. Journal of Vegetation Science, 24(5), 777–780. https://doi.org/10.1111/jvs.12097Meza-Elizalde MC, Armenteras-Pascual D (2021) Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. For Ecol Manage 498:119546. https://doi.org/10.1016/j.foreco.2021.119546McColl-Gausden, S. C., Bennett, L. T., Clarke, H. G., Ababei, D. A., & Penman, T. D. (2022). The fuel–climate–fire conundrum: How will fire regimes change in temperate eucalypt forests under climate change? Global Change Biology, 28(17), 5211–5226. https://doi.org/10.1111/gcb.16283McLauchlan, K. K., Higuera, P. E., Miesel, J., Rogers, B. M., Schweitzer, J., Shuman, J. K., Tepley, A. J., Varner, J. M., Veblen, T. T., Adalsteinsson, S. A., Balch, J. K., Baker, P., Batllori, E., Bigio, E., Brando, P., Cattau, M., Chipman, M. L., Coen, J., Crandall, R., … Watts, A. C. (2020). Fire as a fundamental ecological process: Research advances and frontiers. Journal of Ecology, 108(5), 2047–2069. https://doi.org/10.1111/1365-2745.13403Meza-Elizalde, M. C., & Armenteras-Pascual, D. (2021). Edge influence on the microclimate and vegetation of fragments of a north Amazonian forest. Forest Ecology and Management, 498(June), 119546. https://doi.org/10.1016/j.foreco.2021.119546Meza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003Meza, M. C., Espelta, J. M., González, T. M., & Armenteras, D. (2023). Fire reduces taxonomic and functional diversity in Neotropical moist seasonally flooded forests. Perspectives in Ecology and Conservation, 21, 101–111. https://doi.org/10.1016/j.pecon.2023.04.003Michelaki, C., Fyllas, N. M., Galanidis, A., Aloupi, M., Evangelou, E., Arianoutsou, M., & Dimitrakopoulos, P. G. (2020). Adaptive flammability syndromes in thermo-Mediterranean vegetation, captured by alternative resource-use strategies. Science of the Total Environment, 718, 137437. https://doi.org/10.1016/j.scitotenv.2020.137437Miller, C., & Urban, D. L. (2000). Connectivity of forest fuels and surface fire regimes. Landscape Ecology, 15(2), 145–154. https://doi.org/10.1023/A:1008181313360Molina, E., Espelta, J. M., Pino, J., Bagaria, G., & Armenteras, D. (2017). Influence of clay licks on the diversity and structure of an Amazonian forest. Biotropica, 50(5), 740–749. https://doi.org/10.1111/btp.12568Montenegro, A. L., & Vargas, O. (2008). Atributos vitales de especies de borde en fragmentos de bosque altoandino (Reserva forestal municipal de Cogua, Colombia). Revista Biología Tropical, 56(June), 705–720. http://www.infoandina.org/sites/default/files/recursos/la_restauracion_ecologica_en_practica.pdfMori, A. S., Lertzman, K. P., & Gustafsson, L. (2017). Biodiversity and ecosystem services in forest ecosystems: a research agenda for applied forest ecology. Journal of Applied Ecology, 54(1), 12–27. https://doi.org/10.1111/1365-2664.12669Mouillot, D., Graham, N. A. J., Villéger, S., Mason, N. W. H., & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology and Evolution, 28(3), 167–177. https://doi.org/10.1016/j.tree.2012.10.004Mouillot, D., Mason, N. W. H., Dumay, O., & Wilson, J. (2004). Functional regularity : A neglected aspect of functional diversity Functional regularity : a neglected aspect of functional diversity. Oecologia, 142(February), 353–359. https://doi.org/10.1007/s00442-004-1744-7Myers, R. L. (2006). Convivir con el fuego: Manteniendo los ecosistemas y los medios de subsistencia mediante el Manejo Integral del Fuego.Nadal, M., Flexas, J., & Gulías, J. (2017). Possible link between photosynthesis and leaf modulus of elasticity among vascular plants: a new player in leaf traits relationships? Ecology Letters, 21(9), 1372–1379. https://doi.org/10.1111/ele.13103Nelson, K. N., Turner, M. G., Romme, W. H., & Tinker, D. B. (2016). Landscape variation in tree regeneration and snag fall drive fuel loads in 24-year old post-fire lodgepole pine forests. Ecological Applications, 26(8), 2422–2436. https://doi.org/10.1002/eap.1412Nepstad, D., Carvalho, G., Cristina, A., Alencar, A., Paulo, Ä., Bishop, J., Moutinho, P., Lefebvre, P., Lopes, U., Jr, S., & Prins, E. (2001). Road paving , ® re regime feedbacks , and the future of Amazon forests. 