Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera

La vulnerabilidad física de estructuras es definida como el grado de daño o perdida de un elemento. Es un valor adimensional con un rango de 0 a 1. Además, es un elemento clave para la evaluación del riesgo a deslizamientos de ladera, siendo este esencial para la predicción de las consecuencias de u...

Full description

Autores:
Hamón Barrero, Guillermo Heriberto
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80800
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80800
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Desprendimientos de tierras
Landslides
Vulnerabilidad sísmica
Geomorgología
laboratory scale model
slope geometry and landslide
Physical vulnerability
Sliding material
Strength
Calibration
Modelo a escala de laboratorio
Vulnerabilidad física
Material deslizante
Resistencia de materiales
Calibración
Geometría de la ladera
Deslizamiento
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_e8885aaff8da712ed0a5e5e9bffabd5b
oai_identifier_str oai:repositorio.unal.edu.co:unal/80800
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
dc.title.translated.eng.fl_str_mv Physical vulnerability assessment of structures impacted by landslides
title Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
spellingShingle Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Desprendimientos de tierras
Landslides
Vulnerabilidad sísmica
Geomorgología
laboratory scale model
slope geometry and landslide
Physical vulnerability
Sliding material
Strength
Calibration
Modelo a escala de laboratorio
Vulnerabilidad física
Material deslizante
Resistencia de materiales
Calibración
Geometría de la ladera
Deslizamiento
title_short Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
title_full Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
title_fullStr Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
title_full_unstemmed Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
title_sort Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de ladera
dc.creator.fl_str_mv Hamón Barrero, Guillermo Heriberto
dc.contributor.advisor.none.fl_str_mv Martínez Carvajal, Hernán Eduardo
dc.contributor.author.none.fl_str_mv Hamón Barrero, Guillermo Heriberto
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Geotecnia
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
topic 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Desprendimientos de tierras
Landslides
Vulnerabilidad sísmica
Geomorgología
laboratory scale model
slope geometry and landslide
Physical vulnerability
Sliding material
Strength
Calibration
Modelo a escala de laboratorio
Vulnerabilidad física
Material deslizante
Resistencia de materiales
Calibración
Geometría de la ladera
Deslizamiento
dc.subject.lemb.none.fl_str_mv Desprendimientos de tierras
Landslides
Vulnerabilidad sísmica
Geomorgología
dc.subject.proposal.eng.fl_str_mv laboratory scale model
slope geometry and landslide
Physical vulnerability
Sliding material
Strength
Calibration
dc.subject.proposal.spa.fl_str_mv Modelo a escala de laboratorio
Vulnerabilidad física
Material deslizante
Resistencia de materiales
Calibración
Geometría de la ladera
Deslizamiento
description La vulnerabilidad física de estructuras es definida como el grado de daño o perdida de un elemento. Es un valor adimensional con un rango de 0 a 1. Además, es un elemento clave para la evaluación del riesgo a deslizamientos de ladera, siendo este esencial para la predicción de las consecuencias de un deslizamiento de tierra. El presente trabajo, muestra el diseño, construcción y calibración de un modelo a escala de laboratorio que posee la capacidad de reconstruir parámetros geométricos de la ladera y la resistencia de la estructura para la estimación de la vulnerabilidad de estructuras individuales expuestas a deslizamientos. El modelo tiene en cuenta parámetros de intensidad del deslizamientos por medio del gradiente modificado Z propuesto por Guimaraes-Silva (2015) y la resistencia de las estructuras calculada por medio de la metodología de Li et al. (2010) la cual fue parametrizada por medio del modelo T. El dimensionamiento del modelo se hizo a partir del banco de datos de los deslizamientos en Nova Friburgo, Brasil, en Enero del 2011 y los deslizamientos ocurridos en Corea del sur entre Julio y Agosto del 2011. Se evalúo la relación entre la vulnerabilidad física y el impacto de deslizamientos de masa a partir de la interpretación de los experimentos en el modelo físico para la obtención de curvas equivalentes de vulnerabilidad. Obteniendo que cuanto mayor es el gradiente modificado, mayor es la vulnerabilidad y que a medida que el centro de gravedad de la estructura se encuentre mas alejada del deslizamiento, menor es su vulnerabilidad. (Texto tomado de la fuente)
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12-27
dc.date.accessioned.none.fl_str_mv 2022-01-11T18:37:05Z
dc.date.available.none.fl_str_mv 2022-01-11T18:37:05Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80800
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80800
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agliardi, F, G B Crosta, and P Frattini. 2009. “Integrating Rockfall Risk Assessment and Countermeasure Design by 3D Modelling Techniques.” Natural Hazards and Earth System Sciences 9(4): 1059.
Agliardi, Federico, Giovanni B Crosta, Andrea Zanchi, and Cesare Ravazzi. 2009. “Onset and Timing of Deep-Seated Gravitational Slope Deformations in the Eastern Alps, Italy.” Geomorphology 103(1): 113–29
Alcántara-Ayala, Irasema. 2002. “Geomorphology, Natural Hazards, Vulnerability and Prevention of Natural Disasters in Developing Countries.” Geomorphology 47(2–4): 107–24.
Ariztizábal, Edier, and Shuichiro Yokota. 2006. “Geomorfología Aplicada a La Ocurrencia de Deslizamientos En El Valle de Aburrá.” Dyna 73(149): 5–16
Bizottság, Európai. 2010. Risk Assessment and Mapping Guidelines for Disaster. Management. Commission Staff Working Paper.
Canuti, Paolo, Nicola Casagli, and Gruppo nazionale per la difesa dalle catastrofi idrogeologiche. 1996. Considerazioni Sulla Valutazione Del Rischio Di Frana
Corominas, J et al. 2014. “Recommendations for the Quantitative Analysis of Landslide Risk.” Bulletin of engineering geology and the environment 73(2): 209–63.
Crozier, M J. 1984. “Field Assessment of Slope Instability.” Slope instability: 103–42
Cruden, David M. 1991. “A Simple Definition of a Landslide.” Bulletin of Engineering Geology and the Environment 43(1): 27–29.
Doornkamp, John C, and Ronald Ururwick Cooke. 1974. Geomorphology in Environmental Management: An Introduction. Clarendon Press
Du, J, K Yin, F Nadim, and S Lacasse. 2013. “Quantitative Vulnerability Estimation for Individual Landslides.” In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, , 2181–84
Einstein, H H. 1988. “Landslide Risk Assessment Procedure.” In Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, , 1075–90
Fell, R, Ken K S Ho, S Lacasse, and E Leroi. 2005. “A Framework for Landslide Risk Assessment and Management.” In Landslide Risk Management, CRC Press, 13–36.
Fell, Robin. 1994. “Landslide Risk Assessment and Acceptable Risk.” Canadian Geotechnical Journal 31(2): 261–72.
Fuchs, S. 2008. “Vulnerability to Torrent Events—Empirical Evidence from Austria.” In Geophys Res Abstr, , 4632.
Fuchs, S, K Heiss, and J Hübl. 2007. “Towards an Empirical Vulnerability Function for Use in Debris Flow Risk Assessment.” Natural Hazards and Earth System Science 7(5): 495–506
Glade, Thomas, and Michael J Crozier. 2005. “The Nature of Landslide Hazard Impact.” Landslide hazard and risk. Wiley, Chichester: 43–74.
Group, Australian Geomechanics Society Landslide Zoning Working. 2007. “Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning.” Australian geomechanics 42(1): 13–36.
Hutchinson, J N. 1988. “Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology.” In Proc., Fifth International Symposium on Landslides, 1988, Lausanne, AA
Jaiswal, P, C J Van Westen, and V Jetten. 2011. “Quantitative Estimation of Landslide Risk from Rapid Debris Slides on Natural Slopes in the Nilgiri Hills, India.” Natural hazards and earth system sciences 11(6): 1723–43.
Jiménez, J. 2005. “Análisis de La Susceptibilidad a Los Movimientos de Ladera Mediante SIG En La Cuenca Vertiente Al Embalse Ruales, Granada.” Memoria de Doctorado. Departamento de Ingeniería Civil Área de Ingeniería del Terreno. Universidad de Granada.
Kang, Hyo-sub, and Yun-tae Kim. 2016. “The Physical Vulnerability of Different Types of Building Structure to Debris Flow Events.” Natural Hazards 80(3): 1475–93
Lacasse, Suzanne et al. 2008. “Event Tree Analysis of Aknes Rock Slide Hazard.” In 4th Canadian Conf on Geohazards, Quebec City, Canada, , 20–24.
Lateltin, O. 1997. “Prise En Compte Des Dangers Dus Aux Mouvements de Terrain Dans Le Cadre Des Activités de l’aménagement Du Territoire.” Recommandations, OFEFP 42.
Li, Zhihong et al. 2010. “Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards.” Landslides 7(2): 125–34.
Michael-Leiba, Marion, Fred Baynes, Greg Scott, and Ken Granger. 2003. “Regional Landslide Risk to the Cairns Community.” Natural hazards 30(2): 233–49.
Negulescu, Caterina, and Evelyne Foerster. 2010. “Parametric Studies and Quantitative Assessment of the Vulnerability of a RC Frame Building Exposed to Differential Settlements.” Natural Hazards and Earth System Sciences 10(9): 1781–92
Papathoma-Koehle, Maria, Margreth Keiler, Reinhold Totschnig, and Thomas Glade. 2012. “Improvement of Vulnerability Curves Using Data from Extreme Events: Debris Flow Event in South Tyrol.” Natural Hazards 64(3): 2083–2105.
Planeacion, Departamento Nacional de. 2015. “3.181 Muertos y 12,3 Millones de Afectados: Las Cifras de Desastres Naturales Entre 2006 y 2014.” DNP. https://www.dnp.gov.co/Paginas/3-181-muertos,-21-594-emergencias-y-12,3-millones-de-afectados-las-cifras-de-los-desastresnaturales-entre-2006-y-2014-.aspx (August 20, 2018)
Quan Luna, B et al. 2011. “The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves.” Natural hazards and earth system sciences 11(7): 2047–60
Timmerman, Peter. 1981. Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climatic Applications. Canada: Institute for Environmental Studies, University of Toronto.
Westen, C J, and S Greiving. 2017. “Environmental Hazards Methodologies for Risk Assessment and Management.” In , 33–92
Zuquette, Lázaro Valentim, Osni José Pejon, Nilson Gandolfi, and Antenor Braga Paraguassu. 1995. “Considerações Básicas Sobre a Elaboração de Cartas de Zoneamentos de Probabilidade Ou Possibilidade de Ocorrer Eventos Perigosos e de Riscos Associados.” Geociências 14(2): 9–39.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xviii, 129 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Univrsidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80800/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80800/2/1017234269.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/80800/3/1017234269.2020.pdf.jpg
bitstream.checksum.fl_str_mv 8153f7789df02f0a4c9e079953658ab2
f709602106e39fc250b5cf4caa2aa251
adfccb213d000b66cfda500225805c51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090243380346880
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Carvajal, Hernán Eduardo9f4948ce22565e3d5276eaa769f0112eHamón Barrero, Guillermo Heriberto4cd4df911ad8c835b8964ef229b5562cGrupo de Geotecnia2022-01-11T18:37:05Z2022-01-11T18:37:05Z2021-12-27https://repositorio.unal.edu.co/handle/unal/80800Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/La vulnerabilidad física de estructuras es definida como el grado de daño o perdida de un elemento. Es un valor adimensional con un rango de 0 a 1. Además, es un elemento clave para la evaluación del riesgo a deslizamientos de ladera, siendo este esencial para la predicción de las consecuencias de un deslizamiento de tierra. El presente trabajo, muestra el diseño, construcción y calibración de un modelo a escala de laboratorio que posee la capacidad de reconstruir parámetros geométricos de la ladera y la resistencia de la estructura para la estimación de la vulnerabilidad de estructuras individuales expuestas a deslizamientos. El modelo tiene en cuenta parámetros de intensidad del deslizamientos por medio del gradiente modificado Z propuesto por Guimaraes-Silva (2015) y la resistencia de las estructuras calculada por medio de la metodología de Li et al. (2010) la cual fue parametrizada por medio del modelo T. El dimensionamiento del modelo se hizo a partir del banco de datos de los deslizamientos en Nova Friburgo, Brasil, en Enero del 2011 y los deslizamientos ocurridos en Corea del sur entre Julio y Agosto del 2011. Se evalúo la relación entre la vulnerabilidad física y el impacto de deslizamientos de masa a partir de la interpretación de los experimentos en el modelo físico para la obtención de curvas equivalentes de vulnerabilidad. Obteniendo que cuanto mayor es el gradiente modificado, mayor es la vulnerabilidad y que a medida que el centro de gravedad de la estructura se encuentre mas alejada del deslizamiento, menor es su vulnerabilidad. (Texto tomado de la fuente)The physical vulnerability of structures is defined as the level of damage or loss of an element. It is a dimensionless value with a