Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications

gráficas, tablas

Autores:
Camacho Vega, Juan David
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82265
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82265
https://repositorio.unal.edu.co/
Palabra clave:
Criptografía
Símbolos
Signs and symbols
Advanced Encryption Standard (AES)
Automata
Brauer configuration algebra
cryptography
diophantine equations
Chicken McNugget Problem (CMP)
polytope
Rights
openAccess
License
Atribución-CompartirIgual 4.0 Internacional
id UNACIONAL2_e8b8b750ea37941a9df02096e398a9a7
oai_identifier_str oai:repositorio.unal.edu.co:unal/82265
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
dc.title.translated.spa.fl_str_mv Mutaciones en algebras de configuración de Brauer y algunas aplicaciones a la criptografía
title Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
spellingShingle Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
Criptografía
Símbolos
Signs and symbols
Advanced Encryption Standard (AES)
Automata
Brauer configuration algebra
cryptography
diophantine equations
Chicken McNugget Problem (CMP)
polytope
title_short Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
title_full Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
title_fullStr Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
title_full_unstemmed Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
title_sort Mutations in Brauer Configuration Algebras and Some of Its Cryptographic Applications
dc.creator.fl_str_mv Camacho Vega, Juan David
dc.contributor.advisor.none.fl_str_mv Agustín, Moreno Cañadas
dc.contributor.author.none.fl_str_mv Camacho Vega, Juan David
dc.contributor.researchgroup.spa.fl_str_mv Terenufia-Unal
dc.subject.lemb.spa.fl_str_mv Criptografía
Símbolos
topic Criptografía
Símbolos
Signs and symbols
Advanced Encryption Standard (AES)
Automata
Brauer configuration algebra
cryptography
diophantine equations
Chicken McNugget Problem (CMP)
polytope
dc.subject.lemb.eng.fl_str_mv Signs and symbols
dc.subject.proposal.eng.fl_str_mv Advanced Encryption Standard (AES)
Automata
Brauer configuration algebra
cryptography
diophantine equations
Chicken McNugget Problem (CMP)
polytope
description gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-09-07T12:56:23Z
dc.date.available.none.fl_str_mv 2022-09-07T12:56:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82265
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82265
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Human Interaction Proofs Based on Emerging Images; A Practical Application of the Theory of Representation of Algebras, M.A.O. Angarita, 2019
Elements of the Representation Theory of Associative Algebras, I. Assem et all 2006
Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.
Cluster algebras and continued fractions, Compositio Mathematica 154 (2018),no. 3, 565-593.
A.M. Cañadas, J.D. Camacho, and I. D. Marin, Relationships between the Chicken McNugget Problem, Mutations of Brauer Configuration Algebras and the Advanced Encryption Standard, Mathematics 9 (2021), no. 16.
A.M. Cañadas and M.A.O. Angarita, Brauer configuration algebras for multimedia based encryption and applications, Multimed Tools Appl 80 (2021), 23485-23510.
S.T. Chapman and C. O’Neill, Factoring in the Chicken McNugget monoid, Mathematics Magazine 91 (2015), no. 5, 323-336.
F. Curtis, On formulas for the Frobenius number of a numerical semigroup., Mathematica Scandinavica 67 (1990), 190.
J.A. De Loera, The many aspects of counting lattice points in polytopes, Mathematische Semesterberichte (2005), 175-195.
S. Eilenberg, Automata, Languages, and Machines, Vol. B, Academic Press, 111 Fifth Avenue, New York, New York 10003, 1974.
P.F.F. Espinosa, Categorification of Integer Sequences and Its Applications, National University of Colombia, 2020. PhD Dissertation.
S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces.Part I: Cluster complexes., Acta Math. 201 (2008), 83-146.
S. Fomin and A. Zelevinsky, Cluster algebras. I: Foundations., J. Amer. Math. Soc. 15 (2002), 497-529.
Cluster algebras. II: Finite type classification., Invent. Math. 154 (2003), no. 1, 63-121.
Cluster algebras. IV: Coefficients., Compositio Mathematica 143 (2007), 112- 164.