154.Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P., & Cardinot, G. (2007). MORTALITY OF LARGE TREES AND LIANAS FOLLOWING EXPERIMENTAL DROUGHT IN AN AMAZON FOREST. In Ecology (Vol. 88, Issue 9).NeSmith, J. E., Twine, W., & Holdo, R. M. (2021). Interspecific variation in post-disturbance growth responses of a savanna tree community and its implications for escaping the fire trap. Biotropica, 53(3), 896–905. https://doi.org/10.1111/btp.12936Nóbrega, C. C., Brando, P. M., Silvério, D. V., Maracahipes, L., & de Marco, P. (2019). Effects of experimental fires on the phylogenetic and functional diversity of woody species in a neotropical forest. Forest Ecology and Management, 450(January). https://doi.org/10.1016/j.foreco.2019.117497Ojeda, F., Brun, F. G., Vergara, J. J., & Ojeda, F. (2005). Fire , rain and the selection of seeder and resprouter life-histories in fire-recruiting , woody plants. New Phytologist, 168, 155–165.Oksanen, J; FG Blanchet; R Kindt; P Legendre; PR Minchin; RB O'Hara; GL Simpson; P Solymos; MH; Stevens & HH Wagner. 2013. Vegan: Community Ecology Package. R PackageVersion. 2.0-10. https://github.com/vegandevs/ vegan. 10/05/19.Pachepsky, L. B., & Acock, B. (1998). EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY WITH THE 2DLEAF MODEL EFFECT OF LEAF ANATOMY ON HYPOSTOMATOUS LEAF GAS EXCHANGE : A THEORETICAL STUDY. Biotronics, 27, 1–14.Parks, S. A., Miller, C., Holsinger, L. M., Baggett, L. S., & Bird, B. J. (2016). Wildland fire limits subsequent fire occurrence. International Journal of Wildland Fire, 25(2), 182–190. https://doi.org/10.1071/WF15107Pausas, J. G. (2015). Bark thickness and fire regime. Functional Ecology, 29(3), 315–327. https://doi.org/10.1111/1365-2435.12372Pausas, J. G. (2017). Bark thickness and fire regime: another twist. New Phytologist, 213(1), 13–15. https://doi.org/10.1111/nph.14277Pausas, J. G. (2019). Generalized fire response strategies in plants and animals. Oikos, 128(2), 147–153. https://doi.org/10.1111/oik.05907Pausas, J. G., & Bradstock, R. A. (2007). Fire persistence traits of plants along a productivity and disturbance gradient in mediterranean shrublands of south-east Australia. Global Ecology and Biogeography, 16(3), 330–340. https://doi.org/10.1111/j.1466-8238.2006.00283.xPausas, J. G., Bradstock, R. A., Keith, D. A., Keeley, J. E., Hoffman, W., Kenny, B., Lloret, F., & Trabaud, L. (2004). Plant functional traits in relation to fire in crown-fire ecosystems. Ecology, 85(4), 1085–1100. https://doi.org/10.1890/02-4094Pausas, J. G., & Keeley, J. E. (2017). Epicormic Resprouting in Fire-Prone Ecosystems. Trends in Plant Science, 22(12), 1008–1015. https://doi.org/10.1016/j.tplants.2017.08.010Peeler, J. L., & Smithwick, E. A. H. (2018). Exploring invasibility with species distribution modeling: How does fire promote cheatgrass (Bromus tectorum) invasion within lower montane forests? Diversity and Distributions, 24(9), 1308–1320. https://doi.org/10.1111/ddi.12765Peláez, B. C., López, B. L., González, J. M., Camey, J. M. R., & Merino, E. G. (2020). Sample size for estimating fuel loads in oak forest in the Mountain Region of Guerrero State. Revista Mexicana de Ciencias Forestales, 