range from 0 to 1. Moreover, it is a key element for the evaluation of landslide risk, and it is essential for the prediction of the consequences of a landslide. This work shows the design, construction and calibration of a laboratory-scale model that can reconstruct geometric parameters of the slope for the estimation of the vulnerability of individual structures exposed to landslides. The model considers landslide intensity parameters using the modified Z gradient proposed by Guimaraes-Silva (2015) and the resistance of the structures calculated employing the methodology of Li et al. (2010) which was parameterized through the T model. The scaling of the model was made from the data bank of the landslides in Nova Friburgo, Brazil, in January 2011 and the landslides occurred in South Korea between July and August 2011. The relationship between physical vulnerability and the impact of landslides is evaluated from the interpretation of the experiments in the physical model to obtain vulnerability curves. The results show that the higher the modified gradient, the higher the vulnerability. Besides, the farther the center of gravity of the structure is from the landslide, the lower the vulnerability.MaestríaMagíster en Ingeniería - GeotecniaRiego GeotécnicoÁrea Curricular de Ingeniería Civilxviii, 129 páginasapplication/pdfspaUnivrsidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería CivilFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::624 - Ingeniería civilDesprendimientos de tierrasLandslidesVulnerabilidad sísmicaGeomorgologíalaboratory scale modelslope geometry and landslidePhysical vulnerabilitySliding materialStrengthCalibrationModelo a escala de laboratorioVulnerabilidad físicaMaterial deslizanteResistencia de materialesCalibraciónGeometría de la laderaDeslizamientoEvaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de laderaPhysical vulnerability assessment of structures impacted by landslidesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgliardi, F, G B Crosta, and P Frattini. 2009. “Integrating Rockfall Risk Assessment and Countermeasure Design by 3D Modelling Techniques.” Natural Hazards and Earth System Sciences 9(4): 1059.Agliardi, Federico, Giovanni B Crosta, Andrea Zanchi, and Cesare Ravazzi. 2009. “Onset and Timing of Deep-Seated Gravitational Slope Deformations in the Eastern Alps, Italy.” Geomorphology 103(1): 113–29Alcántara-Ayala, Irasema. 2002. “Geomorphology, Natural Hazards, Vulnerability and Prevention of Natural Disasters in Developing Countries.” Geomorphology 47(2–4): 107–24.Ariztizábal, Edier, and Shuichiro Yokota. 2006. “Geomorfología Aplicada a La Ocurrencia de Deslizamientos En El Valle de Aburrá.” Dyna 73(149): 5–16Bizottság, Európai. 2010. Risk Assessment and Mapping Guidelines for Disaster. Management. Commission Staff Working Paper.Canuti, Paolo, Nicola Casagli, and Gruppo nazionale per la difesa dalle catastrofi idrogeologiche. 1996. Considerazioni Sulla Valutazione Del Rischio Di FranaCorominas, J et al. 2014. “Recommendations for the Quantitative Analysis of Landslide Risk.” Bulletin of engineering geology and the environment 73(2): 209–63.Crozier, M J. 1984. “Field Assessment of Slope Instability.” Slope instability: 103–42Cruden, David M. 1991. “A Simple Definition of a Landslide.” Bulletin of Engineering Geology and the Environment 43(1): 27–29.Doornkamp, John C, and Ronald Ururwick Cooke. 1974. Geomorphology in Environmental Management: An Introduction. Clarendon PressDu, J, K Yin, F Nadim, and S Lacasse. 2013. “Quantitative Vulnerability Estimation for Individual Landslides.” In Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical Engineering, Paris, , 2181–84Einstein, H H. 1988. “Landslide Risk Assessment Procedure.” In Proceedings of the Fifth International Symposium on Landslides, Lausanne, Switzerland, , 1075–90Fell, R, Ken K S Ho, S Lacasse, and E Leroi. 2005. “A Framework for Landslide Risk Assessment and Management.” In Landslide Risk Management, CRC Press, 13–36.Fell, Robin. 1994. “Landslide Risk Assessment and Acceptable Risk.” Canadian Geotechnical Journal 31(2): 261–72.Fuchs, S. 2008. “Vulnerability to Torrent Events—Empirical Evidence from Austria.” In Geophys Res Abstr, , 4632.Fuchs, S, K Heiss, and J Hübl. 2007. “Towards an Empirical Vulnerability Function for Use in Debris Flow Risk Assessment.” Natural Hazards and Earth System Science 7(5): 495–506Glade, Thomas, and Michael J Crozier. 2005. “The Nature of Landslide Hazard Impact.” Landslide hazard and risk. Wiley, Chichester: 43–74.Group, Australian Geomechanics Society Landslide Zoning Working. 2007. “Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning.” Australian geomechanics 42(1): 13–36.Hutchinson, J N. 1988. “Morphological and Geotechnical Parameters of Landslides in Relation to Geology and Hydrogeology.” In Proc., Fifth International Symposium on Landslides, 1988, Lausanne, AAJaiswal, P, C J Van Westen, and V Jetten. 2011. “Quantitative Estimation of Landslide Risk from Rapid Debris Slides on Natural Slopes in the Nilgiri Hills, India.” Natural hazards and earth system sciences 11(6): 1723–43.Jiménez, J. 2005. “Análisis de La Susceptibilidad a Los Movimientos de Ladera Mediante SIG En La Cuenca Vertiente Al Embalse Ruales, Granada.” Memoria de Doctorado. Departamento de Ingeniería Civil Área de Ingeniería del Terreno. Universidad de Granada.Kang, Hyo-sub, and Yun-tae Kim. 2016. “The Physical Vulnerability of Different Types of Building Structure to Debris Flow Events.” Natural Hazards 80(3): 1475–93Lacasse, Suzanne et al. 2008. “Event Tree Analysis of Aknes Rock Slide Hazard.” In 4th Canadian Conf on Geohazards, Quebec City, Canada, , 20–24.Lateltin, O. 1997. “Prise En Compte Des Dangers Dus Aux Mouvements de Terrain Dans Le Cadre Des Activités de l’aménagement Du Territoire.” Recommandations, OFEFP 42.Li, Zhihong et al. 2010. “Quantitative Vulnerability Estimation for Scenario-Based Landslide Hazards.” Landslides 7(2): 125–34.Michael-Leiba, Marion, Fred Baynes, Greg Scott, and Ken Granger. 2003. “Regional Landslide Risk to the Cairns Community.” Natural hazards 30(2): 233–49.Negulescu, Caterina, and Evelyne Foerster. 2010. “Parametric Studies and Quantitative Assessment of the Vulnerability of a RC Frame Building Exposed to Differential Settlements.” Natural Hazards and Earth System Sciences 10(9): 1781–92Papathoma-Koehle, Maria, Margreth Keiler, Reinhold Totschnig, and Thomas Glade. 2012. “Improvement of Vulnerability Curves Using Data from Extreme Events: Debris Flow Event in South Tyrol.” Natural Hazards 64(3): 2083–2105.Planeacion, Departamento Nacional de. 2015. “3.181 Muertos y 12,3 Millones de Afectados: Las Cifras de Desastres Naturales Entre 2006 y 2014.” DNP. https://www.dnp.gov.co/Paginas/3-181-muertos,-21-594-emergencias-y-12,3-millones-de-afectados-las-cifras-de-los-desastresnaturales-entre-2006-y-2014-.aspx (August 20, 2018)Quan Luna, B et al. 2011. “The Application of Numerical Debris Flow Modelling for the Generation of Physical Vulnerability Curves.” Natural hazards and earth system sciences 11(7): 2047–60Timmerman, Peter. 1981. Vulnerability, Resilience and the Collapse of Society: A Review of Models and Possible Climatic Applications. Canada: Institute for Environmental Studies, University of Toronto.Westen, C J, and S Greiving. 2017. “Environmental Hazards Methodologies for Risk Assessment and Management.” In , 33–92Zuquette, Lázaro Valentim, Osni José Pejon, Nilson Gandolfi, and Antenor Braga Paraguassu. 1995. “Considerações Básicas Sobre a Elaboração de Cartas de Zoneamentos de Probabilidade Ou Possibilidade de Ocorrer Eventos Perigosos e de Riscos Associados.” Geociências 14(2): 9–39.Evaluación de la vulnerabilidad física de estructuras impactadas por deslizamientos de laderaBibliotecariosEstudiantesInvestigadoresPersonal de apoyo escolarPúblico generalResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80800/1/license.txt8153f7789df02f0a4c9e079953658ab2MD51ORIGINAL1017234269.2020.pdf1017234269.2020.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf3471690https://repositorio.unal.edu.co/bitstream/unal/80800/2/1017234269.2020.pdff709602106e39fc250b5cf4caa2aa251MD52THUMBNAIL1017234269.2020.pdf.jpg1017234269.2020.pdf.jpgGenerated Thumbnailimage/jpeg4604https://repositorio.unal.edu.co/bitstream/unal/80800/3/1017234269.2020.pdf.jpgadfccb213d000b66cfda500225805c51MD53unal/80800oai:repositorio.unal.edu.co:unal/808002024-08-02 23:10:28.763Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK