Nanoesferas de carbono: Una mirada desde el proceso de síntesis

ilustraciones, diagramas, fotografías a color

Autores:
Ramírez Moreno, David Ricardo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84574
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84574
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::546 - Química inorgánica
Compuestos de carbono
Materiales compuestos
Carbon compounds
Composite materials
Biomasa
Nanoesfera de carbono
Método de carbonización hidrotermal (CHT)
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e9c91b560b09a074ff07f69279e5b9c6
oai_identifier_str oai:repositorio.unal.edu.co:unal/84574
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Nanoesferas de carbono: Una mirada desde el proceso de síntesis
dc.title.translated.eng.fl_str_mv Carbon nanospheres: A look from the synthesis method
title Nanoesferas de carbono: Una mirada desde el proceso de síntesis
spellingShingle Nanoesferas de carbono: Una mirada desde el proceso de síntesis
540 - Química y ciencias afines::546 - Química inorgánica
Compuestos de carbono
Materiales compuestos
Carbon compounds
Composite materials
Biomasa
Nanoesfera de carbono
Método de carbonización hidrotermal (CHT)
title_short Nanoesferas de carbono: Una mirada desde el proceso de síntesis
title_full Nanoesferas de carbono: Una mirada desde el proceso de síntesis
title_fullStr Nanoesferas de carbono: Una mirada desde el proceso de síntesis
title_full_unstemmed Nanoesferas de carbono: Una mirada desde el proceso de síntesis
title_sort Nanoesferas de carbono: Una mirada desde el proceso de síntesis
dc.creator.fl_str_mv Ramírez Moreno, David Ricardo
dc.contributor.advisor.none.fl_str_mv Romero Malagón, Eduard Ricardo
dc.contributor.author.none.fl_str_mv Ramírez Moreno, David Ricardo
dc.contributor.researchgroup.spa.fl_str_mv laboratorio de Investigación en Combustibles y Energía
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::546 - Química inorgánica
topic 540 - Química y ciencias afines::546 - Química inorgánica
Compuestos de carbono
Materiales compuestos
Carbon compounds
Composite materials
Biomasa
Nanoesfera de carbono
Método de carbonización hidrotermal (CHT)
dc.subject.lemb.spa.fl_str_mv Compuestos de carbono
Materiales compuestos
dc.subject.lemb.eng.fl_str_mv Carbon compounds
Composite materials
dc.subject.proposal.spa.fl_str_mv Biomasa
Nanoesfera de carbono
Método de carbonización hidrotermal (CHT)
description ilustraciones, diagramas, fotografías a color
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-08-16T20:44:23Z
dc.date.available.none.fl_str_mv 2023-08-16T20:44:23Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84574
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84574
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Y. Gong, H. Wang, Z. Wei, L. Xie, and Y. Wang, “An E ffi cient Way To Introduce Hierarchical Structure into Biomass- Based Hydrothermal Carbonaceous Materials,” ACS Sustain. Chem. Eng., vol. 2, pp. 2435–2441, 2014.
G. García-Rosales, L. C. Longoria-Gándara, S. Martínez-Gallegos, and J. González-Juárez, “Synthesis and Characterization of Carbon Conditioned with Iron Nanoparticles Using Pineapple-Peel,” Adv. Nanoparticles, vol. 02, no. 04, pp. 384– 390, 2013.
C. Chen et al., “Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass,” J. Am. Chem. Soc., vol. 139, no. 7, pp. 2657–2663, 2017.
P. Zhang, X. Song, C. Yu, J. Gui, and J. Qiu, “Biomass-Derived Carbon Nanospheres with Turbostratic Structure as Metal-Free Catalysts for Selective Hydrogenation of o-Chloronitrobenzene,” ACS Sustain. Chem. Eng., vol. 5, no. 9, pp. 7481–7485, 2017.
E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H. J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, no. September. Elsevier, p. 122386, 2020.
A. L. Cazetta et al., “Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes,” ACS Sustain. Chem. Eng., vol. 4, no. 3, pp. 1058–1068, 2016.
H. Wan and X. Hu, “Nitrogen doped biomass-derived porous carbon as anode materials of lithium ion batteries,” Solid State Ionics, vol. 341, no. May, p. 115030, 2019.
A. Muscat, E. M. de Olde, I. J. M. de Boer, and R. Ripoll-Bosch, “The battle for biomass: A systematic review of food-feed-fuel competition,” Glob. Food Sec., no. April, p. 100330, 2019.
S. Acevedo et al., “Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa,” vol. 23, no. 2, pp. 81– 88, 2015.
Y. Xia et al., “Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium-Ion Batteries Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium- Ion Batteries,” vol. 7, no. 8, pp. 7083–7092, 2013.
C. Guo, W. Liao, Z. Li, and C. Chen, “Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium,” Carbon N. Y., vol. 85, pp. 279–288, 2015.
B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici, “Engineering carbon materials from the hydrothermal carbonization process of biomass,” Adv. Mater., vol. 22, no. 7, pp. 813–828, 2010.
N. N. Anshits, O. A. Mikhailova, A. N. Salanov, and A. G. Anshits, “Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia),” Fuel, vol. 89, no. 8, pp. 1849–1862, 2010.
E. García-Bordejé, E. Pires, and J. M. Fraile, “Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions,” Carbon N. Y., vol. 123, pp. 421–432, 2017.
H. Li et al., “Direct preparation of hollow nanospheres with kraft lignin: A facile strategy for effective utilization of biomass waste,” BioResources, vol. 11, no. 2, pp. 3073–3083, 2016.
Y. Li, M. Wu, B. Wang, Y. Wu, M. Ma, and X. Zhang, “Synthesis of Magnetic Lignin-Based Hollow Microspheres: A Highly Adsorptive and Reusable Adsorbent Derived from Renewable Resources,” ACS Sustain. Chem. Eng., vol. 4, no. 10, pp. 5523–5532, 2016.
F. Xiong et al., “Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly,” Ind. Crops Prod., vol. 100, pp. 146–152, 2017.
T. A. Khan, A. S. Saud, S. S. Jamari, M. H. A. Rahim, J.-W. Park, and H.-J. Kim, “Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review,” Biomass and Bioenergy, vol. 130, no. October 2018, p. 105384, 2019.
A. A. Arie, H. Kristianto, M. Halim, and J. K. Lee, “Biomass based carbon nanospheres as electrode materials in lithium ion batteries,” ECS Trans., vol. 66, no. 11, pp. 13–19, 2015.
P. Veerakumar, P. Thanasekaran, K. C. Lin, and S. Bin Liu, “Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium,” ACS Sustain. Chem. Eng., vol. 5, no. 6, pp. 5302–5312, 2017.
K. Tang, R. J. White, X. Mu, M. M. Titirici, P. A. Van Aken, and J. Maier, “Hollow carbon nanospheres with a high rate capability for lithium-based batteries,” ChemSusChem, vol. 5, no. 2, pp. 400–403, 2012.
P. Liu, X. Wang, and Y. Wang, “Design of carbon black/polypyrrole composite hollow nanospheres and performance evaluation as electrode materials for supercapacitors,” ACS Sustain. Chem. Eng., vol. 2, no. 7, pp. 1795–1801, 2014.
N. Ranjbar and C. Kuenzel, “Cenospheres: A review,” Fuel, vol. 207, pp. 1–12, 2017.
M.-M. Titirici and M. Antonietti, “Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization,” Chem. Soc. Rev., vol. 39, no. 1, pp. 103–116, 2010.
R. J. White, K. Tauer, M. Antonietti, and M. M. Titirici, “Functional hollow carbon nanospheres by latex templating,” J. Am. Chem. Soc., vol. 132, no. 49, pp. 17360– 17363, 2010.
J. Delgado and M. Herranz, “Nanoestructuras de carbono : un nuevo desafío científico,” An. la Real, vol. 103, no. 4, pp. 5–13, 2007.
M. Klose et al., “Hierarchically nanostructured hollow carbon nanospheres for ultra- fast and long-life energy storage,” Carbon N. Y., vol. 106, no. May, pp. 306–313, 2016.
J. Bartelmess and S. Giordani, “Carbon nano-onions (multi-layer fullerenes): Chemistry and applications,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 1980– 1998, 2014.
H. Qu, X. Zhang, J. Zhan, W. Sun, Z. Si, and H. Chen, “Biomass-Based Nitrogen- Doped Hollow Carbon Nanospheres Derived Directly from Glucose and Glucosamine: Structural Evolution and Supercapacitor Properties,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7380–7389, 2018.
G. Wang et al., “Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction,” Int. J. Hydrogen Energy, vol. 41, no. 32, pp. 14101–14110, 2016.