11(57). https://doi.org/10.29298/rmcf.v11i57.617Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for standardised measurement of plant functional traits worldwide. Australian Journal of Botany, 61(3), 167–234. https://doi.org/10.1071/BT12225Pickett, S. T. ., Kolasa, J., Armesto, J., & Collins, S. L. (1989). The ecological concept of disturbance and its expression at various hierarchical levels. Oikos, 54, 129–136.Pickett, S. T. ., & White, P. S. (1985). The Ecology of Natural Disturbance and Patch Dynamics. https://doi.org/10.1016/B978-0-12-554520-4.50002-2Pinard, M. A., Putz, F. E., & Licona, J. C. (2016). Tree mortality and vine proliferation following a wildfire in a subhumid tropical forest in eastern Bolivia. Forest Ecology and Management, 116, 247–252.Pinzón, J., & Spence, J. R. (2010). Bark-dwelling spider assemblages (Araneae) in the boreal forest: Dominance, diversity, composition and life-histories. Journal of Insect Conservation, 14(5), 439–458. https://doi.org/10.1007/s10841-010-9273-7Poorter, L., Mcneil, A., Hurtado, V. H., Prins, H. H. T., & Putz, F. E. (2014). Bark traits and life-history strategies of tropical dry- and moist forest trees. Functional Ecology, 28(1), 232–242. https://doi.org/10.1111/1365-2435.12158Prieto, I., Querejeta, J. I., Segrestin, J., Volaire, F., & Roumet, C. (2017). Leaf carbon and oxygen isotopes are coordinated with the leaf economics spectrum in Mediterranean rangeland species. Functional Ecology, 32(3), 612–625. https://doi.org/10.1111/1365-2435.13025Quintero-Gradilla, S. D., Jardel-Peláez, E. J., Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3). https://doi.org/10.21829/myb.2019.2531888Rangel-Ch., J. O. y A. Garzón. 1994. Aspectos de la estructura, de la diversidad y de la dinámica de la vegetación del parque regional Ucumari. Pp. 59-84. En: Rangel-Ch. (Ed.), Ucumarí: un caso típico de la diversidad biótica andina.Universidad Nacional de Colombia. Instituto de Ciencias Naturales, Corporación Autónoma Regional de Risaralda. Pereira, Colombia.Rangel-Ch., J. O y A. Velázquez. 1997. Métodos de estudio de la vegetación. Pp. 59-87. En: Rangel- Ch. J.O (Ed.), Colombia Diversidad Biótica II. Instituto de Ciencias Naturales. Universidad Nacional de Colombia, Ideam. Bogotá, D. C., ColombiaReed, C. C., Hood, S. M., Cluck, D. R., & Smith, S. L. (2023). Fuels change quickly after California drought and bark beetle outbreaks with implications for potential fire behavior and emissions. Fire Ecology, 19(1). https://doi.org/10.1186/s42408-023-00175-6Resco de Dios, V., Fellows, A. W., Nolan, R. H., Boer, M. M., Bradstock, R. A., Domingo, F., & Goulden, M. L. (2015). A semi-mechanistic model for predicting the moisture content of fine litter. Agricultural and Forest Meteorology, 203, 64–73. https://doi.org/10.1016/j.agrformet.2015.01.002Riaño, D., Chuvieco, E., Salas, J., Palacios-Orueta, A., & Bastarrika, A. (2002). Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32(8), 1301–1315. https://doi.org/10.1139/x02-052Ricotta, C. (2005). A note on functional diversity measures. Basic and Applied Ecology, 6, 479–486. https://doi.org/10.1016/j.baae.2005.02.008Ristok, C., Weinhold, A., Ciobanu, M., Poeschl, Y., Roscher, C., Vergara, F., & Eisenhauer, N. (2020). Plant diversity effects on herbivory are mediated by soil biodiversity and plant chemistry. iDiv, 1–18.Riutta, T., Slade, E. M., Morecroft, M. D., Bebber, D. P., & Malhi, Y. (2014). Living on the edge: Quantifying the structure of a fragmented forest landscape in England. Landscape Ecology, 29(6), 949–961. https://doi.org/10.1007/s10980-014-0025-zRobinne, F. N., Bladon, K. D., Miller, C., Parisien, M. A., Mathieu, J., & Flannigan, M. D. (2017). A spatial evaluation of global wildfire-water risks to human and natural systems. Science of the Total Environment, 610–611, 1193–1206. https://doi.org/10.1016/j.scitotenv.2017.08.112Romero-Ruiz, M., Etter, A., Sarmiento, A., & Tansey, K. (2010). Spatial and temporal variability of fires in relation to ecosystems, land tenure and rainfall in savannas of northern South America. Global Change Biology, 16(7), 2013–2023. https://doi.org/10.1111/j.1365-2486.2009.02081.xRomero-ruiz, M. H., Flantua, S. G. A., Tansey, K., & Berrio, J. C. (2011). Landscape transformations in savannas of northern South America : Land use / cover changes since 1987 in the Llanos Orientales of Colombia. Applied Geography, 32(2), 766–776. https://doi.org/10.1016/j.apgeog.2011.08.010Romero, C. (2014). Bark structure and functional ecology. Bark: Use, Management, and Commerce in Africa, 17(1967), 5–25.Rykiel, E. (1985). Towards a definition of ecological disturbance. Australian Journal of Ecology, 10, 361–365.Salazar, N., Meza, M. C., Espelta, J. M., & Armenteras, D. (2020). Post-fire responses of Quercus humboldtii mediated by some functional traits in the forests of the tropical Andes. Global Ecology and Conservation, 22. https://doi.org/10.1016/j.gecco.2020.e01021Salgado-Negret, B. (2007). Definición de tipos funcionales de especies arbóreas y caracterización de su respuesta a diferentes intensidades de perturbación en un bosque muy húmedo tropical Mesoamericano. Centro Agronómico Tropical de Investigación y Enseñanza - CATIE.Salgado, B. (2015). La Ecología Funcional de la biodiversidad: estudio, manejo y conservación como aproximación al protocolos y aplicaciones (B. S. Negret (ed.); Editorial).Silva CVJ, Aragão LEOC, Barlow J, et al (2018) Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philos Trans R Soc B Biol Sci 373:20180043. https://doi.org/10.1098/rstb.2018.0043Scott, J. H., & Reinhardt, E. D. (2001). Assessing crown fire potential by linking models of surface and crown fire behavior. In USDA Forest Service - Research Paper RMRS-RP (Issues 29 RMRS-RP). https://doi.org/10.2737/RMRS-RP-29Scott, J. H., & Burgan, R. E. (2005). Standard fire behavior fuel models: A comprehensive set for use with Rothermel’s surface fire spread model. USDA Forest Service - General Technical Report RMRS-GTR, 153 RMRS-GTR, 1–76. https://doi.org/10.2737/RMRS-GTR-153Shlisky, A., Waugh, J., Gonzalez, P., Gonzalez, M., Manta, M., Santoso, H., Alvarado, E., Ainuddin, A., Rodríguez-trejo, D. A., & Swaty, R. (2005). Fire , ecosystems and people : Threats and strategies for global biodiversity Introduction : Fire is a Global Conservation Issue. The George Wright Forum, 22 (4), 78–87.Silva, C. V. J., Aragão, L. E. O. C., Barlow, J., Espirito-Santo, F., Young, P. J., Anderson, L. O., Berenguer, E., Brasil, I., Brown, I. F., Castro, B., Farias, R., Ferreira, J., França, F., Graça, P. M. L. A., Kirsten, L., Lopes, A. P., Salimon, C., Scaranello, M. A., Seixas, M., … Xaud, H. A. M. (2017). Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1760). https://doi.org/10.1098/rstb.2017.0043Sikkink, P. G., & Keane, R. E. (2012). Predicting Fire Severity Using Surface Fuels and Moisture. http://www.fs.fed.us/rm/publicationsSilvério, D. V., Brando, P. M., Balch, J. K., Putz, F. E., Nepstad, D. C., Oliveira-Santos, C., & Bustamante, M. M. C. (2013). Testing the Amazon savannization hypothesis: Fire effects on invasion of a neotropical forest by native cerrado and exotic pasture grasses. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1619). https://doi.org/10.1098/rstb.2012.0427Slijepcevic, A., Anderson, W. R., Matthews, S., & Anderson, D. H. (2015). Evaluating models to predict daily fine fuel moisture content in eucalypt forest. Forest Ecology and Management, 335, 261–269. https://doi.org/10.1016/j.foreco.2014.09.040Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How Should Beta-Diversity Inform Biodiversity Conservation? Trends Ecol Evol 31:67–80. https://doi.org/10.1016/j.tree.2015.11.005Stevens-Rumann, C. S., Kemp, K. B., Higuera, P. E., Harvey, B. J., Rother, M. T., Donato, D. C., Morgan, P., & Veblen, T. T. (2017). Evidence for declining forest resilience to wildfires under climate change. Ecology Letters, 21(2), 243–252. https://doi.org/10.1111/ele.12889Streit, H., Menezes, L. S., Pillar, V. D., & Overbeck, G. E. (2022). Intraspecific trait variation of grassland species in response to grazing depends on resource acquisition strategy. Journal of Vegetation Science, 33(3), 1–12. https://doi.org/10.1111/jvs.13129Suding, K., Lavorel, S., Chapin, F. S., Cornelissen, J. H. C., Díaz, S., Garnier, E., Goldberg, D. E., Hooper, D., Jackson, S., & Navas, M. (2008). Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Global Change Biology, 14(May), 1125–1140. https://doi.org/10.1111/j.1365-2486.2008.01557.xSullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2017). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424(February), 236–245. https://doi.org/10.1016/j.foreco.2017.04.039Sullivan, A. L., Surawski, N. C., Crawford, D., Hurley, R. J., Volkova, L., Weston, C. J., & Meyer, C. P. (2018). Effect of woody debris on the rate of spread of surface fires in forest fuels in a combustion wind tunnel. Forest Ecology and Management, 424, 236–245. https://doi.org/10.1016/j.foreco.2018.04.039Tortorelli, C. M., Krawchuk, M. A., & Kerns, B. K. (2020). Expanding the invasion footprint: Ventenata dubia and relationships to wildfire, environment, and plant communities in the Blue Mountains of the Inland Northwest, USA. Applied Vegetation Science, 23(4), 562–574. https://doi.org/10.1111/avsc.12511Tortorelli, C. M., Kim, J. B., Vaillant, N. M., Riley, K., Dye, A., Nietupski, T. C., Vogler, K. C., Lemons, R., Day, M., Krawchuk, M. A., & Kerns, B. K. (2023). Feeding the fire: Annual grass invasion facilitates modeled fire spread across Inland Northwest forest-mosaic landscapes. Ecosphere, 14(2), 1–19. https://doi.org/10.1002/ecs2.4413Tuo, B., Yan, E. R., Guo, C., Ci, H., Berg, M. P., & Cornelissen, J. H. C. (2021). Influences of the bark economics spectrum and positive termite feedback on bark and xylem decomposition. Ecology, 102(10), 1–11. https://doi.org/10.1002/ecy.3480Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91 (10), 2833–2849. https://doi.org/10.1358/dot.2011.47.2.1576694Van Leeuwen, T. T., Van Der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho, J. A., Cook, G. D., De Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences, 11(24), 7305–7329. https://doi.org/10.5194/bg-11-7305-2014Van Der Werf G (2018) Fire greenhouse gas emissions (in CO2 equivalents) for various fire categories based on the Global Fire Emissions Database (GFED4s). In: Glob. Fire Data. https://www.globalfiredata.org/Van Gelder HA, Poorter L, Sterck FJ (2006) Wood mechanics, allometry, and life-history variation in a tropical rain forest tree community. New Phytol 171:367–378. https://doi.org/10.1111/j.1469-8137.2006.01757.xVeldman, J. W., & Putz, F. E. (2011). Grass-dominated vegetation, not species-diverse natural savanna, replaces degraded tropical forests on the southern edge of the Amazon Basin. Biological Conservation, 144(5), 1419–1429. https://doi.org/10.1016/j.biocon.2011.01.011Vetaas OR, Shrestha KB, Sharma LN (2021) Changes in plant species richness after cessation of forest disturbance. Appl Veg Sci 24:1–11. https://doi.org/10.1111/avsc.12545Verdú, M., & Pausas, J. G. (2007). Fire drives phylogenetic clustering in Mediterranean Basin woody plant communities. Journal of Ecology, 95(6), 1316–1323. https://doi.org/10.1111/j.1365-2745.2007.01300.xVillar, R., Ruiz-Robleto, J., Quero, J. L., Poorter, H., Valladares, F., & Marañón, T. (2004). Tasas de crecimiento en especies leñosas: aspectos funcionales e implicaciones ecológicas. In Ecología del bosque mediterráneo en un mundo cambiante .Violle, C., Navas, M., Vile, D., Kazakou, E., & Fortunel, C. (2007). Let the concept of trait be functional ! Oikos, 116(January), 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.xWalker, B., Holling, C. S., Carpenter, S. R., & Kinzig, A. (2004). Resilience , Adaptability and Transformability in Social – ecological Systems. Ecology and Society, 9(2), 5.Welles, S. R., & Funk, J. L. (2021). Patterns of intraspecific trait variation along an aridity gradient suggest both drought escape and drought tolerance strategies in an invasive herb. Annals of Botany, 127(4), 461–471. https://doi.org/10.1093/aob/mcaa173White, P. S., & Jentsch, A. (2001). The Search for Generality in Studies of Disturbance andWoodward, F., & Cramer, W. (1996). Plant functional types and climatic changes : Introduction. Journal of V, 7, 306–308.Wotton, B. M. (2009). Interpreting and using outputs from the Canadian Forest Fire Danger Rating System in research applications. Environmental and Ecological Statistics, 16(2), 107–131. https://doi.org/10.1007/s10651-007-0084-2Wright, I. J., Reich, P. B., Cornelissen, J. H. C., Falster, D. S., Garnier, E., Hikosaka, K., Lamont, B. B., Lee, W., Oleksyn, J., Osada, N., Poorter, H., Villar, R., Warton, D. I., & Westoby, M. (2005). Assessing the generality of global leaf trait relationships. New Phytologist, 166(2), 485–496. https://doi.org/10.1111/j.1469-8137.2005.01349.xWright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., & Gulias, J. (2004). The worldwide leaf economics spectrum. Nature, 12, 821–827.Zanne, A. E., Lopez-Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, S. L., Miller, R. B., Swenson, N. G., Wiemann, M. C., & Chave, J. (2009). Global wood density database. http://hdl.handle.net/10255/dryad.235.Zhang S, Zang R (2021) Tropical forests are vulnerable in terms of functional redundancy. Biol Conserv 262:109326. https://doi.org/10.1016/j.biocon.2021.109326Degradation of Tropical Forest in Colombia: Impacts of FireAdaptación de la vegetación al cambio climático y al fuego en tierras bajas de la OrinoquiaDiseño participativo de estrategias para la reducción de incendios forestales, la conservación de la biodiversidad y el desarrollo regional en paisajes multifuncionales del VichadaUSAID - Asociación para una mayor participación en la investigación (PEER)Departamento Administrativo de Ciencia, Tecnología e Innovación de Colombia (COLCIENCIAS)Sistema General de Regalías - Departamento del VichadaEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85466/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1022358943.2023.pdf1022358943.2023.pdfTesis de Doctorado en Ciencias - Biologíaapplication/pdf9862367https://repositorio.unal.edu.co/bitstream/unal/85466/3/1022358943.2023.pdfe7c12ac92c52c9baffcb9376b6fa781dMD53THUMBNAIL1022358943.2023.pdf.jpg1022358943.2023.pdf.jpgGenerated Thumbnailimage/jpeg4580https://repositorio.unal.edu.co/bitstream/unal/85466/4/1022358943.2023.pdf.jpg09e64471f12532199aeddb81b2d64c12MD54unal/85466oai:repositorio.unal.edu.co:unal/854662024-01-26 23:04:11.709Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |