Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá

ilustraciones, gráficas, tablas

Autores:
Castro Gil, César David
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83045
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83045
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::515 - Análisis
Coronavirus Infections/mortality
Infecciones por Coronavirus/mortalidad
COVID-19
Exceso de ceros
Modelos cero inflado
Modelo de Hurdle
Conteo
Espacio-temporal
Hurdle mode
Zero inflated model
Count
Spatio-temporal
Modelo matemático
Análisis estadístico
Mathematical models
Statistical analysis
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e9b7429ba6df3f002176d844c921b90e
oai_identifier_str oai:repositorio.unal.edu.co:unal/83045
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
dc.title.translated.eng.fl_str_mv Spatio-temporal model for the deaths due to COVID-19 in Cundinamarca department and Bogota city
title Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
spellingShingle Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
510 - Matemáticas::515 - Análisis
Coronavirus Infections/mortality
Infecciones por Coronavirus/mortalidad
COVID-19
Exceso de ceros
Modelos cero inflado
Modelo de Hurdle
Conteo
Espacio-temporal
Hurdle mode
Zero inflated model
Count
Spatio-temporal
Modelo matemático
Análisis estadístico
Mathematical models
Statistical analysis
title_short Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
title_full Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
title_fullStr Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
title_full_unstemmed Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
title_sort Modelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y Bogotá
dc.creator.fl_str_mv Castro Gil, César David
dc.contributor.advisor.spa.fl_str_mv Melo Martínez, Oscar Orlando
dc.contributor.author.spa.fl_str_mv Castro Gil, César David
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::515 - Análisis
topic 510 - Matemáticas::515 - Análisis
Coronavirus Infections/mortality
Infecciones por Coronavirus/mortalidad
COVID-19
Exceso de ceros
Modelos cero inflado
Modelo de Hurdle
Conteo
Espacio-temporal
Hurdle mode
Zero inflated model
Count
Spatio-temporal
Modelo matemático
Análisis estadístico
Mathematical models
Statistical analysis
dc.subject.decs.eng.fl_str_mv Coronavirus Infections/mortality
dc.subject.decs.spa.fl_str_mv Infecciones por Coronavirus/mortalidad
dc.subject.proposal.spa.fl_str_mv COVID-19
Exceso de ceros
Modelos cero inflado
Modelo de Hurdle
Conteo
Espacio-temporal
dc.subject.proposal.eng.fl_str_mv Hurdle mode
Zero inflated model
Count
Spatio-temporal
dc.subject.unesco.spa.fl_str_mv Modelo matemático
Análisis estadístico
dc.subject.unesco.eng.fl_str_mv Mathematical models
Statistical analysis
description ilustraciones, gráficas, tablas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-12-01
dc.date.accessioned.none.fl_str_mv 2023-01-20T16:55:47Z
dc.date.available.none.fl_str_mv 2023-01-20T16:55:47Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83045
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83045
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agarwal, D. K., Gelfand, A. & Citron-Pousty, S. (2002), ‘Zero-inflated models with appli- cation to spatial count data’, Environmental and Ecological Statistics 9, 341–345.
Arab, A. (2015), ‘Spatial and spatio-temporal models for modeling epidemiological data with excess zeros’, International Journal of Environmental Research and Publich Health 12, 10536–10548.
Besag, J., York, J. & Mollie, A. (1991), ‘Bayesian image restoration, with two applications in spatial statistics’, Annals of the Institute of Statistical Mathematics 43, 1–59.
Blanco, L. (2004), Probabilidad, Universidad Nacional de Colombia.
Blangiardo, M., Cameletti, M., Baio, G. & Rue, H. (2013), ‘Spatial and spatio-temporal models with R-INLA’, Spatial and Spatio-Temporal Epidemiology 4, 33–49.
Byers, A., Allore, H., Gill, T. & Peduzzi, P. (2003), ‘Application of negative binomial modeling for discrete outcomes’, Journal of clinical epidemiology 56, 559–64.
Fahrmeir, L. & Echavarría, L. O. (2006), ‘Structured additive regression for overdispersed and zero-inflated count data’, Applied Stochastic Models in Bussines and Industry 22, 351–369.
Fuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. (2018), ‘Constructing priors that penalize the complexity of gaussian random fields’, Journal of the American Statistical Association 114.
Lambert, D. (1992), ‘Zero-inflated Poisson regression, with an application to defects in manufacturing’, Technometrics 34, 1–14.
Mullahy, J. (1986), ‘Specification and testing of some modified count data models’, Journal of Econometrics 33, 341–366.
Rodríguez, G. (2007), Lecture notes on generalized linear models, Technical report, Princeton University.
Romo, J. E. (2019), Modelos espaciales y espacio-temporales para modelación de datos con exceso de ceros, Tesís de maestría, Centro de Investigación en Matemáticas (CIMAT).
Rue, H. & Held, L. (2005), Gaussian Markov Random Fields, Theory and Applications, A Chapman & Hall Book.
Rue, H. & Martino, S. (2007), ‘Approximate bayesian inference for hierarchical Gaussian Markov random fields’, Journal of Statistical Planning and Inference 137, 3177– 3192.
Rue, H. & Martino, S. (2009), Implementing approximate bayesian inference using integrated nested laplace approximation: a manual for the inla program, Technical report, Department of Mathematical Sciences, NTNU (Norway).
Rue, H., Martino, S. & Chopin, N. (2009), ‘Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations’, Journal of the Royal Society Series B 71, 319–392.
Saavedra, P., Santana, A., Bello, L., Pachecho, J. M. & Sanjuán, E. (2021), ‘A bayesian spatio-temporal analysis of mortality rates in Spain: application to the covid-19 2020 outbreak’, Population Health Metrics 1, 19–27.
Sartorius, B., Lawson, A. & Pullan, R. (2021), ‘Modelling and predicting the spatiotemporal spread of covid-19, associated deaths and impact of key risk factors in England’, Scientific Reports 11, 19–27.
Spiegelhalter, D., Best, N., Carlin, B. & van der Linde, A. (2002), ‘Bayesian measures of model complexity and fit’, Journal of the Royal Society Series B 64, 583–639.
Stroup, W. (2013), Generalized Linear Mixed Models,Modern Concepts, Methods and Applications, A Chapman & Hall Book.
Torabi, M. (2017), ‘Zero-inflated spatio-temporal models for disease mapping’, Biometrical Journal 3, 430–434.
Wikle, C. K. & Anderson, C. J. (2003), ‘Climatological analysis of tornado report counts using a hierarchical bayesian spatiotemporal model’, Journal of Geophysical Research 108, 9005.
Zhu, S., Bukharin, A., Xie, L., Santillana, M., Yang, S. & Xie, Y. (2021), ‘High-resolution spatio-temporal model for county-level covid-19 activity in the U.S.’, Harvard University.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv vii, 62 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.city.spa.fl_str_mv Bogotá
dc.coverage.country.spa.fl_str_mv Colombia
dc.coverage.region.spa.fl_str_mv Departamento de Cundinamarca
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000838
http://vocab.getty.edu/page/tgn/1000583
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83045/2/1072713162.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83045/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83045/3/1072713162.2022.pdf.jpg
bitstream.checksum.fl_str_mv 9217f98367e775473012ba52d3f3cd34
eb34b1cf90b7e1103fc9dfd26be24b4a
87728de02d16c7583f4f267507222b52
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089881769476096
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melo Martínez, Oscar Orlando653518c1f1441d004f4edeffc2a59886Castro Gil, César Davidfb8c8e42466d3900cb02e6973a9e46752023-01-20T16:55:47Z2023-01-20T16:55:47Z2022-12-01https://repositorio.unal.edu.co/handle/unal/83045Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEn el presente trabajo se ajusta un modelo espacio-temporal para el número de muertes a causa de COVID-19 en Cundinamarca y Bogotá. En los municipios más alejados de Cundinamarca lo normal es que no se presentarán muertes en mucho tiempo, por esta razón puede ser considerado un problema con exceso de ceros de espacio-tiempo. Además, se realizó un análisis exploratorio de la base de datos el cual permitió detectar la presencia de relación temporal y espacial. Por lo tanto, en una primera parte se exponen y detallan las metodologías y conceptos que pueden ayudar a manejar el exceso de ceros y posteriormente, se hace énfasis en el modelo espacio-temporal con exceso de ceros. En la búsqueda de la literatura se encontró que una buena alternativa para ajustar un modelo de este estilo es hacerlo mediante un modelo jerárquico Bayesiano usando el método de la aproximación de Laplace integrada anidada (INLA). Se realizó un análisis descriptivo de la vacunación en Colombia dejando algunos detalles que permitieron complementar el análisis del ajuste de los modelos. Finalmente, se obtuvo que el modelo que mejor se ajustó a la luz de la media del error absoluto de predicción (MAPE), el criterio de información de la devianza (DIC) y del contexto del exceso de ceros fue el modelo Poisson Cero Inflado. Asi, se puede afirmar que las muertes a causa de COVID-19 en Cundinamarca y Bogotá es un fenómeno espacio-temporal con exceso de ceros. (Texto tomado de la fuente).In the present work, a spatio-temporal model is fitted for the number of deaths due to COVID-19 in Cundinamarca department and Bogota city. In the most remote municipalities of Cundinamarca, it is normal that there will be no deaths in a long time, for this reason it can be considered a problem with of space-time excess of zeros. In addition, an exploratory analysis of the database was carried out, which allowed detecting the presence of a temporal and spatial relationship. Therefore, in the first part, the methodologies and concepts that can help to manage the excess of zeros are presented and detailed, and subsequently, emphasis is placed on the spatio-temporal model with excess of zeros. In the literature, it was found that the best alternative to fit a model of this style is usign a Bayesian hierarchical model Integrated Nested Laplace Approximation (INLA) method. A descriptive analysis of vaccination in Colombia was carried out, leaving some details that allowed complementing the analysis of model fitting. Finally, it was obtained that the best fitting model in light of the mean absolute prediction error (MAPE), the deviancy information criterion (DIC) and the context of the excess of zeros was the Zero Inflated Poisson model. Therefore, it can be affirmed that deaths due to COVID-19 in Cundinamarca and Bogotá is a spatio-temporal phenomenon with an excess of zeros.Incluye anexosMaestríaMagíster en Ciencias - Estadísticavii, 62 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::515 - AnálisisCoronavirus Infections/mortalityInfecciones por Coronavirus/mortalidadCOVID-19Exceso de cerosModelos cero infladoModelo de HurdleConteoEspacio-temporalHurdle modeZero inflated modelCountSpatio-temporalModelo matemáticoAnálisis estadísticoMathematical modelsStatistical analysisModelo espacio - temporal para las muertes a causa de COVID-19 en Cundinamarca y BogotáSpatio-temporal model for the deaths due to COVID-19 in Cundinamarca department and Bogota cityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotáColombiaDepartamento de Cundinamarcahttp://vocab.getty.edu/page/tgn/1000838http://vocab.getty.edu/page/tgn/1000583Agarwal, D. K., Gelfand, A. & Citron-Pousty, S. (2002), ‘Zero-inflated models with appli- cation to spatial count data’, Environmental and Ecological Statistics 9, 341–345.Arab, A. (2015), ‘Spatial and spatio-temporal models for modeling epidemiological data with excess zeros’, International Journal of Environmental Research and Publich Health 12, 10536–10548.Besag, J., York, J. & Mollie, A. (1991), ‘Bayesian image restoration, with two applications in spatial statistics’, Annals of the Institute of Statistical Mathematics 43, 1–59.Blanco, L. (2004), Probabilidad, Universidad Nacional de Colombia.Blangiardo, M., Cameletti, M., Baio, G. & Rue, H. (2013), ‘Spatial and spatio-temporal models with R-INLA’, Spatial and Spatio-Temporal Epidemiology 4, 33–49.Byers, A., Allore, H., Gill, T. & Peduzzi, P. (2003), ‘Application of negative binomial modeling for discrete outcomes’, Journal of clinical epidemiology 56, 559–64.Fahrmeir, L. & Echavarría, L. O. (2006), ‘Structured additive regression for overdispersed and zero-inflated count data’, Applied Stochastic Models in Bussines and Industry 22, 351–369.Fuglstad, G.-A., Simpson, D., Lindgren, F. & Rue, H. (2018), ‘Constructing priors that penalize the complexity of gaussian random fields’, Journal of the American Statistical Association 114.Lambert, D. (1992), ‘Zero-inflated Poisson regression, with an application to defects in manufacturing’, Technometrics 34, 1–14.Mullahy, J. (1986), ‘Specification and testing of some modified count data models’, Journal of Econometrics 33, 341–366.Rodríguez, G. (2007), Lecture notes on generalized linear models, Technical report, Princeton University.Romo, J. E. (2019), Modelos espaciales y espacio-temporales para modelación de datos con exceso de ceros, Tesís de maestría, Centro de Investigación en Matemáticas (CIMAT).Rue, H. & Held, L. (2005), Gaussian Markov Random Fields, Theory and Applications, A Chapman & Hall Book.Rue, H. & Martino, S. (2007), ‘Approximate bayesian inference for hierarchical Gaussian Markov random fields’, Journal of Statistical Planning and Inference 137, 3177– 3192.Rue, H. & Martino, S. (2009), Implementing approximate bayesian inference using integrated nested laplace approximation: a manual for the inla program, Technical report, Department of Mathematical Sciences, NTNU (Norway).Rue, H., Martino, S. & Chopin, N. (2009), ‘Approximate bayesian inference for latent Gaussian models by using integrated nested Laplace approximations’, Journal of the Royal Society Series B 71, 319–392.Saavedra, P., Santana, A., Bello, L., Pachecho, J. M. & Sanjuán, E. (2021), ‘A bayesian spatio-temporal analysis of mortality rates in Spain: application to the covid-19 2020 outbreak’, Population Health Metrics 1, 19–27.Sartorius, B., Lawson, A. & Pullan, R. (2021), ‘Modelling and predicting the spatiotemporal spread of covid-19, associated deaths and impact of key risk factors in England’, Scientific Reports 11, 19–27.Spiegelhalter, D., Best, N., Carlin, B. & van der Linde, A. (2002), ‘Bayesian measures of model complexity and fit’, Journal of the Royal Society Series B 64, 583–639.Stroup, W. (2013), Generalized Linear Mixed Models,Modern Concepts, Methods and Applications, A Chapman & Hall Book.Torabi, M. (2017), ‘Zero-inflated spatio-temporal models for disease mapping’, Biometrical Journal 3, 430–434.Wikle, C. K. & Anderson, C. J. (2003), ‘Climatological analysis of tornado report counts using a hierarchical bayesian spatiotemporal model’, Journal of Geophysical Research 108, 9005.Zhu, S., Bukharin, A., Xie, L., Santillana, M., Yang, S. & Xie, Y. (2021), ‘High-resolution spatio-temporal model for county-level covid-19 activity in the U.S.’, Harvard University.AdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosORIGINAL1072713162.2022.pdf1072713162.2022.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf6522565https://repositorio.unal.edu.co/bitstream/unal/83045/2/1072713162.2022.pdf9217f98367e775473012ba52d3f3cd34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83045/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1072713162.2022.pdf.jpg1072713162.2022.pdf.jpgGenerated Thumbnailimage/jpeg5192https://repositorio.unal.edu.co/bitstream/unal/83045/3/1072713162.2022.pdf.jpg87728de02d16c7583f4f267507222b52MD53unal/83045oai:repositorio.unal.edu.co:unal/830452024-08-15 23:15:01.956Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=