Z. Han, Z. Du, X. Cong, and L. Zhao, “A new easy method to synthesize hollow carbon nanospheres,” Synth. Met., vol. 187, no. 1, pp. 91–93, 2014.
C. Zhang et al., “Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage,” Carbon N. Y., vol. 50, no. 10, pp. 3513–3521, 2012.
C. Mo, J. Zhang, and G. Zhang, “Hierarchical porous carbon with three dimensional nanonetwork from water hyacinth leaves for energy storage,” J. Energy Storage, vol. 32, no. July, p. 101848, 2020.
S. Yallappa et al., “Fabrication of carbon nanospheres using natural resources and their voltametric studies of dopamine,” Mater. Today Proc., vol. 5, no. 1, pp. 3093– 3098, 2018.
H. Kristianto, C. D. Putra, A. A. Arie, M. Halim, and J. K. Lee, “Synthesis and Characterization of Carbon Nanospheres Using Cooking Palm Oil as Natural Precursors onto Activated Carbon Support,” Procedia Chem., vol. 16, pp. 328–333, 2015.
X. Cai et al., “Heteroatom-doped carbon nanospheres derived from cuttlefish ink: A bifunctional electrocatalyst for oxygen reduction and evolution,” Int. J. Hydrogen Energy, vol. 43, no. 37, pp. 17708–17717, 2018.
S. Supriya, A. Divyashree, S. Yallappa, and G. Hegde, “Carbon nanospheres obtained from carbonization of bio-resource: A catalyst free synthesis,” Mater. Today Proc., vol. 5, no. 1, pp. 2907–2911, 2018.
K. Yu, J. Li, H. Qi, and C. Liang, “Cellulose-Derived Hollow Carbonaceous Nanospheres from Rice Husks as Anode for Lithium-Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance,” ChemistrySelect, vol. 2, no. 13, pp. 3627–3632, 2017.
M. Saxena and S. Sarkar, “Synthesis of carbogenic nanosphere from peanut skin,” Diam. Relat. Mater., vol. 24, pp. 11–14, 2012.
D. A., S. A. B. A. Manaf, Y. S., C. K., K. N., and G. Hegde, “Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach,” J. Energy Chem., vol. 25, no. 5, pp. 880–887, 2016.
Y. Weng, S. Guan, L. Wang, X. Qu, and S. Zhou, “Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers,” J. Mater. Chem. B, vol. 7, no. 11, pp. 1920–1925, 2019.
V. S. Bhat et al., “Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste,” J. Energy Storage, vol. 32, no. July, p. 101829, 2020.
X. Lu, J. Chen, J. Lu, S. Wang, and T. Xia, “Monosaccharides and carbon nanosphere obtained by acidic concentrated LiBr treatment of raw crop residues via optimizing the synthesis process,” Bioresour. Technol., vol. 310, no. May, p. 123522, 2020.
L. Xie et al., “Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures,” Green Chem., vol. 20, no. 20, pp. 4596–4601, 2018.
H. Zhang, X. Yong, J. Zhou, J. Deng, and Y. Wu, “Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent,” ACS Appl. Mater. Interfaces, vol. 8, no. 4, pp. 2753–2763, 2016.
M.-M. Titirici, M. Antonietti, and N. Baccile, “Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses,” Green Chem., vol. 10, no. 11, p. 1204, 2008.
P. N. Bhagat, K. R. Patil, D. S. Bodas, and K. M. Paknikar, “Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight,” RSC Adv., vol. 5, no. 73, pp. 59491–59494, 2015.
R. R. Gaddam, D. Yang, R. Narayan, K. V. S. N. Raju, N. A. Kumar, and X. S. Zhao, “Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries,” Nano Energy, vol. 26, pp. 346–352, 2016.
S. D. Pengfei Zhang, Zhen-An Qiao, “Recent Advances in Carbon Nanospheres: Synthetic Routes and Applications,” Chem. Commun., vol. 51, pp. 9246–9256, 2015.
P. Liu, Y. Wang, and J. Liu, “Biomass-derived porous carbon materials for advanced lithium sulfur batteries,” J. Energy Chem., vol. 34, pp. 171–185, 2019.
H. Yang, S. Ye, J. Zhou, and T. Liang, “Biomass-derived porous carbon materials for supercapacitor,” Front. Chem., vol. 7, no. APR, pp. 1–17, 2019.
Y. Gao, X. H. Wang, H. P. Yang, and H. P. Chen, “Characterization of products from hydrothermal treatments of cellulose,” Energy, vol. 42, no. 1, pp. 457–465, 2012.