P. Gabriel and A.V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia of Math. Sc., vol. 73, Springer-Verlag, 1992. 177p.
E.L. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math. 141 (2017), 539–572.
G. H. Hardy, E. M. Wright, D. R. Heath-Brown, and J. H. Silverman, An Introduction to the Theory of Numbers, Oxford University Press, 2008.
E. C. i Ll´opez, Some Contributions to the Algebraic Theory of Automata, Facultat de Ci´encies Matem´atiques Universitat de Val´encia, 2015.
B. Keller, Cluster algebras, quiver representations and triangulated categories, Cambridge University Press, 2010. In T. Holm, Jørgensen and R. Rouquier (Eds.), Triangulated Categories (London Mathematical Society Lecture Note Series, 76-160).
G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.
S.Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis, American Mathematical Society, 2015. 55
J.E. Pin and X. Soler-Escriv`a, Languages and formations generated by D4 and Q8, Theoretical Computer Science 800 (2019), 155-172.
J.L. Ram´ırez-Alfons´ın, Complexity of the Frobenius problem, Combinatorica 16 (1996), 143–147.
The Diophantine Frobenius Problem, Vol. 16, Oxford University Press, 1996. 1–457.
S. Rees, The Automata that define Representations of monomial algebras, Algebr Represent Theor 11 (2008), 207-214.
J. Rutten, A. Ballester-Bolinches, and E.C. i Ll´opez, Varieties and covarieties of languages, ENTCS 298 (2013), 7-28.
I. K. Rystsov, Affine Automata and Classical Fractals, Cybernetics and Systems Analysis 54 (2018), 11-20.
J. Sakarovitch, Elements of Automata Theory, Cambridge University Press, 2013.
R. Shiffler, Quiver Representations, Springer, 2010.
S. Schroll, Brauer Graph Algebras, Springer, Cham, 2018. In: Assem I., Trepode S. (eds), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, 177-223.
A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.
D.R. Stinson and M.B. Paterson, Cryptography; Theory and Practice, Chapman and Hall/CRC, 2018.
G. M. Ziegler, Lectures on Polytopes, Springer, 1998.
AES, Vol. https://searchsecurity.techtarget.com/definition/Advanced-EncryptionStandard, TechTarget.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 58 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82265/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82265/2/1020828115_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/82265/3/1020828115_2021.pdf.jpg
bitstream.checksum.fl_str_mv b577153cc0e11f0aeb5fc5005dc82d8a
572b905ad5eb6248ae99459a2251b495
14caa6dc9d0891c424a2159d1aba255d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089880302518272
spelling Atribución-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agustín, Moreno Cañadas061517362f5adfa88904f7da7646d32cCamacho Vega, Juan Davidd0825a37accd1aec73feca36dce8100aTerenufia-Unal2022-09-07T12:56:23Z2022-09-07T12:56:23Z2021https://repositorio.unal.edu.co/handle/unal/82265Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficas, tablasLas mutaciones de las algebras de configuración de Brauer son exploradas y estudiadas como herramientas para obtener soluciones para algunas generalizaciones del problema de los McNuggets de pollo junto con una exposici´on de unos autómatas asociados a los conglomerados de configuración. Este acercamiento permite construir una descripción algebraica del itinerario de las claves AES por medio de un autómata no determinista adecuado. (Texto tomado de la fuente)Mutations on Brauer configurations are explored as tools to obtain a solution for some generalizations of the chicken McNugget problem, along with some associated automata to the configuration clusters. This approach allows us to give an algebraic description of the schedule of an AES key via some suitable non-deterministic automata (NFA)MaestríaMagíster en Ciencias - MatemáticasTeoría de representación de algebras58 páginasapplication/pdfengUniversidad nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáMutations in Brauer Configuration Algebras and Some of Its Cryptographic ApplicationsMutaciones en algebras de configuración de Brauer y algunas aplicaciones a la criptografíaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMHuman Interaction Proofs Based on Emerging Images; A Practical Application of the Theory of Representation of Algebras, M.A.O. Angarita, 2019Elements of the Representation Theory of Associative Algebras, I. Assem et all 2006Canakci and R. Schiffler, Snake graph calculus and cluster algebras from surfaces, J. Algebra 382 (2013), 240-281.Cluster algebras and continued fractions, Compositio Mathematica 154 (2018),no. 3, 565-593.A.M. Cañadas, J.D. Camacho, and I. D. Marin, Relationships between the Chicken McNugget Problem, Mutations of Brauer Configuration Algebras and the Advanced Encryption Standard, Mathematics 9 (2021), no. 16.A.M. Cañadas and M.A.O. Angarita, Brauer configuration algebras for multimedia based encryption and applications, Multimed Tools Appl 80 (2021), 23485-23510.S.T. Chapman and C. O’Neill, Factoring in the Chicken McNugget monoid, Mathematics Magazine 91 (2015), no. 5, 323-336.F. Curtis, On formulas for the Frobenius number of a numerical semigroup., Mathematica Scandinavica 67 (1990), 190.J.A. De Loera, The many aspects of counting lattice points in polytopes, Mathematische Semesterberichte (2005), 175-195.S. Eilenberg, Automata, Languages, and Machines, Vol. B, Academic Press, 111 Fifth Avenue, New York, New York 10003, 1974.P.F.F. Espinosa, Categorification of Integer Sequences and Its Applications, National University of Colombia, 2020. PhD Dissertation.S. Fomin, M. Shapiro, and D. Thurston, Cluster algebras and triangulated surfaces.Part I: Cluster complexes., Acta Math. 201 (2008), 83-146.S. Fomin and A. Zelevinsky, Cluster algebras. I: Foundations., J. Amer. Math. Soc. 15 (2002), 497-529.Cluster algebras. II: Finite type classification., Invent. Math. 154 (2003), no. 1, 63-121.Cluster algebras. IV: Coefficients., Compositio Mathematica 143 (2007), 112- 164.P. Gabriel and A.V. Roiter, Representations of Finite Dimensional Algebras, Algebra VIII, Encyclopedia of Math. Sc., vol. 73, Springer-Verlag, 1992. 177p.E.L. Green and S. Schroll, Brauer configuration algebras: A generalization of Brauer graph algebras, Bull. Sci. Math. 141 (2017), 539–572.G. H. Hardy, E. M. Wright, D. R. Heath-Brown, and J. H. Silverman, An Introduction to the Theory of Numbers, Oxford University Press, 2008.E. C. i Ll´opez, Some Contributions to the Algebraic Theory of Automata, Facultat de Ci´encies Matem´atiques Universitat de Val´encia, 2015.B. Keller, Cluster algebras, quiver representations and triangulated categories, Cambridge University Press, 2010. In T. Holm, Jørgensen and R. Rouquier (Eds.), Triangulated Categories (London Mathematical Society Lecture Note Series, 76-160).G. Musiker, R. Schiffler, and L. Williams, Positivity for cluster algebras from surfaces, Adv. Math. 227 (2011), 2241-2308.S.Y. Oudot, Persistence Theory: From Quiver Representations to Data Analysis, American Mathematical Society, 2015. 55J.E. Pin and X. Soler-Escriv`a, Languages and formations generated by D4 and Q8, Theoretical Computer Science 800 (2019), 155-172.J.L. Ram´ırez-Alfons´ın, Complexity of the Frobenius problem, Combinatorica 16 (1996), 143–147.The Diophantine Frobenius Problem, Vol. 16, Oxford University Press, 1996. 1–457.S. Rees, The Automata that define Representations of monomial algebras, Algebr Represent Theor 11 (2008), 207-214.J. Rutten, A. Ballester-Bolinches, and E.C. i Ll´opez, Varieties and covarieties of languages, ENTCS 298 (2013), 7-28.I. K. Rystsov, Affine Automata and Classical Fractals, Cybernetics and Systems Analysis 54 (2018), 11-20.J. Sakarovitch, Elements of Automata Theory, Cambridge University Press, 2013.R. Shiffler, Quiver Representations, Springer, 2010.S. Schroll, Brauer Graph Algebras, Springer, Cham, 2018. In: Assem I., Trepode S. (eds), Homological Methods, Representation Theory, and Cluster Algebras, CRM Short Courses, 177-223.A. Sierra, The dimension of the center of a Brauer configuration algebra, J. Algebra 510 (2018), 289-318.D.R. Stinson and M.B. Paterson, Cryptography; Theory and Practice, Chapman and Hall/CRC, 2018.G. M. Ziegler, Lectures on Polytopes, Springer, 1998.AES, Vol. https://searchsecurity.techtarget.com/definition/Advanced-EncryptionStandard, TechTarget.CriptografíaSímbolosSigns and symbolsAdvanced Encryption Standard (AES)AutomataBrauer configuration algebracryptographydiophantine equationsChicken McNugget Problem (CMP)polytopeEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-84675https://repositorio.unal.edu.co/bitstream/unal/82265/1/license.txtb577153cc0e11f0aeb5fc5005dc82d8aMD51ORIGINAL1020828115_2021.pdf1020828115_2021.pdfTesis de Maestría en Matemáticasapplication/pdf597126https://repositorio.unal.edu.co/bitstream/unal/82265/2/1020828115_2021.pdf572b905ad5eb6248ae99459a2251b495MD52THUMBNAIL1020828115_2021.pdf.jpg1020828115_2021.pdf.jpgGenerated Thumbnailimage/jpeg3824https://repositorio.unal.edu.co/bitstream/unal/82265/3/1020828115_2021.pdf.jpg14caa6dc9d0891c424a2159d1aba255dMD53unal/82265oai:repositorio.unal.edu.co:unal/822652023-08-09 23:04:09.273Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUGFydGUgMS4gIFTDqXJtaW5vcyBkZSBsYSBsaWNlbmNpYSBwYXJhIHB1YmxpY2FjacOzbiBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yLCBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhLCBsaW1pdGFkYSB5IGdyYXR1aXRhIHNvYnJlIGxhIG9icmEgcXVlIHNlIGludGVncmEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgYmFqbyBsb3Mgc2lndWllbnRlcyB0w6lybWlub3M6CgoKYSkJTG9zIGF1dG9yZXMgeS9vIGxvcyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3Igc29icmUgbGEgb2JyYSBjb25maWVyZW4gYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB1bmEgbGljZW5jaWEgbm8gZXhjbHVzaXZhIHBhcmEgcmVhbGl6YXIgbG9zIHNpZ3VpZW50ZXMgYWN0b3Mgc29icmUgbGEgb2JyYTogaSkgcmVwcm9kdWNpciBsYSBvYnJhIGRlIG1hbmVyYSBkaWdpdGFsLCBwZXJtYW5lbnRlIG8gdGVtcG9yYWwsIGluY2x1eWVuZG8gZWwgYWxtYWNlbmFtaWVudG8gZWxlY3Ryw7NuaWNvLCBhc8OtIGNvbW8gY29udmVydGlyIGVsIGRvY3VtZW50byBlbiBlbCBjdWFsIHNlIGVuY3VlbnRyYSBjb250ZW5pZGEgbGEgb2JyYSBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gZXhpc3RlbnRlIGEgbGEgZmVjaGEgZGUgbGEgc3VzY3JpcGNpw7NuIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhLCB5IGlpKSBjb211bmljYXIgYWwgcMO6YmxpY28gbGEgb2JyYSBwb3IgY3VhbHF1aWVyIG1lZGlvIG8gcHJvY2VkaW1pZW50bywgZW4gbWVkaW9zIGFsw6FtYnJpY29zIG8gaW5hbMOhbWJyaWNvcywgaW5jbHV5ZW5kbyBsYSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZW4gYWNjZXNvIGFiaWVydG8uIEFkaWNpb25hbCBhIGxvIGFudGVyaW9yLCBlbCBhdXRvciB5L28gdGl0dWxhciBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHBhcmEgcXVlLCBlbiBsYSByZXByb2R1Y2Npw7NuIHkgY29tdW5pY2FjacOzbiBhbCBww7pibGljbyBxdWUgbGEgVW5pdmVyc2lkYWQgcmVhbGljZSBzb2JyZSBsYSBvYnJhLCBoYWdhIG1lbmNpw7NuIGRlIG1hbmVyYSBleHByZXNhIGFsIHRpcG8gZGUgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBiYWpvIGxhIGN1YWwgZWwgYXV0b3IgeS9vIHRpdHVsYXIgZGVzZWEgb2ZyZWNlciBzdSBvYnJhIGEgbG9zIHRlcmNlcm9zIHF1ZSBhY2NlZGFuIGEgZGljaGEgb2JyYSBhIHRyYXbDqXMgZGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIGN1YW5kbyBzZWEgZWwgY2Fzby4gRWwgYXV0b3IgeS9vIHRpdHVsYXIgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgcG9kcsOhIGRhciBwb3IgdGVybWluYWRhIGxhIHByZXNlbnRlIGxpY2VuY2lhIG1lZGlhbnRlIHNvbGljaXR1ZCBlbGV2YWRhIGEgbGEgRGlyZWNjacOzbiBOYWNpb25hbCBkZSBCaWJsaW90ZWNhcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYS4gCgpiKSAJTG9zIGF1dG9yZXMgeS9vIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBsYSBsaWNlbmNpYSBzZcOxYWxhZGEgZW4gZWwgbGl0ZXJhbCBhKSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvIHBvciBlbCB0aWVtcG8gZGUgcHJvdGVjY2nDs24gZGUgbGEgb2JyYSBlbiB0b2RvcyBsb3MgcGHDrXNlcyBkZWwgbXVuZG8sIGVzdG8gZXMsIHNpbiBsaW1pdGFjacOzbiB0ZXJyaXRvcmlhbCBhbGd1bmEuCgpjKQlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IgbWFuaWZpZXN0YW4gZXN0YXIgZGUgYWN1ZXJkbyBjb24gcXVlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHNlIG90b3JnYSBhIHTDrXR1bG8gZ3JhdHVpdG8sIHBvciBsbyB0YW50bywgcmVudW5jaWFuIGEgcmVjaWJpciBjdWFscXVpZXIgcmV0cmlidWNpw7NuIGVjb27Ds21pY2EgbyBlbW9sdW1lbnRvIGFsZ3VubyBwb3IgbGEgcHVibGljYWNpw7NuLCBkaXN0cmlidWNpw7NuLCBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgY3VhbHF1aWVyIG90cm8gdXNvIHF1ZSBzZSBoYWdhIGVuIGxvcyB0w6lybWlub3MgZGUgbGEgcHJlc2VudGUgbGljZW5jaWEgeSBkZSBsYSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGNvbiBxdWUgc2UgcHVibGljYS4KCmQpCVF1aWVuZXMgZmlybWFuIGVsIHByZXNlbnRlIGRvY3VtZW50byBkZWNsYXJhbiBxdWUgcGFyYSBsYSBjcmVhY2nDs24gZGUgbGEgb2JyYSwgbm8gc2UgaGFuIHZ1bG5lcmFkbyBsb3MgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsLCBpbmR1c3RyaWFsLCBtb3JhbGVzIHkgcGF0cmltb25pYWxlcyBkZSB0ZXJjZXJvcy4gRGUgb3RyYSBwYXJ0ZSwgIHJlY29ub2NlbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgYWN0w7phIGNvbW8gdW4gdGVyY2VybyBkZSBidWVuYSBmZSB5IHNlIGVuY3VlbnRyYSBleGVudGEgZGUgY3VscGEgZW4gY2FzbyBkZSBwcmVzZW50YXJzZSBhbGfDum4gdGlwbyBkZSByZWNsYW1hY2nDs24gZW4gbWF0ZXJpYSBkZSBkZXJlY2hvcyBkZSBhdXRvciBvIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBnZW5lcmFsLiBQb3IgbG8gdGFudG8sIGxvcyBmaXJtYW50ZXMgIGFjZXB0YW4gcXVlIGNvbW8gdGl0dWxhcmVzIMO6bmljb3MgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGFzdW1pcsOhbiB0b2RhIGxhIHJlc3BvbnNhYmlsaWRhZCBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgeS9vIHBlbmFsIHF1ZSBwdWVkYSBkZXJpdmFyc2UgZGUgbGEgcHVibGljYWNpw7NuIGRlIGxhIG9icmEuICAKCmYpCUF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGluY2x1aXIgbGEgb2JyYSBlbiBsb3MgYWdyZWdhZG9yZXMgZGUgY29udGVuaWRvcywgYnVzY2Fkb3JlcyBhY2Fkw6ltaWNvcywgbWV0YWJ1c2NhZG9yZXMsIMOtbmRpY2VzIHkgZGVtw6FzIG1lZGlvcyBxdWUgc2UgZXN0aW1lbiBuZWNlc2FyaW9zIHBhcmEgcHJvbW92ZXIgZWwgYWNjZXNvIHkgY29uc3VsdGEgZGUgbGEgbWlzbWEuIAoKZykJRW4gZWwgY2FzbyBkZSBsYXMgdGVzaXMgY3JlYWRhcyBwYXJhIG9wdGFyIGRvYmxlIHRpdHVsYWNpw7NuLCBsb3MgZmlybWFudGVzIHNlcsOhbiBsb3MgcmVzcG9uc2FibGVzIGRlIGNvbXVuaWNhciBhIGxhcyBpbnN0aXR1Y2lvbmVzIG5hY2lvbmFsZXMgbyBleHRyYW5qZXJhcyBlbiBjb252ZW5pbywgbGFzIGxpY2VuY2lhcyBkZSBhY2Nlc28gYWJpZXJ0byBDcmVhdGl2ZSBDb21tb25zIHkgYXV0b3JpemFjaW9uZXMgYXNpZ25hZGFzIGEgc3Ugb2JyYSBwYXJhIGxhIHB1YmxpY2FjacOzbiBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwgZGUgYWN1ZXJkbyBjb24gbGFzIGRpcmVjdHJpY2VzIGRlIGxhIFBvbMOtdGljYSBHZW5lcmFsIGRlIGxhIEJpYmxpb3RlY2EgRGlnaXRhbC4KCgpoKQlTZSBhdXRvcml6YSBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIGNvbW8gcmVzcG9uc2FibGUgZGVsIHRyYXRhbWllbnRvIGRlIGRhdG9zIHBlcnNvbmFsZXMsIGRlIGFjdWVyZG8gY29uIGxhIGxleSAxNTgxIGRlIDIwMTIgZW50ZW5kaWVuZG8gcXVlIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQsIHkgc3UgdHJhdGFtaWVudG8gdGllbmUgdW5hIGZpbmFsaWRhZCBoaXN0w7NyaWNhLCBlc3RhZMOtc3RpY2EgbyBjaWVudMOtZmljYSBzZWfDum4gbG8gZGlzcHVlc3RvIGVuIGxhIFBvbMOtdGljYSBkZSBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLgoKCgpQYXJ0ZSAyLiBBdXRvcml6YWNpw7NuIHBhcmEgcHVibGljYXIgeSBwZXJtaXRpciBsYSBjb25zdWx0YSB5IHVzbyBkZSBvYnJhcyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOQUwuCgpTZSBhdXRvcml6YSBsYSBwdWJsaWNhY2nDs24gZWxlY3Ryw7NuaWNhLCBjb25zdWx0YSB5IHVzbyBkZSBsYSBvYnJhIHBvciBwYXJ0ZSBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IGRlIHN1cyB1c3VhcmlvcyBkZSBsYSBzaWd1aWVudGUgbWFuZXJhOgoKYS4JQ29uY2VkbyBsaWNlbmNpYSBlbiBsb3MgdMOpcm1pbm9zIHNlw7FhbGFkb3MgZW4gbGEgcGFydGUgMSBkZWwgcHJlc2VudGUgZG9jdW1lbnRvLCBjb24gZWwgb2JqZXRpdm8gZGUgcXVlIGxhIG9icmEgZW50cmVnYWRhIHNlYSBwdWJsaWNhZGEgZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSB5IHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0byBwYXJhIHN1IGNvbnN1bHRhIHBvciBsb3MgdXN1YXJpb3MgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgIGEgdHJhdsOpcyBkZSBpbnRlcm5ldC4KCg==