Algebras of integrals
A classical theorem in mechanics states that a Hamiltonian which is invariant under a symmetry group admits additional integral s of motion. Thi s paper investigates the converse of the above theorem. If a Hamiltonian admits integrals then a symmetry can be constructed and the flaw studied on a quot...
- Autores:
-
Fong, Uei
Meyer, Kenneth R.
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1975
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42394
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42394
http://bdigital.unal.edu.co/32491/
- Palabra clave:
- Classical theorem
states that a Hamiltoni
theorem
onstructions of Nehoroshev
Marsden
Weinstein
Meyer
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | A classical theorem in mechanics states that a Hamiltonian which is invariant under a symmetry group admits additional integral s of motion. Thi s paper investigates the converse of the above theorem. If a Hamiltonian admits integrals then a symmetry can be constructed and the flaw studied on a quotient space. The quotient space is shown to be symplectic and the resulting flow Hamiltonian. The constructions used are similar to the recent constructions of Nehoroshev, Marsden and Weinstein and Meyer. The general theory presented is used to give an intrinsic derivation of Hamilton's equations of motion. Al so special local coordinates are given which display the integrals in a simple form. |
---|