M. Wilk, A. Magdziarz, I. Kalemba-Rec, and M. Szymańska-Chargot, “Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia,” Energy, vol. 202, 2020.
Y. Lei, H. Su, and R. Tian, “Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk,” RSC Adv., vol. 6, no. 109, pp. 107829–107835, 2016.
M. T. Reza et al., “Hydrothermal Carbonization of Biomass for Energy and Crop Production,” Appl. Bioenergy, vol. 1, no. 1, pp. 11–29, 2014.
J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, “Recent progress of biomass-derived carbon materials for supercapacitors,” J. Power Sources, vol. 451, no. October 2019, p. 227794, 2020.
W. Chen and D. Deng, “Deflated carbon nanospheres encapsulating tin cores decorated on layered 3-d carbon structures for low-cost sodium ion batteries,” ACS Sustain. Chem. Eng., vol. 3, no. 1, pp. 63–70, 2015.
M. Klug, “Pirólisis, un proceso para derretir la biomasa,” Rev. Química, vol. 26, no. 1–2, pp. 37–40, 2012.
N. Afanasjeva, L. C. Castillo, and J. C. Sinisterra, “Lignocellulosic biomass. Part II: Tendence in the biomass pyrolysis.,” J. Sci. with Technol. Appl., vol. 5, no. 2018, pp. 4–22, 2018.
V. Benavente, E. Calabuig, and A. Fullana, “Upgrading of moist agro-industrial wastes by hydrothermal carbonization,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 89–98, 2015.
D. He et al., “One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications,” J. Colloid Interface Sci., vol. 581, pp. 238–250, 2021.
M. M. Titirici, A. Thomas, S. H. Yu, J. O. Müller, and M. Antonietti, “A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization,” Chem. Mater., vol. 19, no. 17, pp. 4205–4212, 2007.
H. Bamdad, K. Hawboldt, and S. MacQuarrie, “A review on common adsorbents for acid gases removal: Focus on biochar,” Renew. Sustain. Energy Rev., vol. 81, no. May, pp. 1705–1720, 2018.
A. Pistone and C. Espro, “Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications,” Curr. Opin. Green Sustain. Chem., vol. 26, p. 100374, 2020.
R. Hashaikeh, Z. Fang, I. S. Butler, J. Hawari, and J. A. Kozinski, “Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion,” Fuel, vol. 86, no. 10–11, pp. 1614–1622, 2007.
X. Lu, K. Xiang, W. Zhou, Y. Zhu, and H. Chen, “Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors,” Bull. Mater. Sci., vol. 41, no. 6, pp. 1–7, 2018.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 74 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84574/4/1013628219.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84574/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84574/6/1013628219.2023.pdf.jpg
bitstream.checksum.fl_str_mv c76afe9554a11bcc784da5e9ae390c02
eb34b1cf90b7e1103fc9dfd26be24b4a
3764335b7cab0763c356fabbc9468933
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089939450593280
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Romero Malagón, Eduard Ricardob22b63365b00c9769f834c455fa56509Ramírez Moreno, David Ricardo65a5e018a225a0b71714db82dfaff40claboratorio de Investigación en Combustibles y Energía2023-08-16T20:44:23Z2023-08-16T20:44:23Z2023https://repositorio.unal.edu.co/handle/unal/84574Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a colorLas nanoesferas de carbono son un campo de exploración potencial, pues su formación y propiedades permiten encontrar en ellos soluciones o alternativas a problemáticas ambientales. Por su parte, las nanoesferas de carbono y su gran versatilidad en forma, textura y tamaño, son un material que posee características de uso potencial en la industrial y, pueden ser sintetizados a partir de diferentes métodos sin embargo, el método de carbonización hidrotermal (HTC por sus siglas en inglés, Hydrothermal Carbonization), es promisorio en términos económicos y ambientales, por su ventaja en el uso de reactivos, condiciones como temperatura, presión, tiempo de residencia y pH, generan cambios notorios en los materiales que, a partir de su estudio, pueden ser utilizados en la remoción de contaminantes, como catalizadores y otras aplicaciones. Finalmente, la biomasa ha demostrado tener buenos rendimientos en el proceso de síntesis de nanoesferas de carbono, pues, su contenido en agua es utilizado en el proceso de HTC, formando entonces una relación productiva y viable, entre la biomasa residual y el método HTC. Aquí se presenta una revisión del rendimiento de algunas biomasas y la caracterización de sus nanomateriales, con un propósito de resaltar el método HTC como una alternativa sostenible y promisoria. (Texto tomado de la fuente)Carbon nanospheres are a field of potential exploration since their formation and properties allow them to be used in solutions or alternatives to environmental problems. On the other hand, these nanospheres and their great versatility in shape, texture and size, are a material that has characteristics of potential use in industry and can be synthesized from different methods, however, the hydrothermal carbonization method (HTC), is promising in economic and environmental terms, due to its advantage in the use of reagents, conditions such as temperature, pressure, residence time and pH, generate notorious changes in the materials that, from their study, they can be used in the removal of contaminants, as catalysts and other applications. Finally, biomass has shown to have good yields in the carbon nanosphere synthesis process, since its water content is used in the HTC process, thus forming a productive and viable relationship between the residual biomass and the HTC method. Here we present a review of the performance of some biomasses and the characterization of their nanomaterials, with the purpose of highlighting the HTC method as a sustainable and promising alternativeMaestríaMateriales y energía74 páginasapplication/pdfspa540 - Química y ciencias afines::546 - Química inorgánicaCompuestos de carbonoMateriales compuestosCarbon compoundsComposite materialsBiomasaNanoesfera de carbonoMétodo de carbonización hidrotermal (CHT)Nanoesferas de carbono: Una mirada desde el proceso de síntesisCarbon nanospheres: A look from the synthesis methodTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáY. Gong, H. Wang, Z. Wei, L. Xie, and Y. Wang, “An E ffi cient Way To Introduce Hierarchical Structure into Biomass- Based Hydrothermal Carbonaceous Materials,” ACS Sustain. Chem. Eng., vol. 2, pp. 2435–2441, 2014.G. García-Rosales, L. C. Longoria-Gándara, S. Martínez-Gallegos, and J. González-Juárez, “Synthesis and Characterization of Carbon Conditioned with Iron Nanoparticles Using Pineapple-Peel,” Adv. Nanoparticles, vol. 02, no. 04, pp. 384– 390, 2013.C. Chen et al., “Asymmetric Flasklike Hollow Carbonaceous Nanoparticles Fabricated by the Synergistic Interaction between Soft Template and Biomass,” J. Am. Chem. Soc., vol. 139, no. 7, pp. 2657–2663, 2017.P. Zhang, X. Song, C. Yu, J. Gui, and J. Qiu, “Biomass-Derived Carbon Nanospheres with Turbostratic Structure as Metal-Free Catalysts for Selective Hydrogenation of o-Chloronitrobenzene,” ACS Sustain. Chem. Eng., vol. 5, no. 9, pp. 7481–7485, 2017.E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H. J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, no. September. Elsevier, p. 122386, 2020.A. L. Cazetta et al., “Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes,” ACS Sustain. Chem. Eng., vol. 4, no. 3, pp. 1058–1068, 2016.H. Wan and X. Hu, “Nitrogen doped biomass-derived porous carbon as anode materials of lithium ion batteries,” Solid State Ionics, vol. 341, no. May, p. 115030, 2019.A. Muscat, E. M. de Olde, I. J. M. de Boer, and R. Ripoll-Bosch, “The battle for biomass: A systematic review of food-feed-fuel competition,” Glob. Food Sec., no. April, p. 100330, 2019.S. Acevedo et al., “Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa Síntesis y caracterización de esferas de carbono mediante carbonización hidrotérmica de biomasa,” vol. 23, no. 2, pp. 81– 88, 2015.Y. Xia et al., “Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium-Ion Batteries Green and Facile Fabrication of Hollow Porous MnO / C Microspheres from Microalgaes for Lithium- Ion Batteries,” vol. 7, no. 8, pp. 7083–7092, 2013.C. Guo, W. Liao, Z. Li, and C. Chen, “Exploration of the catalytically active site structures of animal biomass-modified on cheap carbon nanospheres for oxygen reduction reaction with high activity, stability and methanol-tolerant performance in alkaline medium,” Carbon N. Y., vol. 85, pp. 279–288, 2015.B. Hu, K. Wang, L. Wu, S. H. Yu, M. Antonietti, and M. M. Titirici, “Engineering carbon materials from the hydrothermal carbonization process of biomass,” Adv. Mater., vol. 22, no. 7, pp. 813–828, 2010.N. N. Anshits, O. A. Mikhailova, A. N. Salanov, and A. G. Anshits, “Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia),” Fuel, vol. 89, no. 8, pp. 1849–1862, 2010.E. García-Bordejé, E. Pires, and J. M. Fraile, “Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions,” Carbon N. Y., vol. 123, pp. 421–432, 2017.H. Li et al., “Direct preparation of hollow nanospheres with kraft lignin: A facile strategy for effective utilization of biomass waste,” BioResources, vol. 11, no. 2, pp. 3073–3083, 2016.Y. Li, M. Wu, B. Wang, Y. Wu, M. Ma, and X. Zhang, “Synthesis of Magnetic Lignin-Based Hollow Microspheres: A Highly Adsorptive and Reusable Adsorbent Derived from Renewable Resources,” ACS Sustain. Chem. Eng., vol. 4, no. 10, pp. 5523–5532, 2016.F. Xiong et al., “Preparation and formation mechanism of size-controlled lignin nanospheres by self-assembly,” Ind. Crops Prod., vol. 100, pp. 146–152, 2017.T. A. Khan, A. S. Saud, S. S. Jamari, M. H. A. Rahim, J.-W. Park, and H.-J. Kim, “Hydrothermal carbonization of lignocellulosic biomass for carbon rich material preparation: A review,” Biomass and Bioenergy, vol. 130, no. October 2018, p. 105384, 2019.A. A. Arie, H. Kristianto, M. Halim, and J. K. Lee, “Biomass based carbon nanospheres as electrode materials in lithium ion batteries,” ECS Trans., vol. 66, no. 11, pp. 13–19, 2015.P. Veerakumar, P. Thanasekaran, K. C. Lin, and S. Bin Liu, “Biomass Derived Sheet-like Carbon/Palladium Nanocomposite: An Excellent Opportunity for Reduction of Toxic Hexavalent Chromium,” ACS Sustain. Chem. Eng., vol. 5, no. 6, pp. 5302–5312, 2017.K. Tang, R. J. White, X. Mu, M. M. Titirici, P. A. Van Aken, and J. Maier, “Hollow carbon nanospheres with a high rate capability for lithium-based batteries,” ChemSusChem, vol. 5, no. 2, pp. 400–403, 2012.P. Liu, X. Wang, and Y. Wang, “Design of carbon black/polypyrrole composite hollow nanospheres and performance evaluation as electrode materials for supercapacitors,” ACS Sustain. Chem. Eng., vol. 2, no. 7, pp. 1795–1801, 2014.N. Ranjbar and C. Kuenzel, “Cenospheres: A review,” Fuel, vol. 207, pp. 1–12, 2017.M.-M. Titirici and M. Antonietti, “Chemistry and materials options of sustainable carbon materials made by hydrothermal carbonization,” Chem. Soc. Rev., vol. 39, no. 1, pp. 103–116, 2010.R. J. White, K. Tauer, M. Antonietti, and M. M. Titirici, “Functional hollow carbon nanospheres by latex templating,” J. Am. Chem. Soc., vol. 132, no. 49, pp. 17360– 17363, 2010.J. Delgado and M. Herranz, “Nanoestructuras de carbono : un nuevo desafío científico,” An. la Real, vol. 103, no. 4, pp. 5–13, 2007.M. Klose et al., “Hierarchically nanostructured hollow carbon nanospheres for ultra- fast and long-life energy storage,” Carbon N. Y., vol. 106, no. May, pp. 306–313, 2016.J. Bartelmess and S. Giordani, “Carbon nano-onions (multi-layer fullerenes): Chemistry and applications,” Beilstein J. Nanotechnol., vol. 5, no. 1, pp. 1980– 1998, 2014.H. Qu, X. Zhang, J. Zhan, W. Sun, Z. Si, and H. Chen, “Biomass-Based Nitrogen- Doped Hollow Carbon Nanospheres Derived Directly from Glucose and Glucosamine: Structural Evolution and Supercapacitor Properties,” ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 7380–7389, 2018.G. Wang et al., “Biomass-derived porous heteroatom-doped carbon spheres as a high-performance catalyst for the oxygen reduction reaction,” Int. J. Hydrogen Energy, vol. 41, no. 32, pp. 14101–14110, 2016.Z. Han, Z. Du, X. Cong, and L. Zhao, “A new easy method to synthesize hollow carbon nanospheres,” Synth. Met., vol. 187, no. 1, pp. 91–93, 2014.C. Zhang et al., “Synthesis of hollow carbon nano-onions and their use for electrochemical hydrogen storage,” Carbon N. Y., vol. 50, no. 10, pp. 3513–3521, 2012.C. Mo, J. Zhang, and G. Zhang, “Hierarchical porous carbon with three dimensional nanonetwork from water hyacinth leaves for energy storage,” J. Energy Storage, vol. 32, no. July, p. 101848, 2020.S. Yallappa et al., “Fabrication of carbon nanospheres using natural resources and their voltametric studies of dopamine,” Mater. Today Proc., vol. 5, no. 1, pp. 3093– 3098, 2018.H. Kristianto, C. D. Putra, A. A. Arie, M. Halim, and J. K. Lee, “Synthesis and Characterization of Carbon Nanospheres Using Cooking Palm Oil as Natural Precursors onto Activated Carbon Support,” Procedia Chem., vol. 16, pp. 328–333, 2015.X. Cai et al., “Heteroatom-doped carbon nanospheres derived from cuttlefish ink: A bifunctional electrocatalyst for oxygen reduction and evolution,” Int. J. Hydrogen Energy, vol. 43, no. 37, pp. 17708–17717, 2018.S. Supriya, A. Divyashree, S. Yallappa, and G. Hegde, “Carbon nanospheres obtained from carbonization of bio-resource: A catalyst free synthesis,” Mater. Today Proc., vol. 5, no. 1, pp. 2907–2911, 2018.K. Yu, J. Li, H. Qi, and C. Liang, “Cellulose-Derived Hollow Carbonaceous Nanospheres from Rice Husks as Anode for Lithium-Ion Batteries with Enhanced Reversible Capacity and Cyclic Performance,” ChemistrySelect, vol. 2, no. 13, pp. 3627–3632, 2017.M. Saxena and S. Sarkar, “Synthesis of carbogenic nanosphere from peanut skin,” Diam. Relat. Mater., vol. 24, pp. 11–14, 2012.D. A., S. A. B. A. Manaf, Y. S., C. K., K. N., and G. Hegde, “Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach,” J. Energy Chem., vol. 25, no. 5, pp. 880–887, 2016.Y. Weng, S. Guan, L. Wang, X. Qu, and S. Zhou, “Hollow carbon nanospheres derived from biomass by-product okara for imaging-guided photothermal therapy of cancers,” J. Mater. Chem. B, vol. 7, no. 11, pp. 1920–1925, 2019.V. S. Bhat et al., “Low cost, catalyst free, high performance supercapacitors based on porous nano carbon derived from agriculture waste,” J. Energy Storage, vol. 32, no. July, p. 101829, 2020.X. Lu, J. Chen, J. Lu, S. Wang, and T. Xia, “Monosaccharides and carbon nanosphere obtained by acidic concentrated LiBr treatment of raw crop residues via optimizing the synthesis process,” Bioresour. Technol., vol. 310, no. May, p. 123522, 2020.L. Xie et al., “Sustainable and scalable synthesis of monodisperse carbon nanospheres and their derived superstructures,” Green Chem., vol. 20, no. 20, pp. 4596–4601, 2018.H. Zhang, X. Yong, J. Zhou, J. Deng, and Y. Wu, “Biomass Vanillin-Derived Polymeric Microspheres Containing Functional Aldehyde Groups: Preparation, Characterization, and Application as Adsorbent,” ACS Appl. Mater. Interfaces, vol. 8, no. 4, pp. 2753–2763, 2016.M.-M. Titirici, M. Antonietti, and N. Baccile, “Hydrothermal carbon from biomass: a comparison of the local structure from poly- to monosaccharides and pentoses/hexoses,” Green Chem., vol. 10, no. 11, p. 1204, 2008.P. N. Bhagat, K. R. Patil, D. S. Bodas, and K. M. Paknikar, “Hydrothermal synthesis and characterization of carbon nanospheres: a mechanistic insight,” RSC Adv., vol. 5, no. 73, pp. 59491–59494, 2015.R. R. Gaddam, D. Yang, R. Narayan, K. V. S. N. Raju, N. A. Kumar, and X. S. Zhao, “Biomass derived carbon nanoparticle as anodes for high performance sodium and lithium ion batteries,” Nano Energy, vol. 26, pp. 346–352, 2016.S. D. Pengfei Zhang, Zhen-An Qiao, “Recent Advances in Carbon Nanospheres: Synthetic Routes and Applications,” Chem. Commun., vol. 51, pp. 9246–9256, 2015.P. Liu, Y. Wang, and J. Liu, “Biomass-derived porous carbon materials for advanced lithium sulfur batteries,” J. Energy Chem., vol. 34, pp. 171–185, 2019.H. Yang, S. Ye, J. Zhou, and T. Liang, “Biomass-derived porous carbon materials for supercapacitor,” Front. Chem., vol. 7, no. APR, pp. 1–17, 2019.Y. Gao, X. H. Wang, H. P. Yang, and H. P. Chen, “Characterization of products from hydrothermal treatments of cellulose,” Energy, vol. 42, no. 1, pp. 457–465, 2012.M. Wilk, A. Magdziarz, I. Kalemba-Rec, and M. Szymańska-Chargot, “Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia,” Energy, vol. 202, 2020.Y. Lei, H. Su, and R. Tian, “Morphology evolution, formation mechanism and adsorption properties of hydrochars prepared by hydrothermal carbonization of corn stalk,” RSC Adv., vol. 6, no. 109, pp. 107829–107835, 2016.M. T. Reza et al., “Hydrothermal Carbonization of Biomass for Energy and Crop Production,” Appl. Bioenergy, vol. 1, no. 1, pp. 11–29, 2014.J. Wang, X. Zhang, Z. Li, Y. Ma, and L. Ma, “Recent progress of biomass-derived carbon materials for supercapacitors,” J. Power Sources, vol. 451, no. October 2019, p. 227794, 2020.W. Chen and D. Deng, “Deflated carbon nanospheres encapsulating tin cores decorated on layered 3-d carbon structures for low-cost sodium ion batteries,” ACS Sustain. Chem. Eng., vol. 3, no. 1, pp. 63–70, 2015.M. Klug, “Pirólisis, un proceso para derretir la biomasa,” Rev. Química, vol. 26, no. 1–2, pp. 37–40, 2012.N. Afanasjeva, L. C. Castillo, and J. C. Sinisterra, “Lignocellulosic biomass. Part II: Tendence in the biomass pyrolysis.,” J. Sci. with Technol. Appl., vol. 5, no. 2018, pp. 4–22, 2018.V. Benavente, E. Calabuig, and A. Fullana, “Upgrading of moist agro-industrial wastes by hydrothermal carbonization,” J. Anal. Appl. Pyrolysis, vol. 113, pp. 89–98, 2015.D. He et al., “One-step green fabrication of hierarchically porous hollow carbon nanospheres (HCNSs) from raw biomass: Formation mechanisms and supercapacitor applications,” J. Colloid Interface Sci., vol. 581, pp. 238–250, 2021.M. M. Titirici, A. Thomas, S. H. Yu, J. O. Müller, and M. Antonietti, “A direct synthesis of mesoporous carbons with bicontinuous pore morphology from crude plant material by hydrothermal carbonization,” Chem. Mater., vol. 19, no. 17, pp. 4205–4212, 2007.H. Bamdad, K. Hawboldt, and S. MacQuarrie, “A review on common adsorbents for acid gases removal: Focus on biochar,” Renew. Sustain. Energy Rev., vol. 81, no. May, pp. 1705–1720, 2018.A. Pistone and C. Espro, “Current trends on turning biomass wastes into carbon materials for electrochemical sensing and rechargeable battery applications,” Curr. Opin. Green Sustain. Chem., vol. 26, p. 100374, 2020.R. Hashaikeh, Z. Fang, I. S. Butler, J. Hawari, and J. A. Kozinski, “Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion,” Fuel, vol. 86, no. 10–11, pp. 1614–1622, 2007.X. Lu, K. Xiang, W. Zhou, Y. Zhu, and H. Chen, “Biomass carbon materials derived from macadamia nut shells for high-performance supercapacitors,” Bull. Mater. Sci., vol. 41, no. 6, pp. 1–7, 2018.ORIGINAL1013628219.2023.pdf1013628219.2023.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf14773710https://repositorio.unal.edu.co/bitstream/unal/84574/4/1013628219.2023.pdfc76afe9554a11bcc784da5e9ae390c02MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84574/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1013628219.2023.pdf.jpg1013628219.2023.pdf.jpgGenerated Thumbnailimage/jpeg4676https://repositorio.unal.edu.co/bitstream/unal/84574/6/1013628219.2023.pdf.jpg3764335b7cab0763c356fabbc9468933MD56unal/84574oai:repositorio.unal.edu.co:unal/845742024-08-18 23:13:03.708Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=