Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas
ilustraciones, diagramas, fotografías
- Autores:
-
Ospina Mendivelso, Nicolas
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84385
- Palabra clave:
- Temperatura corporal
Cáncer-tratamiento
Cancer-treatment
Body temperature
Hipertermia
Sensores FBG
Cáncer
Temperatura
Microondas
Cultivos celulares
Esferoides celulares
Hyperthermia
FBG sensors
Cancer
Temperature
Microwaves
Cell cultures
Cellular spheroids
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_e9314a92520c4fe4505d103fe878d492 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84385 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
dc.title.translated.eng.fl_str_mv |
Temperature Measurement via FBG Sensors in 3D Breast Cancer Spheroids Exposed to Microwave Radiation |
title |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
spellingShingle |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas Temperatura corporal Cáncer-tratamiento Cancer-treatment Body temperature Hipertermia Sensores FBG Cáncer Temperatura Microondas Cultivos celulares Esferoides celulares Hyperthermia FBG sensors Cancer Temperature Microwaves Cell cultures Cellular spheroids |
title_short |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
title_full |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
title_fullStr |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
title_full_unstemmed |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
title_sort |
Medición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondas |
dc.creator.fl_str_mv |
Ospina Mendivelso, Nicolas |
dc.contributor.advisor.none.fl_str_mv |
Varón Durán, Margarita Triana Infante, Cristian Andrés |
dc.contributor.author.none.fl_str_mv |
Ospina Mendivelso, Nicolas |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun) |
dc.subject.lemb.spa.fl_str_mv |
Temperatura corporal Cáncer-tratamiento |
topic |
Temperatura corporal Cáncer-tratamiento Cancer-treatment Body temperature Hipertermia Sensores FBG Cáncer Temperatura Microondas Cultivos celulares Esferoides celulares Hyperthermia FBG sensors Cancer Temperature Microwaves Cell cultures Cellular spheroids |
dc.subject.lemb.eng.fl_str_mv |
Cancer-treatment Body temperature |
dc.subject.proposal.spa.fl_str_mv |
Hipertermia Sensores FBG Cáncer Temperatura Microondas Cultivos celulares Esferoides celulares |
dc.subject.proposal.eng.fl_str_mv |
Hyperthermia FBG sensors Cancer Temperature Microwaves Cell cultures Cellular spheroids |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-07-31T21:39:13Z |
dc.date.available.none.fl_str_mv |
2023-07-31T21:39:13Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84385 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84385 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Lam F Ferlay J, Ervik M. Global cancer observatory: Cancer today. lyon, france: International agency for research on cancer, 2020. NIH. Quimioterapia para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH). NIH. Cirugía para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH). NIH. Radioterapia para tratar el cáncer, 2019. Instituto Nacional del Cáncer (NIH). INC. Plan nacional para el control del cáncer en colombia 2012-2020, 2012. Instituto Nacional de Cancerología - ESE (INC). Helen HW Chen and Macus Tien Kuo. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget, 8(37):62742, 2017. Catherine M Clavel, Patrycja Nowak-Sliwinska, Emilia P˘aunescu, and Paul J Dyson. Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. MedChemComm, 6(12):2054–2062, 2015. S.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung, and Nguyen Thi Kim Thanh. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29:100795, 2019. CM Van Leeuwen, AL Oei, R Ten Cate, NAP Franken, A Bel, LJA Stalpers, J Crezee, and HP Kok. Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 34(1):30–38, 2018. Sarah C Brüningk, Peter Ziegenhein, Ian Rivens, Uwe Oelfke, and Gail Ter Haar. A cellular automaton model for spheroid response to radiation and hyperthermia treatments. Scientific reports, 9(1):1–12, 2019. JE Chong, L Leija, CP Pennisi, and WH Fonseca. Optical fiber based thermometry system for a hyperthermia laboratory. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 3036–3039. IEEE, 2001. Tomohiro Matta, Hideki Fukano, and Shuji Taue. Simultaneous operation of laser ablation and temperature monitor using single optical fiber for hyperthermia. In 2017 Conference on Lasers and Electro-Optics Pacific Rim, page s1661. Optica Publishing Group, 2017. Nicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Fbg sensors for temperature measurements in microwave irradiated breast phantoms. In Optical Fiber Sensors Conference 2020 Special Edition, page Th4.50. Optical Society of America, 2020. Sarah Catharina Br¨uningk, Jannat Ijaz, Ian Rivens, Simeon Nill, Gail Ter Haar, and Uwe Oelfke. A comprehensive model for heat-induced radio-sensitisation. International Journal of Hyperthermia, 34(4):392–402, 2018. H Petra Kok, Johannes Crezee, Nicolaas AP Franken, Lukas JA Stalpers, Gerrit W Barendsen, and Arjan Bel. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. International Journal of Radiation Oncology* Biology* Physics, 88(3):739–745, 2014. Neil T Wright. Comparison of models of post-hyperthermia cell survival. Journal of Biomechanical Engineering, 135(5), 2013. Yusheng Feng, J Tinsley Oden, and Marissa Nichole Rylander. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. 2008. Michael A Mackey and Joseph L Roti Roti. A model of heat-induced clonogenic cell death. Journal of theoretical biology, 156(2):133–146, 1992. R Gassino, A Vallan, G Perrone, M Konstantaki, and S Pissadakis. Characterization of fiber optic distributed temperature sensors for tissue laser ablation. In 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–5. IEEE, 2017. Pablo Pérez, Juan Alfonso Serrano, and Alberto Olmo. 3d-printed sensors and actuators in cell culture and tissue engineering: framework and research challenges. Sensors, 20(19):5617, 2020. Luca Schenato, Qiangzhou Rong, Zhihua Shao, Xueguang Quiao, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. Highly sensitive fbg pressure sensor based on a 3d-printed transducer. J. Lightwave Technol., 37(18):4784–4790, Sep 2019. Matthew Mallory, Emile Gogineni, Guy C Jones, Lester Greer, and Charles B Simone II. Therapeutic hyperthermia: The old, the new, and the upcoming. Critical reviews in oncology/hematology, 97:56–64, 2016. Hernan I Vargas, William C Dooley, Robert A Gardner, Katherine D Gonzalez, Rose Venegas, Sylvia H Heywang-Kobrunner, and Alan J Fenn. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer results of thermal dose escalation. Annals of surgical oncology, 11(2):139–146, 2004. Zhaleh Behrouzkia, Zahra Joveini, Behnaz Keshavarzi, Nazila Eyvazzadeh, and Reza Zohdi Aghdam. Hyperthermia: how can it be used? Oman medical journal, 31(2):89, 2016. Eduardo Moros. Physics of thermal therapy : fundamentals and clinical applications. Imaging in medical diagnosis and therapy. CRC/Taylor and Francis, 2013. Phong Thanh Nguyen, Amin Abbosh, and Stuart Crozier. Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Transactions on antennas and propagation, 63(10):4426–4434, 2015. John Stang, Mark Haynes, Paul Carson, and Mahta Moghaddam. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering, 59(9):2431–2438, 2012. Lifan Xu and Xiong Wang. Comparison of two optimization algorithms for focused microwave breast cancer hyperthermia. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), pages 1–2. IEEE, 2018. Rafael Zamorano Ulloa, Ma Guadalupe Hernandez Santiago, and Veronica L Villegas Rueda. The interaction of microwaves with materials of different properties. In Electromagnetic Fields and Waves. InTech, 2019. Byoungho Lee. Review of the present status of optical fiber sensors. Optical fiber technology, 9(2):57–79, 2003. Yang Du, Qingbo Yang, and Jie Huang. Soft prosthetic forefinger tactile sensing via a string of intact single mode optical fiber. IEEE Sensors Journal, 17(22):7455–7459, 2017. Vineet Kumar Rai. Temperature sensors and optical sensors. Applied Physics B, 88(2):297–303, 2007. Davide Polito, Michele Arturo Caponero, Andrea Polimadei, Paola Saccomandi, Carlo Massaroni, Sergio Silvestri, and Emiliano Schena. A needlelike probe for temperature monitoring during laser ablation based on fiber bragg grating: Manufacturing and characterization. Journal of Medical Devices, 9(4), 2015. D. Tosi, E.G. Macchi, G. Braschi, M. Gallati, A. Cigada, S. Poeggel, G. Leen, and E. Lewis. Monitoring of radiofrequency thermal ablation in liver tissue through fibre bragg grating sensors array. Electronics Letters, 50(14):981–983, 2014. Giovanna Palumbo, Agostino Iadicicco, Daniele Tosi, Paolo Verze, Nicola Carlomagno, Vincenzo Tammaro, Juliet Ippolito, and Stefania Campopiano. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber bragg gratings. Journal of Biomedical Optics, 21:117003, 11 2016. Eigil Samset, Tom Mala, Reinold Ellingsen, I Gladhaug, O Soreide, and Erik Fosse. Temperature measurement in soft tissue using a distributed fibre bragg-grating sensor system. Minimally Invasive Therapy & Allied Technologies, 10:89–93, 03 2001. Indu Fiesler Saxena, Kaleo Hui, and Melvin Astrahan. Polymer coated fiber bragg grating thermometry for microwave hyperthermia. Medical physics, 37(9):4615–4619, 2010. Nicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Optical fiber bragg grating sensors for temperature measurements in the hyperthermia treatment. In Proceedings, Latin American Workshop on Optical Fiber Sensors, 2019. Mariya Lazebnik, Ernest L Madsen, Gary R Frank, and Susan C Hagness. Tissuemimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18):4245, 2005. Alexis I Farrer, Henrik Od´een, Joshua de Bever, Brittany Coats, Dennis L Parker, Allison Payne, and Douglas A Christensen. Characterization and evaluation of tissuemimicking gelatin phantoms for use with mrgfus. Journal of therapeutic ultrasound, 3(1):9, 2015. Jill Van der Zee. Heating the patient: a promising approach? Annals of oncology, 13(8):1173–1184, 2002. Emma MN Polman, Gert-Jan M Gruter, John R Parsons, and Albert Tietema. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753:141953, 2021. Evangelia Balla, Vasileios Daniilidis, Georgia Karlioti, Theocharis Kalamas, Myrika Stefanidou, Nikolaos D Bikiaris, Antonios Vlachopoulos, Ioanna Koumentakou, and Dimitrios N Bikiaris. Poly (lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 13(11):1822, 2021. Sithira H Ratnayaka, Taylor E Hillburn, Omid Forouzan, Sergey S Shevkoplyas, and Damir B Khismatullin. Pdms well platform for culturing millimeter-size tumor spheroids. Biotechnology progress, 29(5):1265–1269, 2013. John G Lock, Bernhard Wehrle-Haller, and Staffan Str¨omblad. Cell–matrix adhesion complexes: master control machinery of cell migration. In Seminars in cancer biology, volume 18, pages 65–76. Elsevier, 2008. S. Iannace, L. Sorrentino, and E. Di Maio. 6 - biodegradable biomedical foam scaffolds. In Paolo A. Netti, editor, Biomedical Foams for Tissue Engineering Applications, pages 163–187. Woodhead Publishing, 2014. Yun-Jiang Rao. In-fibre bragg grating sensors. Measurement science and technology, 8(4):355, 1997. David A Krohn, Trevor MacDougall, and Alexis Mendez. In-fiber grating optic sensors. In Fiber optic sensors: fundamentals and applications, chapter 4, pages 110–154. Spie Press Bellingham, WA, 2014. Shizhuo Yin and TS Francis. Wavelength-modulated sensors. In Fiber optic sensors, chapter 5, pages 63–77. CRC press, 2002. Günther Wehrle, Percy Nohama, Hypolito Jos´e Kalinowski, Pedro Ignácio Torres, and Luiz Carlos Guedes Valente. A fibre optic bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7):805, 2001. German Alvarez-Botero, Fabian E. Baron, C. Camilo Cano, Oscar Sosa, and Margarita Varon. Optical sensing using fiber bragg gratings: Fundamentals and applications. IEEE Instrumentation & Measurement Magazine, 20(2):33–38, 2017. Technica. FBGs array, 9 2021. Ramon Pallas-Areny and John G Webster. Introduction to sensor-based measurement systems. In Sensors and signal conditioning, chapter 1, pages 1–73. John Wiley & Sons, 2 edition, 2012. J Jacob. Radio frequency solid state amplifiers. arXiv preprint arXiv:1607.01570, 2016. J Carlton Gallawa. The Complete Microwave Oven Service Handbook: Operation, Maintenance, Troubleshooting, and Repair. Prentice Hall, 1989. G. Mourier (Eds.). Crossed-field Microwave Device. Principal Elements of Crossed-Field Devices. Crossed-field microwave devices, v. 1. Academic Press, 1961. Sally P Wheatley and Denys N Wheatley. Transporting cells over several days without dry-ice. Journal of Cell Science, 132(21):jcs238139, 2019. Lynne S Garcia. Clinical microbiology procedures handbook, volume 1. American Society for Microbiology Press, 2010. Claudia Campos Liste et al. Aplicación de la técnica de citometría de flujo al control de un cultivo iniciador de lactobacillus casei en la industria láctea. 2012. Jenna Bleloch. Cell culture basics: Equipment, fundamentals and protocols. Cell Science from Technology Networks, May 2021. Maria del Carmen Rodríguez-Salazar, Moises Armides Franco-Molina, Edgar Mendoza- Gamboa, Ana Carolina Martínez-Torres, Pablo Zapata-Benavides, Jose Sullivan López- González, Erika Evangelina Coronado-Cerda, Juan Manuel Alcocer-Gonz´alez, Reyes Silvestre Tamez-Guerra, and Cristina Rodríguez-Padilla. The novel immunomodulator immunepotent crp combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncology letters, 14(1):844–852, 2017. Lili Ma. 3D computer modeling of magnetrons. PhD thesis, 2005. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 66 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá,Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84385/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84385/2/1015454847.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84385/3/1015454847.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 54b5c28531a2cb9447664d0859c7f6f3 7ad4a7535f45f5a0a20f4978470c6a21 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089665221754880 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Varón Durán, Margarita185438e77bee443d22cbd5aa71b67728Triana Infante, Cristian Andrésbae1f0db9109ba2873487ea750e8f897Ospina Mendivelso, Nicolas0132563bc59dc24db1e3d4b31ce834ddGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)2023-07-31T21:39:13Z2023-07-31T21:39:13Z2023https://repositorio.unal.edu.co/handle/unal/84385Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn este documento se presentan los resultados de la caracterización de la temperatura en esferoides de cáncer de mama expuestos a tratamientos de hipertermia (HT). La hipertermia es una alternativa a los tratamientos convencionales para el cáncer, como lo son la cirugía, la radioterapia (RT) y la quimioterapia (QT), que tienen potenciales repercusiones funcionales, estéticas, emocionales y psicológicas que impactan significativamente en la calidad de vida de los pacientes. Para conseguir las temperaturas requeridas en los tratamientos de hipertermia se hizo uso de dos sistemas de radiación por microondas. Un esquema de alta potencia basado en el uso de un magnetrón extraído de un horno microondas y otro de potencia moderada basado en el uso de amplificadores de estado sólido. El sujeto de prueba fueron esferoides