Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales

ilustraciones, gráficas, tablas

Autores:
Cortés Arias, Paula Andrea
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81477
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81477
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
Presión del sonido
Puentes
Ondas ultrasónicas-Aplicaciones industriales
Soldadura ultrasónica
Ultrasonido
Pulso-eco
Puentes
Reflectores artificiales
Índice de la indicación
Altura del eco
Soldadura
Pulse-echo
Indication rating
Echo height
Artificial reflectors
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e856d7a1e2aca422c2b8e9bfadfb0009
oai_identifier_str oai:repositorio.unal.edu.co:unal/81477
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
dc.title.translated.eng.fl_str_mv Evaluation of the detection capability of the ultrasound procedure of the AWS D1.5 code to examine highway bridges using artificial reflectors
title Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
spellingShingle Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
620 - Ingeniería y operaciones afines::621 - Física aplicada
Presión del sonido
Puentes
Ondas ultrasónicas-Aplicaciones industriales
Soldadura ultrasónica
Ultrasonido
Pulso-eco
Puentes
Reflectores artificiales
Índice de la indicación
Altura del eco
Soldadura
Pulse-echo
Indication rating
Echo height
Artificial reflectors
title_short Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
title_full Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
title_fullStr Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
title_full_unstemmed Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
title_sort Evaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificiales
dc.creator.fl_str_mv Cortés Arias, Paula Andrea
dc.contributor.advisor.none.fl_str_mv Giraldo Barrada, Jorge Enrique
dc.contributor.author.none.fl_str_mv Cortés Arias, Paula Andrea
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Soldadura
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
Presión del sonido
Puentes
Ondas ultrasónicas-Aplicaciones industriales
Soldadura ultrasónica
Ultrasonido
Pulso-eco
Puentes
Reflectores artificiales
Índice de la indicación
Altura del eco
Soldadura
Pulse-echo
Indication rating
Echo height
Artificial reflectors
dc.subject.lemb.none.fl_str_mv Presión del sonido
Puentes
Ondas ultrasónicas-Aplicaciones industriales
Soldadura ultrasónica
dc.subject.proposal.spa.fl_str_mv Ultrasonido
Pulso-eco
Puentes
Reflectores artificiales
Índice de la indicación
Altura del eco
Soldadura
Pulse-echo
dc.subject.proposal.eng.fl_str_mv Indication rating
Echo height
Artificial reflectors
description ilustraciones, gráficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021-12
dc.date.accessioned.none.fl_str_mv 2022-06-01T18:48:37Z
dc.date.available.none.fl_str_mv 2022-06-01T18:48:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81477
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81477
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Obraz, J. (1978). Dynamic evaluation of flaw size in ultrasonic testing of steel plates. Ultrasonics, 218-222.
Ogilvy, J. (1989). Model for the ultrasonic inspection of rough defects. Ultrasonics, 69-79.
Ogilvy, J. (1993). Model for predicting ultrasonic pulse-echo probability of detection. NDT&E International, 19-29.
Olav Forli, K. O. (1999). NT TECHN REPORT 427 GUIDELINES FOR DEVELOPMENT OF NDE ACCEPTANCE CRITERIA. Oslo: Nordic Innovation Centre.
Olsson, D. A. (1966). Ultrasonic Testing of Structural Welds. 48th Annual Meeting (págs. 46-52). Highway Research Board.
Olympus. (9 de Enero de 2020). https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/. Obtenido de https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/: https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/
Ono, K. (2020). A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020.
Österberg, H. W. (2000). Study of defect characteristics essential for NDT Testing Methods ET, UT and RT. Sweden: SKI.
Paul Holloway, A. C. (2017). Adapting CSA W59 ultrasonic inspections for use with distance-amplitude techniques. NDT in Canada 2017 Conference. Quebec
Paul Holloway, A. C. (2018). Distance-Amplitude Techniques and their Adaptation to Structural Steel Weld Inspection. WELDING JOURNAL, 38-47.
Pietro Burrascano, S. C. (2015). Ultrasonic Nondestructive Evaluation Systems Industrial Application Issues. Springer.
Posakony, G. J. (1986). Experimental Analysis of ultrasonic Responses from Artificial Defects. Materials Evaluation 44, 1567-1572.
Punjani, L. B. (1984). Review of some recent advances in quantitative ultrasonic NDT. IEE PROCEEDINGS, 265-274
R.L. Hockey, E. G. (1991). The Effect of equipment bandwith and center frequency changes on ultrasonic realiability: are models too conservative? review of progress in Quantitative Nondestructuve Evaluation Vol 10B, 2251-2258
Raphaella H. F. Murta, F. d. (2018). Welding Defect Classification from Simulated Ultrasonic Signals. Journal of Nondestructive Evaluation, 1-10.
Ripling, P. B. (1990). Acceptance criteria for steel bridge welds. Washington D. C: National cooperative Highway Research program
Robert E. Shaw Jr., P. M. (2002). Ultrasonic Testing Procedures, Technician Skills, and Qualifications. JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 62-67
Robert J. Connor, C. J. (2019). Acceptance Criteria of Complete Joint Penetration Steel Bridge Welds Evaluated Using Enhanced Ultrasonic Methods. Washington D. C: NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM
Rumsey, J. C. (1960). Interpretation of ultrasonic echo amplitude. BRITISH JOURNAL OF APPLIED PHYSICS, 25-29
Ryan, R. M. (2017). Is That Flaw Really There? Ultrasonics for Nondestructive Testing 2017
S. V. Ranganayakulu, S. G. (2017). Characterization of Weldments Defects through Non Destructive Evaluation Techniques. Indian Journal of Science and Technology, 1-9.
S. Williams, P. M. (1985). Statistical aspects of defect evaluation using ultrasonics. NDT INTERNATIONAL, 123-131
Schlengermann, U. (1996). Characterization of Reflectors by Ultrasonic Methods. The Echo, 33-35
Shenefelt, G. A. (1971). Ultrasonic Testing Requirements of the AWS 1969 Building Code and Bridge Specifications. Welding Journal, 342-349
Song, S.-J. (1991). Ultrasonic flaw classification and sizing. Iowa State University Digital Repository
T. J. Jessop, P. J. (1981). Report 242 - Ultrasonic Measurement of weld flaw Size. Washington D.C: Transportation research Board
Tennakoon, T. (2010). Analysis software to interpret defects in ultrasonic testing. International Journal of Structural integrity, 85-93
Tennakoon, T. (15 de marzo de 2010). Characterization of weld defects in single V-butt welded mild steel plates using ultrasonic A-scan technique. Tesis de Mestria. Sri Lanka: University of Moratuwa
The British Institute of Nondestructive Testing. (s.f.). Obtenido de https://www.bindt.org/What-is-NDT/Ultrasonic-advanced-methods/
Thompson, R. B. (1983). Quantitative Ultrasonic Nondestructive evaluation Methods. Journal of Applied Mechanics 50, 1191-1201
Tomonori Kimura, S. W. (2010). Simulation of Ultrasonic Fields and Echoes Obtained Using Angle Beam Transducer by Hybrid FDTD Method. E-Journal of Advanced Maintenance Vol.# (2010).
Tutzschky, G. (1987). Detection of defects in ultrasonic weld testing. WELDING INTERNATIONAL, 380-382.
VEQTER. (27 de Agosto de 2021). The Ultrasound stress measurement technique is the only portable, non-destructive, through-thickness stress measurement technique and it is applicable to a wide range of materials. Obtenido de https://www.veqter.co.uk/residual-stress-measurement/ultrasound
Virkkunen, M. K. (2011). Crack Characteristics and Their Importance to NDE. J Nondestruct Eval, 143–157.
Visser Consultancy Limited. (2002). POD/POS curves for non-destructive examination. weybridge: HSE BOOKS.
W.W. Sanders, J. a. (1966). Study of inspection methos and quality control for welded highway structures. Urbana, Illinois: University of Illinois.
Wolf KLEINERT, Y. O. (2010). http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#. Obtenido de http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#
Woo, D. J. (s.f.). History of Ultrasound in Obstetrics and Gynecology. Obtenido de http://www.ob-ultrasound.net/sperry.html
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 165 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería Mecánica
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81477/3/1037596394_2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/81477/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81477/5/1037596394_2021.pdf.jpg
bitstream.checksum.fl_str_mv d5bd817e493bc4bc22ab091d48d0655a
8153f7789df02f0a4c9e079953658ab2
e4e101c6b2875715b31730a94cbfab14
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886176476364800
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Barrada, Jorge Enrique02940d1aa0f9f6e96d7caa3ef6691328600Cortés Arias, Paula Andreab1166add59ccc1b1e0bdaf85ee848c22Grupo de Soldadura2022-06-01T18:48:37Z2022-06-01T18:48:37Z2021-12https://repositorio.unal.edu.co/handle/unal/81477Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficas, tablasEl presente estudio se enfocó en determinar de forma cuantitativa la capacidad de detección y evaluación del método de ultrasonido (con un enfoque en amplitud del eco) de la Sociedad Americana de Soldadura para el examen de puentes y edificaciones soldadas. Antes de abordar la parte experimental se llevó a cabo análisis del estado del arte del origen de este procedimiento y de las críticas que se le han realizado a lo largo de casi sesenta años de uso en los Estados Unidos. Se hicieron tres experimentos (0, 1 y 2) que consistían en el examen de bloques de acero ASTM A709 Gr. 50W, empleado en puentes, a los que se introdujeron dos tipos de reflectores artificiales planares (NTH y FBH) y un tipo de reflector volumétrico (SDH) ubicado en dos posiciones del espesor, de cuatro tamaños (0.5 mm, 1.0 mm, 3.0 mm y 5 mm). Los bloques fueron examinados con un equipo de ultrasonido pulso-eco, de forma manual, siguiendo la técnica prescriptiva del procedimiento de la AWS (Experimento 0) y alterando dos características que podrían influir en la capacidad de detección del procedimiento: el tamaño del cristal (experimento 1) y la frecuencia (Experimento 2). Los datos también se obtuvieron con variaciones en el ángulo de incidencia (45°, 60° y 70°). Se hicieron ocho mediciones (dos distancias del sonido, dos niveles de escaneo y dos ensayos) por cada tipo y tamaño de reflector dando como resultado 1224 datos. Entre los resultados más importantes se encuentra que, aunque el procedimiento prescriptivo de la AWS tiene una buena capacidad de detección que se mantiene con las modificaciones de frecuencia y tamaño del cristal; el procedimiento presenta una mala capacidad de evaluación de los reflectores (sin importar su tamaño o tipo), que se evidencia en su incapacidad de generar respuestas (índice de la indicación) diferenciales por tamaño de reflector y en su tendencia a que todos los tipos de reflectores se clasifiquen como inocuos para la estructura (Clase D). (texto tomado de la fuente)This study was focused on determining, quantitatively, the capacity of detection and evaluation of the ultrasonic methodology (with an echo amplitude approach) of the American Welding Society for the examination of welded bridges and buildings. Before approaching the experimental part, was carried out an analysis of the state of the art of the origin of this ultrasonic procedure, that includes the criticisms that have been made, over almost sixty years of use in the United States. Three experiments (0, 1 and 2) were performed, consisting of the examination of ASTM A709 Gr. 50W steel blocks, used in bridges, to which two types of planar artificial reflectors (NTH and FBH) and one type of volumetric reflector (SDH) located at two positions through thickness were fabricated in four sizes (0.5 mm, 1.0 mm, 3.0 mm, and 5 mm). The blocks were manually examined with pulse-echo ultrasound equipment following the prescribed method of the AWS procedure (Experiment 0) and altering two characteristics that could influence the detection capability of the procedure: crystal size (Experiment 1) and frequency (Experiment 2). Data were also obtained with variations in the angle of incidence (45°, 60° and 70°). Eight measurements (two sound distances, two scanning levels and two trials) were made for each type and size of the reflector resulting in 1224 data. Among the most important results is that, although the prescriptive procedure has a good detection capability and this isn´t altered (in a big way) with changes in frequency and crystal size. But nevertheless, the procedure has a poor ability to evaluate the reflectors (regardless of its size or type). This is exposed for example in that it is unable to generate differential responses (indication rating) by size; and also presents a high tendency for reflectors to be classified as harmless to the structure or not severe (Class D) without an increase in the size or a change in the shape of the reflector to avoid it.MaestríaMagíster en Ingeniería MecánicaDetección de discontinuidades en puentes mediante ultrasonido pulso-ecoÁrea Curricular de Ingeniería Mecánica165 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaDepartamento de Ingeniería MecánicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::621 - Física aplicadaPresión del sonidoPuentesOndas ultrasónicas-Aplicaciones industrialesSoldadura ultrasónicaUltrasonidoPulso-ecoPuentesReflectores artificialesÍndice de la indicaciónAltura del ecoSoldaduraPulse-echoIndication ratingEcho heightArtificial reflectorsEvaluación de la capacidad de detección del procedimiento de ultrasonido del código AWS D1.5 para examinar puentes vehiculares mediante reflectores artificialesEvaluation of the detection capability of the ultrasound procedure of the AWS D1.5 code to examine highway bridges using artificial reflectorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMObraz, J. (1978). Dynamic evaluation of flaw size in ultrasonic testing of steel plates. Ultrasonics, 218-222.Ogilvy, J. (1989). Model for the ultrasonic inspection of rough defects. Ultrasonics, 69-79.Ogilvy, J. (1993). Model for predicting ultrasonic pulse-echo probability of detection. NDT&E International, 19-29.Olav Forli, K. O. (1999). NT TECHN REPORT 427 GUIDELINES FOR DEVELOPMENT OF NDE ACCEPTANCE CRITERIA. Oslo: Nordic Innovation Centre.Olsson, D. A. (1966). Ultrasonic Testing of Structural Welds. 48th Annual Meeting (págs. 46-52). Highway Research Board.Olympus. (9 de Enero de 2020). https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/. Obtenido de https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/: https://www.olympus-ims.com/en/resources/white-papers/ultrasonic-transducer-technical-notes/Ono, K. (2020). A Comprehensive Report on Ultrasonic Attenuation of Engineering Materials, Including Metals, Ceramics, Polymers, Fiber-Reinforced Composites, Wood, and Rocks. Appl. Sci. 2020.Österberg, H. W. (2000). Study of defect characteristics essential for NDT Testing Methods ET, UT and RT. Sweden: SKI.Paul Holloway, A. C. (2017). Adapting CSA W59 ultrasonic inspections for use with distance-amplitude techniques. NDT in Canada 2017 Conference. QuebecPaul Holloway, A. C. (2018). Distance-Amplitude Techniques and their Adaptation to Structural Steel Weld Inspection. WELDING JOURNAL, 38-47.Pietro Burrascano, S. C. (2015). Ultrasonic Nondestructive Evaluation Systems Industrial Application Issues. Springer.Posakony, G. J. (1986). Experimental Analysis of ultrasonic Responses from Artificial Defects. Materials Evaluation 44, 1567-1572.Punjani, L. B. (1984). Review of some recent advances in quantitative ultrasonic NDT. IEE PROCEEDINGS, 265-274R.L. Hockey, E. G. (1991). The Effect of equipment bandwith and center frequency changes on ultrasonic realiability: are models too conservative? review of progress in Quantitative Nondestructuve Evaluation Vol 10B, 2251-2258Raphaella H. F. Murta, F. d. (2018). Welding Defect Classification from Simulated Ultrasonic Signals. Journal of Nondestructive Evaluation, 1-10.Ripling, P. B. (1990). Acceptance criteria for steel bridge welds. Washington D. C: National cooperative Highway Research programRobert E. Shaw Jr., P. M. (2002). Ultrasonic Testing Procedures, Technician Skills, and Qualifications. JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 62-67Robert J. Connor, C. J. (2019). Acceptance Criteria of Complete Joint Penetration Steel Bridge Welds Evaluated Using Enhanced Ultrasonic Methods. Washington D. C: NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAMRumsey, J. C. (1960). Interpretation of ultrasonic echo amplitude. BRITISH JOURNAL OF APPLIED PHYSICS, 25-29Ryan, R. M. (2017). Is That Flaw Really There? Ultrasonics for Nondestructive Testing 2017S. V. Ranganayakulu, S. G. (2017). Characterization of Weldments Defects through Non Destructive Evaluation Techniques. Indian Journal of Science and Technology, 1-9.S. Williams, P. M. (1985). Statistical aspects of defect evaluation using ultrasonics. NDT INTERNATIONAL, 123-131Schlengermann, U. (1996). Characterization of Reflectors by Ultrasonic Methods. The Echo, 33-35Shenefelt, G. A. (1971). Ultrasonic Testing Requirements of the AWS 1969 Building Code and Bridge Specifications. Welding Journal, 342-349Song, S.-J. (1991). Ultrasonic flaw classification and sizing. Iowa State University Digital RepositoryT. J. Jessop, P. J. (1981). Report 242 - Ultrasonic Measurement of weld flaw Size. Washington D.C: Transportation research BoardTennakoon, T. (2010). Analysis software to interpret defects in ultrasonic testing. International Journal of Structural integrity, 85-93Tennakoon, T. (15 de marzo de 2010). Characterization of weld defects in single V-butt welded mild steel plates using ultrasonic A-scan technique. Tesis de Mestria. Sri Lanka: University of MoratuwaThe British Institute of Nondestructive Testing. (s.f.). Obtenido de https://www.bindt.org/What-is-NDT/Ultrasonic-advanced-methods/Thompson, R. B. (1983). Quantitative Ultrasonic Nondestructive evaluation Methods. Journal of Applied Mechanics 50, 1191-1201Tomonori Kimura, S. W. (2010). Simulation of Ultrasonic Fields and Echoes Obtained Using Angle Beam Transducer by Hybrid FDTD Method. E-Journal of Advanced Maintenance Vol.# (2010).Tutzschky, G. (1987). Detection of defects in ultrasonic weld testing. WELDING INTERNATIONAL, 380-382.VEQTER. (27 de Agosto de 2021). The Ultrasound stress measurement technique is the only portable, non-destructive, through-thickness stress measurement technique and it is applicable to a wide range of materials. Obtenido de https://www.veqter.co.uk/residual-stress-measurement/ultrasoundVirkkunen, M. K. (2011). Crack Characteristics and Their Importance to NDE. J Nondestruct Eval, 143–157.Visser Consultancy Limited. (2002). POD/POS curves for non-destructive examination. weybridge: HSE BOOKS.W.W. Sanders, J. a. (1966). Study of inspection methos and quality control for welded highway structures. Urbana, Illinois: University of Illinois.Wolf KLEINERT, Y. O. (2010). http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#. Obtenido de http://www.ndt.net/forum/thread.php?forenID=1&rootID=8596#Woo, D. J. (s.f.). History of Ultrasound in Obstetrics and Gynecology. Obtenido de http://www.ob-ultrasound.net/sperry.htmlEstudiantesInvestigadoresORIGINAL1037596394_2021.pdf1037596394_2021.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf14816556https://repositorio.unal.edu.co/bitstream/unal/81477/3/1037596394_2021.pdfd5bd817e493bc4bc22ab091d48d0655aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81477/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1037596394_2021.pdf.jpg1037596394_2021.pdf.jpgGenerated Thumbnailimage/jpeg5544https://repositorio.unal.edu.co/bitstream/unal/81477/5/1037596394_2021.pdf.jpge4e101c6b2875715b31730a94cbfab14MD55unal/81477oai:repositorio.unal.edu.co:unal/814772023-08-09 10:51:17.127Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK