Lagrange interpolation and entire functions
For a function f defined almost everywhere on R. Let {Ln (f)} be the sequence of Lagrange interpolation polynomials that approximates f, where the nodes are taken to be the zeros of a certain sequence of orthogonal polynomials. In this paper, we will give a condition on the decay of the error term...
- Autores:
-
Al-Jarrah, Radwan
Al-Khaled, Kamel
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1990
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/43278
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/43278
http://bdigital.unal.edu.co/33376/
- Palabra clave:
- Lagrange
orthogonal
entire function
type finite
Hermite polynomials
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | For a function f defined almost everywhere on R. Let {Ln (f)} be the sequence of Lagrange interpolation polynomials that approximates f, where the nodes are taken to be the zeros of a certain sequence of orthogonal polynomials. In this paper, we will give a condition on the decay of the error term 16 |f-Ln(f) |, which makes f the restriction on R of an entire function of order one and finite type. In the case of the Hermite polynomials an estimate on the type is given. |
---|