de la línea celular MCF-7. Para la medición de la temperatura fue diseñada una placa de cultivo prototipo con sensores FBGs embebidos en sus pozos. Esta placa se construyó haciendo uso de modelado por deposición fundida y se caracterizó bajo condiciones controladas de laboratorio. Como resultado de las pruebas se obtuvieron curvas de caracterización de temperatura ante distintos esquemas de radiación. El desempeño de los sensores no se vio alterado al estar expuestos a un ambiente de fuerte interferencia electromagnética lo que permitió poder llevar a cabo mediciones en tiempo real. Basados en los resultados obtenidos con este sistema de caracterización, se proponen modificaciones para el mejoramiento de su desempeño. (Texto tomado de la fuente)The following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in realtime. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.The following document presents the results of temperature characterizations in breast cancer cell spheroids exposed to hyperthermia (HT) treatments. Hyperthermia is an alternative to conventional treatments of breast cancer; treatments such as surgery, radiotherapy (RT) and chemotherapy (QT), which have potential functional, esthetic, emotional and psychological repercussions that significantly impact the quality of life of patients. To achieve an increase in temperature for HT treatments, two microwave radiation systems were used. A high power setup based on the use of a magnetron extracted from a microwave oven and another of moderate power based on the use of solid state amplifiers. The test subject were spheroids from the MCF-7 cell line. For the temperature measurement, a prototype culture plate was designed with FBGs sensors embedded in its wells. This plate was constructed using fused deposition modeling and characterized under controlled laboratory conditions. As a result of the tests, temperature characterization curves were obtained under different radiation schemes. The performance of the sensors was not affected by being exposed to an environment of strong electromagnetic interference, which allowed measurements in real-time. Based on the results obtained with this characterization system, modifications are proposed to improve its performance.MaestríaTecnologíıas Fotónicasxv, 66 páginasapplication/pdfspaMedición de temperatura por medio de sensores FBG en esferoides 3D de cáncer de mama expuestos a radiación microondasTemperature Measurement via FBG Sensors in 3D Breast Cancer Spheroids Exposed to Microwave RadiationTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialFacultad de IngenieríaBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáLam F Ferlay J, Ervik M. Global cancer observatory: Cancer today. lyon, france: International agency for research on cancer, 2020.NIH. Quimioterapia para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).NIH. Cirugía para tratar el cáncer, 2015. Instituto Nacional del Cáncer (NIH).NIH. Radioterapia para tratar el cáncer, 2019. Instituto Nacional del Cáncer (NIH).INC. Plan nacional para el control del cáncer en colombia 2012-2020, 2012. Instituto Nacional de Cancerología - ESE (INC).Helen HW Chen and Macus Tien Kuo. Improving radiotherapy in cancer treatment: promises and challenges. Oncotarget, 8(37):62742, 2017.Catherine M Clavel, Patrycja Nowak-Sliwinska, Emilia P˘aunescu, and Paul J Dyson. Thermoresponsive fluorinated small-molecule drugs: a new concept for efficient localized chemotherapy. MedChemComm, 6(12):2054–2062, 2015.S.K. Sharma, Navadeep Shrivastava, Francesco Rossi, Le Duc Tung, and Nguyen Thi Kim Thanh. Nanoparticles-based magnetic and photo induced hyperthermia for cancer treatment. Nano Today, 29:100795, 2019.CM Van Leeuwen, AL Oei, R Ten Cate, NAP Franken, A Bel, LJA Stalpers, J Crezee, and HP Kok. Measurement and analysis of the impact of time-interval, temperature and radiation dose on tumour cell survival and its application in thermoradiotherapy plan evaluation. International Journal of Hyperthermia, 34(1):30–38, 2018.Sarah C Brüningk, Peter Ziegenhein, Ian Rivens, Uwe Oelfke, and Gail Ter Haar. A cellular automaton model for spheroid response to radiation and hyperthermia treatments. Scientific reports, 9(1):1–12, 2019.JE Chong, L Leija, CP Pennisi, and WH Fonseca. Optical fiber based thermometry system for a hyperthermia laboratory. In 2001 Conference Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, volume 3, pages 3036–3039. IEEE, 2001.Tomohiro Matta, Hideki Fukano, and Shuji Taue. Simultaneous operation of laser ablation and temperature monitor using single optical fiber for hyperthermia. In 2017 Conference on Lasers and Electro-Optics Pacific Rim, page s1661. Optica Publishing Group, 2017.Nicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Fbg sensors for temperature measurements in microwave irradiated breast phantoms. In Optical Fiber Sensors Conference 2020 Special Edition, page Th4.50. Optical Society of America, 2020.Sarah Catharina Br¨uningk, Jannat Ijaz, Ian Rivens, Simeon Nill, Gail Ter Haar, and Uwe Oelfke. A comprehensive model for heat-induced radio-sensitisation. International Journal of Hyperthermia, 34(4):392–402, 2018.H Petra Kok, Johannes Crezee, Nicolaas AP Franken, Lukas JA Stalpers, Gerrit W Barendsen, and Arjan Bel. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. International Journal of Radiation Oncology* Biology* Physics, 88(3):739–745, 2014.Neil T Wright. Comparison of models of post-hyperthermia cell survival. Journal of Biomechanical Engineering, 135(5), 2013.Yusheng Feng, J Tinsley Oden, and Marissa Nichole Rylander. A two-state cell damage model under hyperthermic conditions: theory and in vitro experiments. 2008.Michael A Mackey and Joseph L Roti Roti. A model of heat-induced clonogenic cell death. Journal of theoretical biology, 156(2):133–146, 1992.R Gassino, A Vallan, G Perrone, M Konstantaki, and S Pissadakis. Characterization of fiber optic distributed temperature sensors for tissue laser ablation. In 2017 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–5. IEEE, 2017.Pablo Pérez, Juan Alfonso Serrano, and Alberto Olmo. 3d-printed sensors and actuators in cell culture and tissue engineering: framework and research challenges. Sensors, 20(19):5617, 2020.Luca Schenato, Qiangzhou Rong, Zhihua Shao, Xueguang Quiao, Alessandro Pasuto, Andrea Galtarossa, and Luca Palmieri. Highly sensitive fbg pressure sensor based on a 3d-printed transducer. J. Lightwave Technol., 37(18):4784–4790, Sep 2019.Matthew Mallory, Emile Gogineni, Guy C Jones, Lester Greer, and Charles B Simone II. Therapeutic hyperthermia: The old, the new, and the upcoming. Critical reviews in oncology/hematology, 97:56–64, 2016.Hernan I Vargas, William C Dooley, Robert A Gardner, Katherine D Gonzalez, Rose Venegas, Sylvia H Heywang-Kobrunner, and Alan J Fenn. Focused microwave phased array thermotherapy for ablation of early-stage breast cancer results of thermal dose escalation. Annals of surgical oncology, 11(2):139–146, 2004.Zhaleh Behrouzkia, Zahra Joveini, Behnaz Keshavarzi, Nazila Eyvazzadeh, and Reza Zohdi Aghdam. Hyperthermia: how can it be used? Oman medical journal, 31(2):89, 2016.Eduardo Moros. Physics of thermal therapy : fundamentals and clinical applications. Imaging in medical diagnosis and therapy. CRC/Taylor and Francis, 2013.Phong Thanh Nguyen, Amin Abbosh, and Stuart Crozier. Microwave hyperthermia for breast cancer treatment using electromagnetic and thermal focusing tested on realistic breast models and antenna arrays. IEEE Transactions on antennas and propagation, 63(10):4426–4434, 2015.John Stang, Mark Haynes, Paul Carson, and Mahta Moghaddam. A preclinical system prototype for focused microwave thermal therapy of the breast. IEEE Transactions on Biomedical Engineering, 59(9):2431–2438, 2012.Lifan Xu and Xiong Wang. Comparison of two optimization algorithms for focused microwave breast cancer hyperthermia. In 2018 International Applied Computational Electromagnetics Society Symposium-China (ACES), pages 1–2. IEEE, 2018.Rafael Zamorano Ulloa, Ma Guadalupe Hernandez Santiago, and Veronica L Villegas Rueda. The interaction of microwaves with materials of different properties. In Electromagnetic Fields and Waves. InTech, 2019.Byoungho Lee. Review of the present status of optical fiber sensors. Optical fiber technology, 9(2):57–79, 2003.Yang Du, Qingbo Yang, and Jie Huang. Soft prosthetic forefinger tactile sensing via a string of intact single mode optical fiber. IEEE Sensors Journal, 17(22):7455–7459, 2017.Vineet Kumar Rai. Temperature sensors and optical sensors. Applied Physics B, 88(2):297–303, 2007.Davide Polito, Michele Arturo Caponero, Andrea Polimadei, Paola Saccomandi, Carlo Massaroni, Sergio Silvestri, and Emiliano Schena. A needlelike probe for temperature monitoring during laser ablation based on fiber bragg grating: Manufacturing and characterization. Journal of Medical Devices, 9(4), 2015.D. Tosi, E.G. Macchi, G. Braschi, M. Gallati, A. Cigada, S. Poeggel, G. Leen, and E. Lewis. Monitoring of radiofrequency thermal ablation in liver tissue through fibre bragg grating sensors array. Electronics Letters, 50(14):981–983, 2014.Giovanna Palumbo, Agostino Iadicicco, Daniele Tosi, Paolo Verze, Nicola Carlomagno, Vincenzo Tammaro, Juliet Ippolito, and Stefania Campopiano. Temperature profile of ex-vivo organs during radio frequency thermal ablation by fiber bragg gratings. Journal of Biomedical Optics, 21:117003, 11 2016.Eigil Samset, Tom Mala, Reinold Ellingsen, I Gladhaug, O Soreide, and Erik Fosse. Temperature measurement in soft tissue using a distributed fibre bragg-grating sensor system. Minimally Invasive Therapy & Allied Technologies, 10:89–93, 03 2001.Indu Fiesler Saxena, Kaleo Hui, and Melvin Astrahan. Polymer coated fiber bragg grating thermometry for microwave hyperthermia. Medical physics, 37(9):4615–4619, 2010.Nicolas Ospina Mendivelso, C. Camilo Cano, Juan Coronel-Rico, Hector Fabian Guarnizo, and Margarita Varón Duran. Optical fiber bragg grating sensors for temperature measurements in the hyperthermia treatment. In Proceedings, Latin American Workshop on Optical Fiber Sensors, 2019.Mariya Lazebnik, Ernest L Madsen, Gary R Frank, and Susan C Hagness. Tissuemimicking phantom materials for narrowband and ultrawideband microwave applications. Physics in Medicine & Biology, 50(18):4245, 2005.Alexis I Farrer, Henrik Od´een, Joshua de Bever, Brittany Coats, Dennis L Parker, Allison Payne, and Douglas A Christensen. Characterization and evaluation of tissuemimicking gelatin phantoms for use with mrgfus. Journal of therapeutic ultrasound, 3(1):9, 2015.Jill Van der Zee. Heating the patient: a promising approach? Annals of oncology, 13(8):1173–1184, 2002.Emma MN Polman, Gert-Jan M Gruter, John R Parsons, and Albert Tietema. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review. Science of the Total Environment, 753:141953, 2021.Evangelia Balla, Vasileios Daniilidis, Georgia Karlioti, Theocharis Kalamas, Myrika Stefanidou, Nikolaos D Bikiaris, Antonios Vlachopoulos, Ioanna Koumentakou, and Dimitrios N Bikiaris. Poly (lactic acid): A versatile biobased polymer for the future with multifunctional properties—from monomer synthesis, polymerization techniques and molecular weight increase to pla applications. Polymers, 13(11):1822, 2021.Sithira H Ratnayaka, Taylor E Hillburn, Omid Forouzan, Sergey S Shevkoplyas, and Damir B Khismatullin. Pdms well platform for culturing millimeter-size tumor spheroids. Biotechnology progress, 29(5):1265–1269, 2013.John G Lock, Bernhard Wehrle-Haller, and Staffan Str¨omblad. Cell–matrix adhesion complexes: master control machinery of cell migration. In Seminars in cancer biology, volume 18, pages 65–76. Elsevier, 2008.S. Iannace, L. Sorrentino, and E. Di Maio. 6 - biodegradable biomedical foam scaffolds. In Paolo A. Netti, editor, Biomedical Foams for Tissue Engineering Applications, pages 163–187. Woodhead Publishing, 2014.Yun-Jiang Rao. In-fibre bragg grating sensors. Measurement science and technology, 8(4):355, 1997.David A Krohn, Trevor MacDougall, and Alexis Mendez. In-fiber grating optic sensors. In Fiber optic sensors: fundamentals and applications, chapter 4, pages 110–154. Spie Press Bellingham, WA, 2014.Shizhuo Yin and TS Francis. Wavelength-modulated sensors. In Fiber optic sensors, chapter 5, pages 63–77. CRC press, 2002.Günther Wehrle, Percy Nohama, Hypolito Jos´e Kalinowski, Pedro Ignácio Torres, and Luiz Carlos Guedes Valente. A fibre optic bragg grating strain sensor for monitoring ventilatory movements. Measurement Science and Technology, 12(7):805, 2001.German Alvarez-Botero, Fabian E. Baron, C. Camilo Cano, Oscar Sosa, and Margarita Varon. Optical sensing using fiber bragg gratings: Fundamentals and applications. IEEE Instrumentation & Measurement Magazine, 20(2):33–38, 2017.Technica. FBGs array, 9 2021.Ramon Pallas-Areny and John G Webster. Introduction to sensor-based measurement systems. In Sensors and signal conditioning, chapter 1, pages 1–73. John Wiley & Sons, 2 edition, 2012.J Jacob. Radio frequency solid state amplifiers. arXiv preprint arXiv:1607.01570, 2016.J Carlton Gallawa. The Complete Microwave Oven Service Handbook: Operation, Maintenance, Troubleshooting, and Repair. Prentice Hall, 1989.G. Mourier (Eds.). Crossed-field Microwave Device. Principal Elements of Crossed-Field Devices. Crossed-field microwave devices, v. 1. Academic Press, 1961.Sally P Wheatley and Denys N Wheatley. Transporting cells over several days without dry-ice. Journal of Cell Science, 132(21):jcs238139, 2019.Lynne S Garcia. Clinical microbiology procedures handbook, volume 1. American Society for Microbiology Press, 2010.Claudia Campos Liste et al. Aplicación de la técnica de citometría de flujo al control de un cultivo iniciador de lactobacillus casei en la industria láctea. 2012.Jenna Bleloch. Cell culture basics: Equipment, fundamentals and protocols. Cell Science from Technology Networks, May 2021.Maria del Carmen Rodríguez-Salazar, Moises Armides Franco-Molina, Edgar Mendoza- Gamboa, Ana Carolina Martínez-Torres, Pablo Zapata-Benavides, Jose Sullivan López- González, Erika Evangelina Coronado-Cerda, Juan Manuel Alcocer-Gonz´alez, Reyes Silvestre Tamez-Guerra, and Cristina Rodríguez-Padilla. The novel immunomodulator immunepotent crp combined with chemotherapy agent increased the rate of immunogenic cell death and prevented melanoma growth. Oncology letters, 14(1):844–852, 2017.Lili Ma. 3D computer modeling of magnetrons. PhD thesis, 2005.Temperatura corporalCáncer-tratamientoCancer-treatmentBody temperatureHipertermiaSensores FBGCáncerTemperaturaMicroondasCultivos celularesEsferoides celularesHyperthermiaFBG sensorsCancerTemperatureMicrowavesCell culturesCellular spheroidsLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84385/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1015454847.2023.pdf1015454847.2023.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf11717064https://repositorio.unal.edu.co/bitstream/unal/84385/2/1015454847.2023.pdf54b5c28531a2cb9447664d0859c7f6f3MD52THUMBNAIL1015454847.2023.pdf.jpg1015454847.2023.pdf.jpgGenerated Thumbnailimage/jpeg4823https://repositorio.unal.edu.co/bitstream/unal/84385/3/1015454847.2023.pdf.jpg7ad4a7535f45f5a0a20f4978470c6a21MD53unal/84385oai:repositorio.unal.edu.co:unal/843852024-08-17 00:01:05.035Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |