Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10

ilustraciones

Autores:
Ricaurte Contreras, Laura Alejandra
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79710
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79710
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Inmunología
Immunology
Plasmodium vivax
Malaria
Plasmodium vivax
Invasión
Interacciones proteína-proteína
PvMSP10
Reticulocitos humanos
Plasmodium vivax
Invasion
Protein-protein interactions
PvMSP10
Human reticulocytes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e78ba3d6d418163564b09b36c5251131
oai_identifier_str oai:repositorio.unal.edu.co:unal/79710
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
dc.title.translated.eng.fl_str_mv Reticulocyte binding activity humans from the preserved fragment of the PvMSP10 protein
title Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
spellingShingle Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Inmunología
Immunology
Plasmodium vivax
Malaria
Plasmodium vivax
Invasión
Interacciones proteína-proteína
PvMSP10
Reticulocitos humanos
Plasmodium vivax
Invasion
Protein-protein interactions
PvMSP10
Human reticulocytes
title_short Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
title_full Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
title_fullStr Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
title_full_unstemmed Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
title_sort Actividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10
dc.creator.fl_str_mv Ricaurte Contreras, Laura Alejandra
dc.contributor.advisor.none.fl_str_mv Moreno Pérez, Darwin Andrés
Patarroyo Gutiérrez, Manuel Alfonso
dc.contributor.author.none.fl_str_mv Ricaurte Contreras, Laura Alejandra
dc.contributor.researchgroup.spa.fl_str_mv Biología Molecular de virus
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
topic 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
Inmunología
Immunology
Plasmodium vivax
Malaria
Plasmodium vivax
Invasión
Interacciones proteína-proteína
PvMSP10
Reticulocitos humanos
Plasmodium vivax
Invasion
Protein-protein interactions
PvMSP10
Human reticulocytes
dc.subject.decs.none.fl_str_mv Inmunología
Immunology
Plasmodium vivax
Malaria
dc.subject.proposal.spa.fl_str_mv Plasmodium vivax
Invasión
Interacciones proteína-proteína
PvMSP10
Reticulocitos humanos
dc.subject.proposal.eng.fl_str_mv Plasmodium vivax
Invasion
Protein-protein interactions
PvMSP10
Human reticulocytes
description ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-06-24T17:53:27Z
dc.date.available.none.fl_str_mv 2021-06-24T17:53:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79710
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79710
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Aikawa, M., Miller, L. H., Johnson, J., & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol, 77(1), 72-82. doi:10.1083/jcb.77.1.72
Arevalo-Herrera, M., Lopez-Perez, M., Dotsey, E., Jain, A., Rubiano, K., Felgner, P. L., . . . Herrera, S. (2016). Antibody Profiling in Naive and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis, 10(3), e0004563. doi:10.1371/journal.pntd.0004563
Arevalo-Pinzon, G., Bermudez, M., Curtidor, H., & Patarroyo, M. A. (2015). The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J, 14, 106. doi:10.1186/s12936-015-0619-1
Arevalo-Pinzon, G., Bermudez, M., Hernandez, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6
Arévalo-Pinzón, G., Bermúdez, M., Hernández, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6
Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., . . . Wang, H. (2009). PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res, 37(Database issue), D539-543. doi:10.1093/nar/gkn814
Baird, J. K., Valecha, N., Duparc, S., White, N. J., & Price, R. N. (2016). Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg, 95(6 Suppl), 35-51. doi:10.4269/ajtmh.16-0171
Baldwin, M. R., Li, X., Hanada, T., Liu, S. C., & Chishti, A. H. (2015). Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood, 125(17), 2704-2711. doi:10.1182/blood-2014-11-611707
Baquero, L. A., Moreno-Perez, D. A., Garzon-Ospina, D., Forero-Rodriguez, J., Ortiz-Suarez, H. D., & Patarroyo, M. A. (2017). PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors, 10(1), 251. doi:10.1186/s13071-017-2183-8
Bargieri, D., Lagal, V., Andenmatten, N., Tardieux, I., Meissner, M., & Menard, R. (2014). Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog, 10(9), e1004273. doi:10.1371/journal.ppat.1004273
Barry, A. E., & Arnott, A. (2014). Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol, 5, 359. doi:10.3389/fimmu.2014.00359
Baum, E., Sattabongkot, J., Sirichaisinthop, J., Kiattibutr, K., Davies, D. H., Jain, A., . . . Yan, G. (2015). Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J, 14, 95. doi:10.1186/s12936-015-0611-9
Beeson, J. G., Drew, D. R., Boyle, M. J., Feng, G., Fowkes, F. J., & Richards, J. S. (2016). Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev, 40(3), 343-372. doi:10.1093/femsre/fuw001
Bermudez, M., Arevalo-Pinzon, G., Rubio, L., Chaloin, O., Muller, S., Curtidor, H., & Patarroyo, M. A. (2018). Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol, 20(7), e12835. doi:10.1111/cmi.12835
Bermudez, M., Moreno-Perez, D. A., Arevalo-Pinzon, G., Curtidor, H., & Patarroyo, M. A. (2018). Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J, 17(1), 301. doi:10.1186/s12936-018-2456-5
Besteiro, S., Dubremetz, J. F., & Lebrun, M. (2011). The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol, 13(6), 797-805. doi:10.1111/j.1462-5822.2011.01597.x
Black, C. G., Barnwell, J. W., Huber, C. S., Galinski, M. R., & Coppel, R. L. (2002). The Plasmodium vivax homologues of merozoite surface proteins 4 and 5 from Plasmodium falciparum are expressed at different locations in the merozoite. Mol Biochem Parasitol, 120(2), 215-224. doi:10.1016/s0166-6851(01)00458-3
Black, C. G., Wang, L., Wu, T., & Coppel, R. L. (2003). Apical location of a novel EGF-like domain-containing protein of Plasmodium falciparum. Mol Biochem Parasitol, 127(1), 59-68. doi:10.1016/s0166-6851(02)00308-0
Boyd, M. F., & Kitchen, S. F. (1937). On the Infeetiousness of Patients infected with Plasmodium vivax and Plasmodium falciparum. American Journal of Tropical Medicine, 17(2), 253-262 pp.
Boyle, M. J., Wilson, D. W., Richards, J. S., Riglar, D. T., Tetteh, K. K., Conway, D. J., . . . Beeson, J. G. (2010). Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A, 107(32), 14378-14383. doi:10.1073/pnas.1009198107
Buitrago, S. P., Garzon-Ospina, D., & Patarroyo, M. A. (2016). Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J, 15(1), 501. doi:10.1186/s12936-016-1563-4
Camargo-Ayala, P. A., Garzon-Ospina, D., Moreno-Perez, D. A., Ricaurte-Contreras, L. A., Noya, O., & Patarroyo, M. A. (2018). On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet, 9, 372. doi:10.3389/fgene.2018.00372
Cowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 198(6), 961-971. doi:10.1083/jcb.201206112
Cowman, A. F., & Crabb, B. S. (2006). Invasion of red blood cells by malaria parasites. Cell, 124(4), 755-766. doi:10.1016/j.cell.2006.02.006
Cheng, Y., Wang, B., Sattabongkot, J., Lim, C. S., Tsuboi, T., & Han, E. T. (2014). Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitol Res, 113(7), 2559-2568. doi:10.1007/s00436-014-3907-8
Chim-Ong, A., Surit, T., Chainarin, S., Roobsoong, W., Sattabongkot, J., Cui, L., & Nguitragool, W. (2020). The Blood Stage Antigen RBP2-P1 of Plasmodium vivax Binds Reticulocytes and Is a Target of Naturally Acquired Immunity. Infect Immun, 88(4). doi:10.1128/IAI.00616-19
Chitnis, C. E., & Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med, 180(2), 497-506. doi:10.1084/jem.180.2.497
Chu, T., Sinha, A., Malleret, B., Suwanarusk, R., Park, J., Naidu, R., . . . Chandramohanadas, R. (2017). Quantitative mass spectrometry of human reticulocytes reveal proteome‐wide modifications during maturation. British Journal of Haematology, 180. doi:10.1111/bjh.14976
de Lacerda, M. V., Zackiewicz, C., Alecrim, W. D., & Alecrim, M. (2007). The neglected Plasmodium vivax: are researchers from endemic areas really concerned about new treatment options? Rev Soc Bras Med Trop, 40(4), 489-490. doi:10.1590/s0037-86822007000400026
Drew, D. R., O'Donnell, R. A., Smith, B. J., & Crabb, B. S. (2004). A common cross-species function for the double epidermal growth factor-like modules of the highly divergent plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem, 279(19), 20147-20153. doi:10.1074/jbc.M401114200
Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340
Ferreira, M. U., da Silva Nunes, M., & Wunderlich, G. (2004). Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol, 11(6), 987-995. doi:10.1128/cdli.11.6.987-995.2004
Garzon-Ospina, D., Forero-Rodriguez, J., & Patarroyo, M. A. (2015). Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infect Genet Evol, 33, 182-188. doi:10.1016/j.meegid.2015.05.001
Garzón-Ospina, D. E. (2019). Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica. Universidad del Rosario. Retrieved from https://repository.urosario.edu.co/flexpaper/handle/10336/19876/GarzonOspina-DiegoEdison-2019.pdf?sequence=1&isAllowed=y
Gilson, P. R., Nebl, T., Vukcevic, D., Moritz, R. L., Sargeant, T., Speed, T. P., . . . Crabb, B. S. (2006). Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics, 5(7), 1286-1299. doi:10.1074/mcp.M600035-MCP200
Goh, S. H., Josleyn, M., Lee, Y. T., Danner, R. L., Gherman, R. B., Cam, M. C., & Miller, J. L. (2007). The human reticulocyte transcriptome. Physiol Genomics, 30(2), 172-178. doi:10.1152/physiolgenomics.00247.2006
Gonçalves, L. A., Cravo, P., & Ferreira, M. U. (2014). Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz, 109(5), 534-539. doi:10.1590/0074-0276130579
Gruszczyk, J., Kanjee, U., Chan, L. J., Menant, S., Malleret, B., Lim, N. T. Y., . . . Tham, W. H. (2018). Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science, 359(6371), 48-55. doi:10.1126/science.aan1078
Gupta, S., Singh, S., Popovici, J., Roesch, C., Shakri, A. R., Guillotte-Blisnick, M., . . . Chitnis, C. E. (2018). Targeting a Reticulocyte Binding Protein and Duffy Binding Protein to Inhibit Reticulocyte Invasion by Plasmodium vivax. Sci Rep, 8(1), 10511. doi:10.1038/s41598-018-28757-4
Han, H. J., Park, S. G., Kim, S. H., Hwang, S. Y., Han, J., Traicoff, J., . . . Chung, J. Y. (2004). Epidermal growth factor-like motifs 1 and 2 of Plasmodium vivax merozoite surface protein 1 are critical domains in erythrocyte invasion. Biochem Biophys Res Commun, 320(2), 563-570. doi:10.1016/j.bbrc.2004.06.008
Han, J. H., Cho, J. S., Cheng, Y., Muh, F., Yoo, W. G., Russell, B., . . . Han, E. T. (2018). Plasmodium vivax Merozoite Surface Protein 1 Paralog as a Mediator of Parasite Adherence to Reticulocytes. Infect Immun, 86(9). doi:10.1128/IAI.00239-18
Han, J. H., Lee, S. K., Wang, B., Muh, F., Nyunt, M. H., Na, S., . . . Han, E. T. (2016). Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep, 6, 26993. doi:10.1038/srep26993
Hoffman, S. L., Vekemans, J., Richie, T. L., & Duffy, P. E. (2015). The March Toward Malaria Vaccines. Am J Prev Med, 49(6 Suppl 4), S319-333. doi:10.1016/j.amepre.2015.09.011
Houghten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A, 82(15), 5131-5135. doi:10.1073/pnas.82.15.5131
Hulden, L., & Hulden, L. (2011). Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malar J, 10, 90. doi:10.1186/1475-2875-10-90
Jiang, J., Barnwell, J. W., Meyer, E. V., & Galinski, M. R. (2013). Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One, 8(5), e63888. doi:10.1371/journal.pone.0063888
Kanjee, U., Rangel, G. W., Clark, M. A., & Duraisingh, M. T. (2018). Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol, 46, 109-115. doi:10.1016/j.mib.2018.10.002
Koch, M., & Baum, J. (2016). The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution. Cell Microbiol, 18(3), 319-329. doi:10.1111/cmi.12557
Kumar, A. A., Lim, C., Moreno, Y., Mace, C. R., Syed, A., Van Tyne, D., . . . Whitesides, G. M. (2015). Enrichment of reticulocytes from whole blood using aqueous multiphase systems of polymers. Am J Hematol, 90(1), 31-36. doi:10.1002/ajh.23860
Lin, C. S., Uboldi, A. D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P. E., & Cowman, A. F. (2016). Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem, 291(14), 7703-7715. doi:10.1074/jbc.M115.698282
Lin, C. S., Uboldi, A. D., Marapana, D., Czabotar, P. E., Epp, C., Bujard, H., . . . Cowman, A. F. (2014). The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem, 289(37), 25655-25669. doi:10.1074/jbc.M114.586495
Lingelbach, K., & Joiner, K. A. (1998). The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J Cell Sci, 111 ( Pt 11), 1467-1475
Milner, D. A., Jr. (2018). Malaria Pathogenesis. Cold Spring Harb Perspect Med, 8(1). doi:10.1101/cshperspect.a025569
Mongui, A., Perez-Leal, O., Soto, S. C., Cortes, J., & Patarroyo, M. A. (2006). Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein. Biochem Biophys Res Commun, 351(3), 639-644. doi:10.1016/j.bbrc.2006.10.082
Moreno-Pérez, D. A., Areiza-Rojas, R., Flórez-Buitrago, X., Silva, Y., Patarroyo, M. E., & Patarroyo, M. A. (2013). The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist, 164(1), 37-48. doi:10.1016/j.protis.2012.03.001
Moreno-Perez, D. A., Baquero, L. A., Chitiva-Ardila, D. M., & Patarroyo, M. A. (2017). Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes. Parasit Vectors, 10(1), 243. doi:10.1186/s13071-017-2185-6
Moreno-Pérez, D. A., Dégano, R., Ibarrola, N., Muro, A., & Patarroyo, M. A. (2015). Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics, 113, 268-280. doi:10.1016/j.jprot.2014.10.003
Moreno-Pérez, D. A., Ruíz, J. A., & Patarroyo, M. A. (2013). Reticulocytes: Plasmodium vivax target cells. Biol Cell, 105(6), 251-260. doi:10.1111/boc.201200093
Mueller, I., Galinski, M. R., Baird, J. K., Carlton, J. M., Kochar, D. K., Alonso, P. L., & del Portillo, H. A. (2009). Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis, 9(9), 555-566. doi:10.1016/s1473-3099(09)70177-x
Nagaoka, H., Kanoi, B. N., Jinoka, K., Morita, M., Arumugam, T. U., Palacpac, N. M. Q., . . . Takashima, E. (2019). The N-Terminal Region of Plasmodium falciparum MSP10 Is a Target of Protective Antibodies in Malaria and Is Important for PfGAMA/PfMSP10 Interaction. Front Immunol, 10, 2669. doi:10.3389/fimmu.2019.02669
Ndiath, M. O., Mazenot, C., Sokhna, C., & Trape, J. F. (2016). Retraction: How the Malaria Vector Anopheles gambiae Adapts to the Use of Insecticide-Treated Nets by African Populations. PLoS One, 11(5), e0156196. doi:10.1371/journal.pone.0156196
Nielsen, R. (2005). Molecular signatures of natural selection. Annu Rev Genet, 39, 197-218. doi:10.1146/annurev.genet.39.073003.112420
Nogueira, P. A., Alves, F. P., Fernandez-Becerra, C., Pein, O., Santos, N. R., Pereira da Silva, L. H., . . . del Portillo, H. A. (2006). A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun, 74(5), 2726-2733. doi:10.1128/iai.74.5.2726-2733.2006
O'Donnell, R. A., & Blackman, M. J. (2005). The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol, 8(4), 422-427. doi:10.1016/j.mib.2005.06.018
OPS/OMS, O. P. d. l. S. (2010). Guía para atención clínica integral del paciente con malaria. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia-atencion-clinica-malaria-2011.pdf
Patarroyo, M. A., Arevalo-Pinzon, G., & Moreno-Perez, D. A. (2020). From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. doi:10.1080/14760584.2020.1733421
Patarroyo, M. A., Calderón, D., & Moreno-Pérez, D. A. (2012). Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines, 11(10), 1249-1260. doi:10.1586/erv.12.91
Patarroyo, M. E., Arevalo-Pinzon, G., Reyes, C., Moreno-Vranich, A., & Patarroyo, M. A. (2016). Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol, 18, 57-78
Paul, A. S., Egan, E. S., & Duraisingh, M. T. (2015). Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr Opin Hematol, 22(3), 220-226. doi:10.1097/moh.0000000000000135
Perez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2005). Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun, 331(4), 1178-1184. doi:10.1016/j.bbrc.2005.04.031
Perez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2004). Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun, 324(4), 1393-1399. doi:10.1016/j.bbrc.2004.09.202
Polley, S. D., Tetteh, K. K., Lloyd, J. M., Akpogheneta, O. J., Greenwood, B. M., Bojang, K. A., & Conway, D. J. (2007). Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection. J Infect Dis, 195(2), 279-287. doi:10.1086/509806
Prajapati, S., & Singh, O. (2013). Insights into the invasion biology of Plasmodium vivax. Frontiers in Cellular and Infection Microbiology, 3(8). doi:10.3389/fcimb.2013.00008
Puentes, A., Ocampo, M., Rodriguez, L. E., Vera, R., Valbuena, J., Curtidor, H., . . . Patarroyo, M. E. (2005). Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie, 87(5), 461-472. doi:10.1016/j.biochi.2005.01.001
Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., & Deber, C. M. (2009). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 106(6), 1760-1765. doi:10.1073/pnas.0813167106
Recht, J., Siqueira, A. M., Monteiro, W. M., Herrera, S. M., Herrera, S., & Lacerda, M. V. G. (2017). Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J, 16(1), 273. doi:10.1186/s12936-017-1925-6
Richards, J. S., & Beeson, J. G. (2009). The future for blood-stage vaccines against malaria. Immunol Cell Biol, 87(5), 377-390. doi:10.1038/icb.2009.27
Rodriguez, L. E., Urquiza, M., Ocampo, M., Curtidor, H., Suarez, J., Garcia, J., . . . Patarroyo, M. E. (2002). Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine, 20(9-10), 1331-1339. doi:10.1016/s0264-410x(01)00472-8
Selander-Sunnerhagen, M., Ullner, M., Persson, E., Teleman, O., Stenflo, J., & Drakenberg, T. (1992). How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem, 267(27), 19642-19649. doi:10.2210/pdb1ccf/pdb
Singh, S., Pandey, K., Chattopadhayay, R., Yazdani, S. S., Lynn, A., Bharadwaj, A., . . . Chitnis, C. (2001). Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding protein. J Biol Chem, 276(20), 17111-17116. doi:10.1074/jbc.M101531200
Skulski, M., Bartoszewski, R., Majkowski, M., Machnicka, B., Kuliczkowski, K., Sikorski, A. F., & Bogusławska, D. M. (2019). Efficient method for isolation of reticulocyte RNA from healthy individuals and hemolytic anaemia patients. J Cell Mol Med, 23(1), 487-496. doi:10.1111/jcmm.13951
Sriprawat, K., Kaewpongsri, S., Suwanarusk, R., Leimanis, M. L., Lek-Uthai, U., Phyo, A. P., . . . Nosten, F. (2009). Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar J, 8, 115. doi:10.1186/1475-2875-8-115
Sturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., . . . Heussler, V. T. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313(5791), 1287-1290. doi:10.1126/science.1129720
Suzuki, Y. (2006). Natural selection on the influenza virus genome. Mol Biol Evol, 23(10), 1902-1911. doi:10.1093/molbev/msl050
Tuteja, R. (2007). Malaria - an overview. FEBS J, 274(18), 4670-4679. doi:10.1111/j.1742-4658.2007.05997.x
Urbina, A., & Palomino, F. (2018). In vitro kinetics of reticulocyte subtypes: maturation after red blood cell storage in additive solution-1 (AS-1). Hematology, Transfusion and Cell Therapy, 40(2), 143-150. doi:10.1016/j.htct.2017.12.002
Valderrama-Aguirre, A., Quintero, G., Gomez, A., Castellanos, A., Perez, Y., Mendez, F., . . . Herrera, S. (2005). Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am J Trop Med Hyg, 73(5 Suppl), 16-24. doi:10.4269/ajtmh.2005.73.16
Vargas-Serrato, E., Barnwell, J. W., Ingravallo, P., Perler, F. B., & Galinski, M. R. (2002). Merozoite surface protein-9 of Plasmodium vivax and related simian malaria parasites is orthologous to p101/ABRA of P. falciparum. Mol Biochem Parasitol, 120(1), 41-52. doi:10.1016/s0166-6851(01)00433-9
Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annu Rev Genet, 47, 97-120. doi:10.1146/annurev-genet-111212-133526
WARN. (2012). Plasmodium vivax and drug resistance | Worldwide Antimalarial Resistance Network
Wertheimer, S. P., & Barnwell, J. W. (1989). Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol, 69(4), 340-350
WHO. (2016). Control y eliminación del paludismo por plasmodium vivax: informe técnico. Retrieved from
WHO. (2018a). Malaria 2018
WHO. (2018b). World malaria report 2018
WHO. (2019). World malaria report 2019
Wilson, D. W., Goodman, C. D., Sleebs, B. E., Weiss, G. E., de Jong, N. W., Angrisano, F., . . . Beeson, J. G. (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biol, 13, 52. doi:10.1186/s12915-015-0162-0
Wouters, M. A., Rigoutsos, I., Chu, C. K., Feng, L. L., Sparrow, D. B., & Dunwoodie, S. L. (2005). Evolution of distinct EGF domains with specific functions. Protein Sci, 14(4), 1091-1103. doi:10.1110/ps.041207005
Wright, G. J., & Rayner, J. C. (2014). Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog, 10(3), e1003943. doi:10.1371/journal.ppat.1003943
Zeeshan, M., Tyagi, R. K., Tyagi, K., Alam, M. S., & Sharma, Y. D. (2015). Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. J Infect Dis, 211(7), 1111-1120. doi:10.1093/infdis/jiu558
dc.rights.spa.fl_str_mv Derechos Reservados al Autor, 2020
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
Derechos Reservados al Autor, 2020
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 82 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.department.spa.fl_str_mv Instituto de Biotecnología (IBUN)
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79710/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79710/2/1030657558.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79710/3/1030657558.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
ecfa0168e33988c0535e3422bb2bbf88
97c7543418bbcf00eba05fbae9a6d5cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089920962101248
spelling Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2020http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno Pérez, Darwin Andrés2544f79cefd410a354e61644479f5435Patarroyo Gutiérrez, Manuel Alfonso30322a85ae0ad9c1368bae791386bffeRicaurte Contreras, Laura Alejandra38dd5a28348a3202752f6ae1ae82862eBiología Molecular de virus2021-06-24T17:53:27Z2021-06-24T17:53:27Z2020https://repositorio.unal.edu.co/handle/unal/79710Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesPlasmodium vivax es una de las especies que causa malaria en humanos con mayor importancia epidemiológica en el mundo dada su amplia distribución geográfica. Esta especie es difícil de propagar in vitro dada su preferencia por invadir reticulocitos humanos y por ende su estudio biológico es complicado. Durante la invasión de estos parásitos a sus células diana se presenta un contacto inicial mediado principalmente por moléculas de superficie las cuales establecen diferentes interacciones proteína-proteína. Sin embargo, en P. vivax únicamente se conocen dos proteínas de superficie de merozoitos relacionadas con la adhesión específica a los reticulocitos humanos: MSP1 y RBSA. Dada la importancia de saber qué otras proteínas del parásito participan en el contacto inicial con el hospedero, en este estudio se evaluó, por primera vez, la capacidad de unión de la proteína de superficie de merozoito 10 (PvMSP10) a reticulocitos de humanos adultos. De particular interés, se encontró que PvMSP10 se une a reticulocitos humanos a través de la región C-terminal, cuyo polimorfismo es muy bajo. Además, mediante un ensayo de competición proteína-célula, se determinó que dicha interacción se encuentra gobernada por dos regiones de 20 residuos de longitud (388DKEECRCRANYMPDDSVDYF407 y 415KDCSKENGNCDVNAECSIDK434), que hacen parte de los dominios similares a EGF de esta proteína. Estos hallazgos destacan la importancia de dichos fragmentos para estudiar su utilidad en una futura vacuna contra la malaria causada por P. vivax. (Texto tomado de la fuente)Plasmodium vivax is one of the species that causes malaria in humans with the greatest epidemiological importance in the world given its wide geographical distribution. This species is difficult to propagate in vitro given its preference for invading human reticulocytes and therefore its biological study is complicated. During the invasion of these parasites to their target cells, an initial contact occurs mainly mediated by surface molecules which establish different protein-protein interactions. However, only two merozoite surface proteins related to specific adhesion to human reticulocytes are known in P. vivax: MSP1 and RBSA. Given the importance of knowing which other parasite proteins are involved in the initial contact with the host, this study evaluated for the first time, the binding activity of merozoite surface protein 10 (PvMSP10) to adult human reticulocytes. It was found that PvMSP10 binds to human reticulocytes through the C-terminal region, whose polymorphism is low. Furthermore, by a protein-cell competition assay, it was determined that such interaction is governed by two regions of 20 residues in length (388DKEECRCRANYMPDDSVDYF407 and 415KDCSKENGNCDVNAECSIDK434), which are part of the EGF-like domains. These findings highlight the importance of these fragments to study their usefulness in a future vaccine against malaria caused by P. vivax. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - MicrobiologíaBiología Molecular de Agentes Infecciosos82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaInstituto de Biotecnología (IBUN)Facultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionadosInmunologíaImmunologyPlasmodium vivaxMalariaPlasmodium vivaxInvasiónInteracciones proteína-proteínaPvMSP10Reticulocitos humanosPlasmodium vivaxInvasionProtein-protein interactionsPvMSP10Human reticulocytesActividad de unión a reticulocitos humanos del fragmento conservado de la proteína PvMSP10Reticulocyte binding activity humans from the preserved fragment of the PvMSP10 proteinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAikawa, M., Miller, L. H., Johnson, J., & Rabbege, J. (1978). Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J Cell Biol, 77(1), 72-82. doi:10.1083/jcb.77.1.72Arevalo-Herrera, M., Lopez-Perez, M., Dotsey, E., Jain, A., Rubiano, K., Felgner, P. L., . . . Herrera, S. (2016). Antibody Profiling in Naive and Semi-immune Individuals Experimentally Challenged with Plasmodium vivax Sporozoites. PLoS Negl Trop Dis, 10(3), e0004563. doi:10.1371/journal.pntd.0004563Arevalo-Pinzon, G., Bermudez, M., Curtidor, H., & Patarroyo, M. A. (2015). The Plasmodium vivax rhoptry neck protein 5 is expressed in the apical pole of Plasmodium vivax VCG-1 strain schizonts and binds to human reticulocytes. Malar J, 14, 106. doi:10.1186/s12936-015-0619-1Arevalo-Pinzon, G., Bermudez, M., Hernandez, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6Arévalo-Pinzón, G., Bermúdez, M., Hernández, D., Curtidor, H., & Patarroyo, M. A. (2017). Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep, 7(1), 9616. doi:10.1038/s41598-017-10025-6Aurrecoechea, C., Brestelli, J., Brunk, B. P., Dommer, J., Fischer, S., Gajria, B., . . . Wang, H. (2009). PlasmoDB: a functional genomic database for malaria parasites. Nucleic Acids Res, 37(Database issue), D539-543. doi:10.1093/nar/gkn814Baird, J. K., Valecha, N., Duparc, S., White, N. J., & Price, R. N. (2016). Diagnosis and Treatment of Plasmodium vivax Malaria. Am J Trop Med Hyg, 95(6 Suppl), 35-51. doi:10.4269/ajtmh.16-0171Baldwin, M. R., Li, X., Hanada, T., Liu, S. C., & Chishti, A. H. (2015). Merozoite surface protein 1 recognition of host glycophorin A mediates malaria parasite invasion of red blood cells. Blood, 125(17), 2704-2711. doi:10.1182/blood-2014-11-611707Baquero, L. A., Moreno-Perez, D. A., Garzon-Ospina, D., Forero-Rodriguez, J., Ortiz-Suarez, H. D., & Patarroyo, M. A. (2017). PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasit Vectors, 10(1), 251. doi:10.1186/s13071-017-2183-8Bargieri, D., Lagal, V., Andenmatten, N., Tardieux, I., Meissner, M., & Menard, R. (2014). Host cell invasion by apicomplexan parasites: the junction conundrum. PLoS Pathog, 10(9), e1004273. doi:10.1371/journal.ppat.1004273Barry, A. E., & Arnott, A. (2014). Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol, 5, 359. doi:10.3389/fimmu.2014.00359Baum, E., Sattabongkot, J., Sirichaisinthop, J., Kiattibutr, K., Davies, D. H., Jain, A., . . . Yan, G. (2015). Submicroscopic and asymptomatic Plasmodium falciparum and Plasmodium vivax infections are common in western Thailand - molecular and serological evidence. Malar J, 14, 95. doi:10.1186/s12936-015-0611-9Beeson, J. G., Drew, D. R., Boyle, M. J., Feng, G., Fowkes, F. J., & Richards, J. S. (2016). Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev, 40(3), 343-372. doi:10.1093/femsre/fuw001Bermudez, M., Arevalo-Pinzon, G., Rubio, L., Chaloin, O., Muller, S., Curtidor, H., & Patarroyo, M. A. (2018). Receptor-ligand and parasite protein-protein interactions in Plasmodium vivax: Analysing rhoptry neck proteins 2 and 4. Cell Microbiol, 20(7), e12835. doi:10.1111/cmi.12835Bermudez, M., Moreno-Perez, D. A., Arevalo-Pinzon, G., Curtidor, H., & Patarroyo, M. A. (2018). Plasmodium vivax in vitro continuous culture: the spoke in the wheel. Malar J, 17(1), 301. doi:10.1186/s12936-018-2456-5Besteiro, S., Dubremetz, J. F., & Lebrun, M. (2011). The moving junction of apicomplexan parasites: a key structure for invasion. Cell Microbiol, 13(6), 797-805. doi:10.1111/j.1462-5822.2011.01597.xBlack, C. G., Barnwell, J. W., Huber, C. S., Galinski, M. R., & Coppel, R. L. (2002). The Plasmodium vivax homologues of merozoite surface proteins 4 and 5 from Plasmodium falciparum are expressed at different locations in the merozoite. Mol Biochem Parasitol, 120(2), 215-224. doi:10.1016/s0166-6851(01)00458-3Black, C. G., Wang, L., Wu, T., & Coppel, R. L. (2003). Apical location of a novel EGF-like domain-containing protein of Plasmodium falciparum. Mol Biochem Parasitol, 127(1), 59-68. doi:10.1016/s0166-6851(02)00308-0Boyd, M. F., & Kitchen, S. F. (1937). On the Infeetiousness of Patients infected with Plasmodium vivax and Plasmodium falciparum. American Journal of Tropical Medicine, 17(2), 253-262 pp.Boyle, M. J., Wilson, D. W., Richards, J. S., Riglar, D. T., Tetteh, K. K., Conway, D. J., . . . Beeson, J. G. (2010). Isolation of viable Plasmodium falciparum merozoites to define erythrocyte invasion events and advance vaccine and drug development. Proc Natl Acad Sci U S A, 107(32), 14378-14383. doi:10.1073/pnas.1009198107Buitrago, S. P., Garzon-Ospina, D., & Patarroyo, M. A. (2016). Size polymorphism and low sequence diversity in the locus encoding the Plasmodium vivax rhoptry neck protein 4 (PvRON4) in Colombian isolates. Malar J, 15(1), 501. doi:10.1186/s12936-016-1563-4Camargo-Ayala, P. A., Garzon-Ospina, D., Moreno-Perez, D. A., Ricaurte-Contreras, L. A., Noya, O., & Patarroyo, M. A. (2018). On the Evolution and Function of Plasmodium vivax Reticulocyte Binding Surface Antigen (pvrbsa). Front Genet, 9, 372. doi:10.3389/fgene.2018.00372Cowman, A. F., Berry, D., & Baum, J. (2012). The cellular and molecular basis for malaria parasite invasion of the human red blood cell. J Cell Biol, 198(6), 961-971. doi:10.1083/jcb.201206112Cowman, A. F., & Crabb, B. S. (2006). Invasion of red blood cells by malaria parasites. Cell, 124(4), 755-766. doi:10.1016/j.cell.2006.02.006Cheng, Y., Wang, B., Sattabongkot, J., Lim, C. S., Tsuboi, T., & Han, E. T. (2014). Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10. Parasitol Res, 113(7), 2559-2568. doi:10.1007/s00436-014-3907-8Chim-Ong, A., Surit, T., Chainarin, S., Roobsoong, W., Sattabongkot, J., Cui, L., & Nguitragool, W. (2020). The Blood Stage Antigen RBP2-P1 of Plasmodium vivax Binds Reticulocytes and Is a Target of Naturally Acquired Immunity. Infect Immun, 88(4). doi:10.1128/IAI.00616-19Chitnis, C. E., & Miller, L. H. (1994). Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J Exp Med, 180(2), 497-506. doi:10.1084/jem.180.2.497Chu, T., Sinha, A., Malleret, B., Suwanarusk, R., Park, J., Naidu, R., . . . Chandramohanadas, R. (2017). Quantitative mass spectrometry of human reticulocytes reveal proteome‐wide modifications during maturation. British Journal of Haematology, 180. doi:10.1111/bjh.14976de Lacerda, M. V., Zackiewicz, C., Alecrim, W. D., & Alecrim, M. (2007). The neglected Plasmodium vivax: are researchers from endemic areas really concerned about new treatment options? Rev Soc Bras Med Trop, 40(4), 489-490. doi:10.1590/s0037-86822007000400026Drew, D. R., O'Donnell, R. A., Smith, B. J., & Crabb, B. S. (2004). A common cross-species function for the double epidermal growth factor-like modules of the highly divergent plasmodium surface proteins MSP-1 and MSP-8. J Biol Chem, 279(19), 20147-20153. doi:10.1074/jbc.M401114200Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Ferreira, M. U., da Silva Nunes, M., & Wunderlich, G. (2004). Antigenic diversity and immune evasion by malaria parasites. Clin Diagn Lab Immunol, 11(6), 987-995. doi:10.1128/cdli.11.6.987-995.2004Garzon-Ospina, D., Forero-Rodriguez, J., & Patarroyo, M. A. (2015). Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. Infect Genet Evol, 33, 182-188. doi:10.1016/j.meegid.2015.05.001Garzón-Ospina, D. E. (2019). Identificación de señales de selección natural en genes de Plasmodium vivax que codifican proteínas involucradas en el proceso de invasión para determinar su potencial uso en una vacuna antimalárica. Universidad del Rosario. Retrieved from https://repository.urosario.edu.co/flexpaper/handle/10336/19876/GarzonOspina-DiegoEdison-2019.pdf?sequence=1&isAllowed=yGilson, P. R., Nebl, T., Vukcevic, D., Moritz, R. L., Sargeant, T., Speed, T. P., . . . Crabb, B. S. (2006). Identification and stoichiometry of glycosylphosphatidylinositol-anchored membrane proteins of the human malaria parasite Plasmodium falciparum. Mol Cell Proteomics, 5(7), 1286-1299. doi:10.1074/mcp.M600035-MCP200Goh, S. H., Josleyn, M., Lee, Y. T., Danner, R. L., Gherman, R. B., Cam, M. C., & Miller, J. L. (2007). The human reticulocyte transcriptome. Physiol Genomics, 30(2), 172-178. doi:10.1152/physiolgenomics.00247.2006Gonçalves, L. A., Cravo, P., & Ferreira, M. U. (2014). Emerging Plasmodium vivax resistance to chloroquine in South America: an overview. Mem Inst Oswaldo Cruz, 109(5), 534-539. doi:10.1590/0074-0276130579Gruszczyk, J., Kanjee, U., Chan, L. J., Menant, S., Malleret, B., Lim, N. T. Y., . . . Tham, W. H. (2018). Transferrin receptor 1 is a reticulocyte-specific receptor for Plasmodium vivax. Science, 359(6371), 48-55. doi:10.1126/science.aan1078Gupta, S., Singh, S., Popovici, J., Roesch, C., Shakri, A. R., Guillotte-Blisnick, M., . . . Chitnis, C. E. (2018). Targeting a Reticulocyte Binding Protein and Duffy Binding Protein to Inhibit Reticulocyte Invasion by Plasmodium vivax. Sci Rep, 8(1), 10511. doi:10.1038/s41598-018-28757-4Han, H. J., Park, S. G., Kim, S. H., Hwang, S. Y., Han, J., Traicoff, J., . . . Chung, J. Y. (2004). Epidermal growth factor-like motifs 1 and 2 of Plasmodium vivax merozoite surface protein 1 are critical domains in erythrocyte invasion. Biochem Biophys Res Commun, 320(2), 563-570. doi:10.1016/j.bbrc.2004.06.008Han, J. H., Cho, J. S., Cheng, Y., Muh, F., Yoo, W. G., Russell, B., . . . Han, E. T. (2018). Plasmodium vivax Merozoite Surface Protein 1 Paralog as a Mediator of Parasite Adherence to Reticulocytes. Infect Immun, 86(9). doi:10.1128/IAI.00239-18Han, J. H., Lee, S. K., Wang, B., Muh, F., Nyunt, M. H., Na, S., . . . Han, E. T. (2016). Identification of a reticulocyte-specific binding domain of Plasmodium vivax reticulocyte-binding protein 1 that is homologous to the PfRh4 erythrocyte-binding domain. Sci Rep, 6, 26993. doi:10.1038/srep26993Hoffman, S. L., Vekemans, J., Richie, T. L., & Duffy, P. E. (2015). The March Toward Malaria Vaccines. Am J Prev Med, 49(6 Suppl 4), S319-333. doi:10.1016/j.amepre.2015.09.011Houghten, R. A. (1985). General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen-antibody interaction at the level of individual amino acids. Proc Natl Acad Sci U S A, 82(15), 5131-5135. doi:10.1073/pnas.82.15.5131Hulden, L., & Hulden, L. (2011). Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival. Malar J, 10, 90. doi:10.1186/1475-2875-10-90Jiang, J., Barnwell, J. W., Meyer, E. V., & Galinski, M. R. (2013). Plasmodium vivax merozoite surface protein-3 (PvMSP3): expression of an 11 member multigene family in blood-stage parasites. PLoS One, 8(5), e63888. doi:10.1371/journal.pone.0063888Kanjee, U., Rangel, G. W., Clark, M. A., & Duraisingh, M. T. (2018). Molecular and cellular interactions defining the tropism of Plasmodium vivax for reticulocytes. Curr Opin Microbiol, 46, 109-115. doi:10.1016/j.mib.2018.10.002Koch, M., & Baum, J. (2016). The mechanics of malaria parasite invasion of the human erythrocyte - towards a reassessment of the host cell contribution. Cell Microbiol, 18(3), 319-329. doi:10.1111/cmi.12557Kumar, A. A., Lim, C., Moreno, Y., Mace, C. R., Syed, A., Van Tyne, D., . . . Whitesides, G. M. (2015). Enrichment of reticulocytes from whole blood using aqueous multiphase systems of polymers. Am J Hematol, 90(1), 31-36. doi:10.1002/ajh.23860Lin, C. S., Uboldi, A. D., Epp, C., Bujard, H., Tsuboi, T., Czabotar, P. E., & Cowman, A. F. (2016). Multiple Plasmodium falciparum Merozoite Surface Protein 1 Complexes Mediate Merozoite Binding to Human Erythrocytes. J Biol Chem, 291(14), 7703-7715. doi:10.1074/jbc.M115.698282Lin, C. S., Uboldi, A. D., Marapana, D., Czabotar, P. E., Epp, C., Bujard, H., . . . Cowman, A. F. (2014). The merozoite surface protein 1 complex is a platform for binding to human erythrocytes by Plasmodium falciparum. J Biol Chem, 289(37), 25655-25669. doi:10.1074/jbc.M114.586495Lingelbach, K., & Joiner, K. A. (1998). The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J Cell Sci, 111 ( Pt 11), 1467-1475Milner, D. A., Jr. (2018). Malaria Pathogenesis. Cold Spring Harb Perspect Med, 8(1). doi:10.1101/cshperspect.a025569Mongui, A., Perez-Leal, O., Soto, S. C., Cortes, J., & Patarroyo, M. A. (2006). Cloning, expression, and characterisation of a Plasmodium vivax MSP7 family merozoite surface protein. Biochem Biophys Res Commun, 351(3), 639-644. doi:10.1016/j.bbrc.2006.10.082Moreno-Pérez, D. A., Areiza-Rojas, R., Flórez-Buitrago, X., Silva, Y., Patarroyo, M. E., & Patarroyo, M. A. (2013). The GPI-anchored 6-Cys protein Pv12 is present in detergent-resistant microdomains of Plasmodium vivax blood stage schizonts. Protist, 164(1), 37-48. doi:10.1016/j.protis.2012.03.001Moreno-Perez, D. A., Baquero, L. A., Chitiva-Ardila, D. M., & Patarroyo, M. A. (2017). Characterising PvRBSA: an exclusive protein from Plasmodium species infecting reticulocytes. Parasit Vectors, 10(1), 243. doi:10.1186/s13071-017-2185-6Moreno-Pérez, D. A., Dégano, R., Ibarrola, N., Muro, A., & Patarroyo, M. A. (2015). Determining the Plasmodium vivax VCG-1 strain blood stage proteome. J Proteomics, 113, 268-280. doi:10.1016/j.jprot.2014.10.003Moreno-Pérez, D. A., Ruíz, J. A., & Patarroyo, M. A. (2013). Reticulocytes: Plasmodium vivax target cells. Biol Cell, 105(6), 251-260. doi:10.1111/boc.201200093Mueller, I., Galinski, M. R., Baird, J. K., Carlton, J. M., Kochar, D. K., Alonso, P. L., & del Portillo, H. A. (2009). Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis, 9(9), 555-566. doi:10.1016/s1473-3099(09)70177-xNagaoka, H., Kanoi, B. N., Jinoka, K., Morita, M., Arumugam, T. U., Palacpac, N. M. Q., . . . Takashima, E. (2019). The N-Terminal Region of Plasmodium falciparum MSP10 Is a Target of Protective Antibodies in Malaria and Is Important for PfGAMA/PfMSP10 Interaction. Front Immunol, 10, 2669. doi:10.3389/fimmu.2019.02669Ndiath, M. O., Mazenot, C., Sokhna, C., & Trape, J. F. (2016). Retraction: How the Malaria Vector Anopheles gambiae Adapts to the Use of Insecticide-Treated Nets by African Populations. PLoS One, 11(5), e0156196. doi:10.1371/journal.pone.0156196Nielsen, R. (2005). Molecular signatures of natural selection. Annu Rev Genet, 39, 197-218. doi:10.1146/annurev.genet.39.073003.112420Nogueira, P. A., Alves, F. P., Fernandez-Becerra, C., Pein, O., Santos, N. R., Pereira da Silva, L. H., . . . del Portillo, H. A. (2006). A reduced risk of infection with Plasmodium vivax and clinical protection against malaria are associated with antibodies against the N terminus but not the C terminus of merozoite surface protein 1. Infect Immun, 74(5), 2726-2733. doi:10.1128/iai.74.5.2726-2733.2006O'Donnell, R. A., & Blackman, M. J. (2005). The role of malaria merozoite proteases in red blood cell invasion. Curr Opin Microbiol, 8(4), 422-427. doi:10.1016/j.mib.2005.06.018OPS/OMS, O. P. d. l. S. (2010). Guía para atención clínica integral del paciente con malaria. Retrieved from https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/VS/PP/ET/Guia-atencion-clinica-malaria-2011.pdfPatarroyo, M. A., Arevalo-Pinzon, G., & Moreno-Perez, D. A. (2020). From a basic to a functional approach for developing a blood stage vaccine against Plasmodium vivax. Expert Rev Vaccines. doi:10.1080/14760584.2020.1733421Patarroyo, M. A., Calderón, D., & Moreno-Pérez, D. A. (2012). Vaccines against Plasmodium vivax: a research challenge. Expert Rev Vaccines, 11(10), 1249-1260. doi:10.1586/erv.12.91Patarroyo, M. E., Arevalo-Pinzon, G., Reyes, C., Moreno-Vranich, A., & Patarroyo, M. A. (2016). Malaria Parasite Survival Depends on Conserved Binding Peptides' Critical Biological Functions. Curr Issues Mol Biol, 18, 57-78Paul, A. S., Egan, E. S., & Duraisingh, M. T. (2015). Host-parasite interactions that guide red blood cell invasion by malaria parasites. Curr Opin Hematol, 22(3), 220-226. doi:10.1097/moh.0000000000000135Perez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2005). Identifying and characterising the Plasmodium falciparum merozoite surface protein 10 Plasmodium vivax homologue. Biochem Biophys Res Commun, 331(4), 1178-1184. doi:10.1016/j.bbrc.2005.04.031Perez-Leal, O., Sierra, A. Y., Barrero, C. A., Moncada, C., Martinez, P., Cortes, J., . . . Patarroyo, M. A. (2004). Plasmodium vivax merozoite surface protein 8 cloning, expression, and characterisation. Biochem Biophys Res Commun, 324(4), 1393-1399. doi:10.1016/j.bbrc.2004.09.202Polley, S. D., Tetteh, K. K., Lloyd, J. M., Akpogheneta, O. J., Greenwood, B. M., Bojang, K. A., & Conway, D. J. (2007). Plasmodium falciparum merozoite surface protein 3 is a target of allele-specific immunity and alleles are maintained by natural selection. J Infect Dis, 195(2), 279-287. doi:10.1086/509806Prajapati, S., & Singh, O. (2013). Insights into the invasion biology of Plasmodium vivax. Frontiers in Cellular and Infection Microbiology, 3(8). doi:10.3389/fcimb.2013.00008Puentes, A., Ocampo, M., Rodriguez, L. E., Vera, R., Valbuena, J., Curtidor, H., . . . Patarroyo, M. E. (2005). Identifying Plasmodium falciparum merozoite surface protein-10 human erythrocyte specific binding regions. Biochimie, 87(5), 461-472. doi:10.1016/j.biochi.2005.01.001Rath, A., Glibowicka, M., Nadeau, V. G., Chen, G., & Deber, C. M. (2009). Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A, 106(6), 1760-1765. doi:10.1073/pnas.0813167106Recht, J., Siqueira, A. M., Monteiro, W. M., Herrera, S. M., Herrera, S., & Lacerda, M. V. G. (2017). Malaria in Brazil, Colombia, Peru and Venezuela: current challenges in malaria control and elimination. Malar J, 16(1), 273. doi:10.1186/s12936-017-1925-6Richards, J. S., & Beeson, J. G. (2009). The future for blood-stage vaccines against malaria. Immunol Cell Biol, 87(5), 377-390. doi:10.1038/icb.2009.27Rodriguez, L. E., Urquiza, M., Ocampo, M., Curtidor, H., Suarez, J., Garcia, J., . . . Patarroyo, M. E. (2002). Plasmodium vivax MSP-1 peptides have high specific binding activity to human reticulocytes. Vaccine, 20(9-10), 1331-1339. doi:10.1016/s0264-410x(01)00472-8Selander-Sunnerhagen, M., Ullner, M., Persson, E., Teleman, O., Stenflo, J., & Drakenberg, T. (1992). How an epidermal growth factor (EGF)-like domain binds calcium. High resolution NMR structure of the calcium form of the NH2-terminal EGF-like domain in coagulation factor X. J Biol Chem, 267(27), 19642-19649. doi:10.2210/pdb1ccf/pdbSingh, S., Pandey, K., Chattopadhayay, R., Yazdani, S. S., Lynn, A., Bharadwaj, A., . . . Chitnis, C. (2001). Biochemical, biophysical, and functional characterization of bacterially expressed and refolded receptor binding domain of Plasmodium vivax duffy-binding protein. J Biol Chem, 276(20), 17111-17116. doi:10.1074/jbc.M101531200Skulski, M., Bartoszewski, R., Majkowski, M., Machnicka, B., Kuliczkowski, K., Sikorski, A. F., & Bogusławska, D. M. (2019). Efficient method for isolation of reticulocyte RNA from healthy individuals and hemolytic anaemia patients. J Cell Mol Med, 23(1), 487-496. doi:10.1111/jcmm.13951Sriprawat, K., Kaewpongsri, S., Suwanarusk, R., Leimanis, M. L., Lek-Uthai, U., Phyo, A. P., . . . Nosten, F. (2009). Effective and cheap removal of leukocytes and platelets from Plasmodium vivax infected blood. Malar J, 8, 115. doi:10.1186/1475-2875-8-115Sturm, A., Amino, R., van de Sand, C., Regen, T., Retzlaff, S., Rennenberg, A., . . . Heussler, V. T. (2006). Manipulation of host hepatocytes by the malaria parasite for delivery into liver sinusoids. Science, 313(5791), 1287-1290. doi:10.1126/science.1129720Suzuki, Y. (2006). Natural selection on the influenza virus genome. Mol Biol Evol, 23(10), 1902-1911. doi:10.1093/molbev/msl050Tuteja, R. (2007). Malaria - an overview. FEBS J, 274(18), 4670-4679. doi:10.1111/j.1742-4658.2007.05997.xUrbina, A., & Palomino, F. (2018). In vitro kinetics of reticulocyte subtypes: maturation after red blood cell storage in additive solution-1 (AS-1). Hematology, Transfusion and Cell Therapy, 40(2), 143-150. doi:10.1016/j.htct.2017.12.002Valderrama-Aguirre, A., Quintero, G., Gomez, A., Castellanos, A., Perez, Y., Mendez, F., . . . Herrera, S. (2005). Antigenicity, immunogenicity, and protective efficacy of Plasmodium vivax MSP1 PV200l: a potential malaria vaccine subunit. Am J Trop Med Hyg, 73(5 Suppl), 16-24. doi:10.4269/ajtmh.2005.73.16Vargas-Serrato, E., Barnwell, J. W., Ingravallo, P., Perler, F. B., & Galinski, M. R. (2002). Merozoite surface protein-9 of Plasmodium vivax and related simian malaria parasites is orthologous to p101/ABRA of P. falciparum. Mol Biochem Parasitol, 120(1), 41-52. doi:10.1016/s0166-6851(01)00433-9Vitti, J. J., Grossman, S. R., & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annu Rev Genet, 47, 97-120. doi:10.1146/annurev-genet-111212-133526WARN. (2012). Plasmodium vivax and drug resistance | Worldwide Antimalarial Resistance NetworkWertheimer, S. P., & Barnwell, J. W. (1989). Plasmodium vivax interaction with the human Duffy blood group glycoprotein: identification of a parasite receptor-like protein. Exp Parasitol, 69(4), 340-350WHO. (2016). Control y eliminación del paludismo por plasmodium vivax: informe técnico. Retrieved fromWHO. (2018a). Malaria 2018WHO. (2018b). World malaria report 2018WHO. (2019). World malaria report 2019Wilson, D. W., Goodman, C. D., Sleebs, B. E., Weiss, G. E., de Jong, N. W., Angrisano, F., . . . Beeson, J. G. (2015). Macrolides rapidly inhibit red blood cell invasion by the human malaria parasite, Plasmodium falciparum. BMC Biol, 13, 52. doi:10.1186/s12915-015-0162-0Wouters, M. A., Rigoutsos, I., Chu, C. K., Feng, L. L., Sparrow, D. B., & Dunwoodie, S. L. (2005). Evolution of distinct EGF domains with specific functions. Protein Sci, 14(4), 1091-1103. doi:10.1110/ps.041207005Wright, G. J., & Rayner, J. C. (2014). Plasmodium falciparum erythrocyte invasion: combining function with immune evasion. PLoS Pathog, 10(3), e1003943. doi:10.1371/journal.ppat.1003943Zeeshan, M., Tyagi, R. K., Tyagi, K., Alam, M. S., & Sharma, Y. D. (2015). Host-parasite interaction: selective Pv-fam-a family proteins of Plasmodium vivax bind to a restricted number of human erythrocyte receptors. J Infect Dis, 211(7), 1111-1120. doi:10.1093/infdis/jiu558GeneralFundación Instituto Inmunología de ColombiaLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79710/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1030657558.2020.pdf1030657558.2020.pdfTesis de Maestría en Microbiologíaapplication/pdf5844457https://repositorio.unal.edu.co/bitstream/unal/79710/2/1030657558.2020.pdfecfa0168e33988c0535e3422bb2bbf88MD52THUMBNAIL1030657558.2020.pdf.jpg1030657558.2020.pdf.jpgGenerated Thumbnailimage/jpeg5038https://repositorio.unal.edu.co/bitstream/unal/79710/3/1030657558.2020.pdf.jpg97c7543418bbcf00eba05fbae9a6d5cbMD53unal/79710oai:repositorio.unal.edu.co:unal/797102024-07-23 23:33:14.812Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==