Evaporación de un agujero negro de Schwarzschild y potenciales efectivos

ilustraciones, graficas

Autores:
Pitalua Pantoja, Jorge Luis
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81357
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81357
https://repositorio.unal.edu.co/
Palabra clave:
520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
Black Holes
Greybody Factors
Tunnel Effect
Thermofield Dynamic
Schwarzschild Black Hole
Dinámica de campos térmicos
Agujero Negro de Schwarzschild
Factores de cuerpo gris
Tunelamiento
Agujero negro
Black holes
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e9efc1fad2e9d67a8e36497f67badd8f
oai_identifier_str oai:repositorio.unal.edu.co:unal/81357
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
dc.title.translated.eng.fl_str_mv Evaporation of a Schwarzschild black hole and effective potentials
title Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
spellingShingle Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
Black Holes
Greybody Factors
Tunnel Effect
Thermofield Dynamic
Schwarzschild Black Hole
Dinámica de campos térmicos
Agujero Negro de Schwarzschild
Factores de cuerpo gris
Tunelamiento
Agujero negro
Black holes
title_short Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
title_full Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
title_fullStr Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
title_full_unstemmed Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
title_sort Evaporación de un agujero negro de Schwarzschild y potenciales efectivos
dc.creator.fl_str_mv Pitalua Pantoja, Jorge Luis
dc.contributor.advisor.none.fl_str_mv Arenas Salazar, José Robel
dc.contributor.author.none.fl_str_mv Pitalua Pantoja, Jorge Luis
dc.subject.ddc.spa.fl_str_mv 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
topic 520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicos
Black Holes
Greybody Factors
Tunnel Effect
Thermofield Dynamic
Schwarzschild Black Hole
Dinámica de campos térmicos
Agujero Negro de Schwarzschild
Factores de cuerpo gris
Tunelamiento
Agujero negro
Black holes
dc.subject.proposal.eng.fl_str_mv Black Holes
Greybody Factors
Tunnel Effect
Thermofield Dynamic
Schwarzschild Black Hole
dc.subject.proposal.spa.fl_str_mv Dinámica de campos térmicos
Agujero Negro de Schwarzschild
Factores de cuerpo gris
Tunelamiento
dc.subject.unesco.spa.fl_str_mv Agujero negro
dc.subject.unesco.eng.fl_str_mv Black holes
description ilustraciones, graficas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-03-24T14:35:21Z
dc.date.available.none.fl_str_mv 2022-03-24T14:35:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81357
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81357
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv S. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys, 43:199 220, 1975
W. Israel. Thermo- eld dynamics of black holes. Physics Letters A, 57(2):107 110, 1976.
W. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870 892, 1976
Stephen A. Fulling. Nonuniqueness of canonical eld quantization in riemannian space-time. Physical Review D, 7(10):2850 2862, 1973.
J. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radiance. Physical Review D, 13(8):2188 2203, apr 1976.
G. W. Gibbons and M. J. Perry. Black Holes and Thermal Green Functions. Proc R Soc London Ser A, 358(1695):467 494, 1978
J. D. Bekenstein. Black holes and the second law. Lettere Al Nuovo Cimento Series 2, 4(15):737 740, 1972.
Jacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333 2346, 1973
Jacob D. Bekenstein. Statistical black-holr thermodynamics. Physical Review D, 12(10):3077 3085, 1975.
Jacob D. Bekenstein. Black-hole Thermodynamics. Physics Today, 33(1):24 31, 1980.
David G Boulware. Quantum eld theory in Schwarzschild and Rindler spaces. Physical Review D, 11:1404 1424, 1975.
David G. Boulware. Hawking Radiation and thin shells. Physical Review D, 13:2169 2187, 1976.
S. W. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191 197, 1976.
Leonard Parker. The production of elemetary particles by strong gravitational elds. PhD thesis, 1977
Don N Page. Particle emission rates from a black hole.I. Phys. Rev. D13, (2):198 206, 1976
Don N. Page. Particle emission rates from a black hole. II. Massless particles from a rotating hole. Physical Review D, 14(12):3260 3273, 1976.
Bryce S. DeWitt. Quantum eld theory in curved spacetime. Physics Reports, 19(6):295 357, 1975
Sai Iyer and Cli ord M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Physical Review D, 35(12):3621 3631, 1987
D. V. Gal'tsov and A. A. Matiukhin. Matrix WKB method for black hole normal modes and quasibound states. Classical and Quantum Gravity, 9(9):2039 2055, 1992.
Finnian Gray and Matt Visser. Greybody factors for Schwarzschild black holes: Path-ordered ex ponentials and product integrals. Universe, 4(9), 2018.
Don N Page. Black hole information. arXiv:hep-th/9305040v5, pages 1 41, 1993.
Curtis G Callan, Steven B Giddings, Je rey A Harvey, and Andrew Strominger. Evanescent Black Holes arXiv : hep-th / 9111056v1 28 Nov 1991.
William A Hiscock. Models of Evaporationg Black Holes I. Physical Review D, 23(12):2813 2822, 1981.
William A Hiscock. Models of evaporating black holes II: E ects of the outgoing created radiation. Physical Review D, 23(12):2823 2827, 1981
Yuhji Kuroda. Model for Evaporating Black Holes. Progress of Theoretical Physics, 71(1):100 108, 1984.
Valentina Baccetti, Sebastian Murk, and Daniel R Terno. Black hole evaporation and semiclassical thin shell collapse. Physical Review D, 100(6):064054, sep 2019
Valeri P. Frolov and Andrei Zelnikov. Introduction to Black Hole Physics. Oxford University Press, New York, 2012.
Alessandro Fabbri and José Navarro-Salas. Modeling black hole evaporation. 2005.
Leonard Susskind and James Lindesay. An Introduction to Black Holes, Information and the String Theory Revolution. The Holographic Universe, volume 91. World Scienti c Publishing Co. Pte. Ltd, Singapore, 2005
Robert M. Wald. General Relativity. The University Chicago Press, Chicago, 1984.
Eduard Alexis Larrañaga. Agujeros negros clasicos. Notas de Clases no Publicadas., 2008
Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 2016
L. D. LANDAU and E. M. LIFSHITZ. Mecánica Cuántica no-Relativista, volume III. 1983.
J. P. Vigneron and Ph Lambin. Transmission coe cient for one-dimensional potential barriers using continued fractions. Journal of Physics A: Mathematical and General, 13(4):1135 1144, 1980.
G.G. Emch. Algebraic Methods in Statistical and qunatum Field Theory. Jhon Wiley ,New York, 1972.
R. Haag. Local Quanrum Physics: Field, Particles, Algebra. Springer-Verlag, New York, 1992
Yasushi Takahashi and Hiroomi Umezawa. Thermo Field Dynamics. International Journal of Modern Physics B, 10(2):1755 1805, 1996.
H. Umezawa. Thermo Field Dynamics and Condensed States. North-Holland Publishing Company, 1982.
H. Umezawa. Advanced eld theory: Micro, macro, and thermal Physics, 1995.
Ademir E Santana and F.C. Khanna. Lie Groups and the thermal eld theory. Physics Letters A, 203:68 72, 1995.
Ademir E. Santana, F. C. Khanna, H. Chu, and Y. C. Chang. Thermal lie groups, classical mechanics, and thermo eld dynamics. Annals of Physics, 249(2):481 498, 1996.
A. Kireev, H Umezawa, A. Mann, and M. Revzen. Thermal Squeezed States in Thermo Field Dynamics ad Quabtum and Thermal Fluctuations. Physics Letters A, 142(4):215 221, 1989.
N.D Birrel and P.C.W Davies. Quantum Fields in Curved Space. Cambridge University Press, 1994.
Walter Greiner. Quantum Mechanics. Springer, 2000
J. Robel Arenas and Juan Manuel Tejeiro-Sarmiento. ENTROPIA DE ENTANGLEMENT ASO CIADA A LA RADIACION UNRUH. Revista Colombiana de Física, 34(1):565 568, 2002
H. Majima and A. Suzuki. A generalized time-dependent harmonic oscillator at nite temperature. AIP Conference Proceedings, 832(2006):549 552, 2006.
Jane H. MacGibbon and B. R. Webber. Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra. Physical Review D, 41(10):3052 3079, 1990
M. Dias, Daniel L. Nedel, and C. R. Senise. Time dependent Entanglement Entropy in dissipative conformal theories: TFD approach. pages 1 28, 2019
J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90 95, 2007.
Charles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R' o, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357 362, September 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 82 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81357/3/ThesisV19012022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81357/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81357/5/ThesisV19012022.pdf.jpg
bitstream.checksum.fl_str_mv 32079e7a1d80a0ddca206c7f205d8e8c
8153f7789df02f0a4c9e079953658ab2
a369805e1a66d199f508165fea7d8fe2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089913357828096
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arenas Salazar, José Robelef9c9f40f98f012478a028312f2e76ad600Pitalua Pantoja, Jorge Luis3ec7037c76b613fbcbee600f84c720a12022-03-24T14:35:21Z2022-03-24T14:35:21Z2021https://repositorio.unal.edu.co/handle/unal/81357Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEn el presente trabajo se determinó la validez de la teoría de dinámica de campos térmicos para el estudio de un proceso de evaporación de un agujero negro de Schwarzschild. De igual forma, se determinó de forma numérica los factores de cuerpo gris para un campo escalar con masa y la manera en que los parámetros propios del sistema intervienen en las probabilidades de transmisión de los modos del campo. El proceso de Evaporación descrito es semiclasico y se planteó en torno al proceso de tunelamiento, que se presenta de forma natural, en torno a la barrera de potencial generada por el agujero negro. (Texto tomado de la fuente)In the present research work we sought to determine the general characteristics of an evaporation process of a Schwarzschild black hole, in the context of thermo eld dynamics. From a semiclassical point of view, we determined the necessary conditions to study a tunneling process through the potential barrier produced by the hole, and how this intervenes in the evaporation process. Once the conditions were established, characteristic situations that could occur in the evaporation process were established and the gray body factors were determined, using a numerical method based on the discretization of the potential barrier.MaestríaMagíster en Ciencias - Física82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá520 - Astronomía y ciencias afines::523 - Cuerpos y fenómenos celestes específicosBlack HolesGreybody FactorsTunnel EffectThermofield DynamicSchwarzschild Black HoleDinámica de campos térmicosAgujero Negro de SchwarzschildFactores de cuerpo grisTunelamientoAgujero negroBlack holesEvaporación de un agujero negro de Schwarzschild y potenciales efectivosEvaporation of a Schwarzschild black hole and effective potentialsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys, 43:199 220, 1975W. Israel. Thermo- eld dynamics of black holes. Physics Letters A, 57(2):107 110, 1976.W. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870 892, 1976Stephen A. Fulling. Nonuniqueness of canonical eld quantization in riemannian space-time. Physical Review D, 7(10):2850 2862, 1973.J. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radiance. Physical Review D, 13(8):2188 2203, apr 1976.G. W. Gibbons and M. J. Perry. Black Holes and Thermal Green Functions. Proc R Soc London Ser A, 358(1695):467 494, 1978J. D. Bekenstein. Black holes and the second law. Lettere Al Nuovo Cimento Series 2, 4(15):737 740, 1972.Jacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333 2346, 1973Jacob D. Bekenstein. Statistical black-holr thermodynamics. Physical Review D, 12(10):3077 3085, 1975.Jacob D. Bekenstein. Black-hole Thermodynamics. Physics Today, 33(1):24 31, 1980.David G Boulware. Quantum eld theory in Schwarzschild and Rindler spaces. Physical Review D, 11:1404 1424, 1975.David G. Boulware. Hawking Radiation and thin shells. Physical Review D, 13:2169 2187, 1976.S. W. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191 197, 1976.Leonard Parker. The production of elemetary particles by strong gravitational elds. PhD thesis, 1977Don N Page. Particle emission rates from a black hole.I. Phys. Rev. D13, (2):198 206, 1976Don N. Page. Particle emission rates from a black hole. II. Massless particles from a rotating hole. Physical Review D, 14(12):3260 3273, 1976.Bryce S. DeWitt. Quantum eld theory in curved spacetime. Physics Reports, 19(6):295 357, 1975Sai Iyer and Cli ord M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Physical Review D, 35(12):3621 3631, 1987D. V. Gal'tsov and A. A. Matiukhin. Matrix WKB method for black hole normal modes and quasibound states. Classical and Quantum Gravity, 9(9):2039 2055, 1992.Finnian Gray and Matt Visser. Greybody factors for Schwarzschild black holes: Path-ordered ex ponentials and product integrals. Universe, 4(9), 2018.Don N Page. Black hole information. arXiv:hep-th/9305040v5, pages 1 41, 1993.Curtis G Callan, Steven B Giddings, Je rey A Harvey, and Andrew Strominger. Evanescent Black Holes arXiv : hep-th / 9111056v1 28 Nov 1991.William A Hiscock. Models of Evaporationg Black Holes I. Physical Review D, 23(12):2813 2822, 1981.William A Hiscock. Models of evaporating black holes II: E ects of the outgoing created radiation. Physical Review D, 23(12):2823 2827, 1981Yuhji Kuroda. Model for Evaporating Black Holes. Progress of Theoretical Physics, 71(1):100 108, 1984.Valentina Baccetti, Sebastian Murk, and Daniel R Terno. Black hole evaporation and semiclassical thin shell collapse. Physical Review D, 100(6):064054, sep 2019Valeri P. Frolov and Andrei Zelnikov. Introduction to Black Hole Physics. Oxford University Press, New York, 2012.Alessandro Fabbri and José Navarro-Salas. Modeling black hole evaporation. 2005.Leonard Susskind and James Lindesay. An Introduction to Black Holes, Information and the String Theory Revolution. The Holographic Universe, volume 91. World Scienti c Publishing Co. Pte. Ltd, Singapore, 2005Robert M. Wald. General Relativity. The University Chicago Press, Chicago, 1984.Eduard Alexis Larrañaga. Agujeros negros clasicos. Notas de Clases no Publicadas., 2008Inc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 2016L. D. LANDAU and E. M. LIFSHITZ. Mecánica Cuántica no-Relativista, volume III. 1983.J. P. Vigneron and Ph Lambin. Transmission coe cient for one-dimensional potential barriers using continued fractions. Journal of Physics A: Mathematical and General, 13(4):1135 1144, 1980.G.G. Emch. Algebraic Methods in Statistical and qunatum Field Theory. Jhon Wiley ,New York, 1972.R. Haag. Local Quanrum Physics: Field, Particles, Algebra. Springer-Verlag, New York, 1992Yasushi Takahashi and Hiroomi Umezawa. Thermo Field Dynamics. International Journal of Modern Physics B, 10(2):1755 1805, 1996.H. Umezawa. Thermo Field Dynamics and Condensed States. North-Holland Publishing Company, 1982.H. Umezawa. Advanced eld theory: Micro, macro, and thermal Physics, 1995.Ademir E Santana and F.C. Khanna. Lie Groups and the thermal eld theory. Physics Letters A, 203:68 72, 1995.Ademir E. Santana, F. C. Khanna, H. Chu, and Y. C. Chang. Thermal lie groups, classical mechanics, and thermo eld dynamics. Annals of Physics, 249(2):481 498, 1996.A. Kireev, H Umezawa, A. Mann, and M. Revzen. Thermal Squeezed States in Thermo Field Dynamics ad Quabtum and Thermal Fluctuations. Physics Letters A, 142(4):215 221, 1989.N.D Birrel and P.C.W Davies. Quantum Fields in Curved Space. Cambridge University Press, 1994.Walter Greiner. Quantum Mechanics. Springer, 2000J. Robel Arenas and Juan Manuel Tejeiro-Sarmiento. ENTROPIA DE ENTANGLEMENT ASO CIADA A LA RADIACION UNRUH. Revista Colombiana de Física, 34(1):565 568, 2002H. Majima and A. Suzuki. A generalized time-dependent harmonic oscillator at nite temperature. AIP Conference Proceedings, 832(2006):549 552, 2006.Jane H. MacGibbon and B. R. Webber. Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra. Physical Review D, 41(10):3052 3079, 1990M. Dias, Daniel L. Nedel, and C. R. Senise. Time dependent Entanglement Entropy in dissipative conformal theories: TFD approach. pages 1 28, 2019J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90 95, 2007.Charles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R' o, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357 362, September 2020EstudiantesORIGINALThesisV19012022.pdfThesisV19012022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf1278792https://repositorio.unal.edu.co/bitstream/unal/81357/3/ThesisV19012022.pdf32079e7a1d80a0ddca206c7f205d8e8cMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81357/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAILThesisV19012022.pdf.jpgThesisV19012022.pdf.jpgGenerated Thumbnailimage/jpeg4650https://repositorio.unal.edu.co/bitstream/unal/81357/5/ThesisV19012022.pdf.jpga369805e1a66d199f508165fea7d8fe2MD55unal/81357oai:repositorio.unal.edu.co:unal/813572023-08-02 23:03:42.098Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK