Multiradial matrix covariance functions: characterization and applications
All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on th...
- Autores:
-
Alonso Malaver, Carlos Eduardo
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/52078
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/52078
http://bdigital.unal.edu.co/46332/
- Palabra clave:
- 51 Matemáticas / Mathematics
53 Física / Physics
Multivariate random field
Stationarity-isotropy
Matrix-covariance functions
Fourier Transform
Signed measures
Campos aleatorios multivariados
Estacionariedad-isotropía
Funciones de covarianza matriciales
Transformada de Fourier
Medidas signadas
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e75e8bdd979c12a88ff6fac73a25d29a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/52078 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Multiradial matrix covariance functions: characterization and applications |
title |
Multiradial matrix covariance functions: characterization and applications |
spellingShingle |
Multiradial matrix covariance functions: characterization and applications 51 Matemáticas / Mathematics 53 Física / Physics Multivariate random field Stationarity-isotropy Matrix-covariance functions Fourier Transform Signed measures Campos aleatorios multivariados Estacionariedad-isotropía Funciones de covarianza matriciales Transformada de Fourier Medidas signadas |
title_short |
Multiradial matrix covariance functions: characterization and applications |
title_full |
Multiradial matrix covariance functions: characterization and applications |
title_fullStr |
Multiradial matrix covariance functions: characterization and applications |
title_full_unstemmed |
Multiradial matrix covariance functions: characterization and applications |
title_sort |
Multiradial matrix covariance functions: characterization and applications |
dc.creator.fl_str_mv |
Alonso Malaver, Carlos Eduardo |
dc.contributor.advisor.spa.fl_str_mv |
Porcu, Emilio (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Alonso Malaver, Carlos Eduardo |
dc.contributor.spa.fl_str_mv |
Giraldo Henao, Ramón |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics 53 Física / Physics |
topic |
51 Matemáticas / Mathematics 53 Física / Physics Multivariate random field Stationarity-isotropy Matrix-covariance functions Fourier Transform Signed measures Campos aleatorios multivariados Estacionariedad-isotropía Funciones de covarianza matriciales Transformada de Fourier Medidas signadas |
dc.subject.proposal.spa.fl_str_mv |
Multivariate random field Stationarity-isotropy Matrix-covariance functions Fourier Transform Signed measures Campos aleatorios multivariados Estacionariedad-isotropía Funciones de covarianza matriciales Transformada de Fourier Medidas signadas |
description |
All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on the radially symmetric case and, the more general case, (b) on multiradial obtained through isotropy between components of the lag vector. We call the later set of functions the class of multiradial matrix-valued covariance functions or the class of d-anisotropic matrix-valued covariance functions, this case includes, as special case, space-time and fully symmetric correlation functions. The classes of radial and multiradial matrix-valued covariance functions are characterized as the scale mixture of a uniquely determined matrix-valued measure d(·), with d(b) − d(a) positive definite matrix for any 0 ≤ a ≤ b, with a, b ∈ Rn +, for some n ∈ Z+. We call the matrix function d(·) the m-Schoenberg measure. Such result is the analogue of Schoenberg (1938) theorem for the class of univariate stationary-isotropic covariance functions. We introduce the multivariate versions of radial and multiradial Mont´ee and Descente operators which were introduced by Matheron in the univariate-radial case, calling these matrix operators the m-Mont´ee and m-Descente, m ≥ 2, and prove that these operators change the smoothness of the mapped functions and they are dimensional walks, i.e. each one of these operators map a matrix-valued covariance function valid in Rd in another matrix-valued covariance function valid in Euclidean space of higher o lower dimension. Also, we characterize the associated m-Schoenberg measures of the new covariance matrix functions, it is set up the necessary conditions for the m-Mont´ee and m-Descente are well define and obtain examples where these operators as dimension walks are not well defined. Analogue of the Turning Bands operator established by Matheron for univariate covariance functions, we show the existence of projection operators that map a matrix-valued covariance function ϕ being positive definite on some Euclidean space Rd in another function, say ̺, being radial and positive definite on a Euclidean space of higher dimension, result which opens a future line of research in simulation of multivariate random fields. At the end, we present ascending dimensional walks, based on scale mixtures of Beta distribution function, that map a radial or multiradial matrix-valued covariance function valid in Rd into a radial or multiradial matrix-valued covariance function valid in a space of higher dimension. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T13:29:23Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T13:29:23Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/52078 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/46332/ |
url |
https://repositorio.unal.edu.co/handle/unal/52078 http://bdigital.unal.edu.co/46332/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Alonso Malaver, Carlos Eduardo (2014) Multiradial matrix covariance functions: characterization and applications. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/52078/1/832340.2014.pdf https://repositorio.unal.edu.co/bitstream/unal/52078/2/832340.2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
292fa1f810025bba9ab17247e68e1aab 54f74590879699c28214e06edb949b79 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089563972304896 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Henao, RamónPorcu, Emilio (Thesis advisor)39d89afd-96dc-4e50-9301-5f44d320cbee-1Alonso Malaver, Carlos Eduardo7ab7e3b3-dfc7-4d14-88ff-55280d1e0f553002019-06-29T13:29:23Z2019-06-29T13:29:23Z2014https://repositorio.unal.edu.co/handle/unal/52078http://bdigital.unal.edu.co/46332/All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on the radially symmetric case and, the more general case, (b) on multiradial obtained through isotropy between components of the lag vector. We call the later set of functions the class of multiradial matrix-valued covariance functions or the class of d-anisotropic matrix-valued covariance functions, this case includes, as special case, space-time and fully symmetric correlation functions. The classes of radial and multiradial matrix-valued covariance functions are characterized as the scale mixture of a uniquely determined matrix-valued measure d(·), with d(b) − d(a) positive definite matrix for any 0 ≤ a ≤ b, with a, b ∈ Rn +, for some n ∈ Z+. We call the matrix function d(·) the m-Schoenberg measure. Such result is the analogue of Schoenberg (1938) theorem for the class of univariate stationary-isotropic covariance functions. We introduce the multivariate versions of radial and multiradial Mont´ee and Descente operators which were introduced by Matheron in the univariate-radial case, calling these matrix operators the m-Mont´ee and m-Descente, m ≥ 2, and prove that these operators change the smoothness of the mapped functions and they are dimensional walks, i.e. each one of these operators map a matrix-valued covariance function valid in Rd in another matrix-valued covariance function valid in Euclidean space of higher o lower dimension. Also, we characterize the associated m-Schoenberg measures of the new covariance matrix functions, it is set up the necessary conditions for the m-Mont´ee and m-Descente are well define and obtain examples where these operators as dimension walks are not well defined. Analogue of the Turning Bands operator established by Matheron for univariate covariance functions, we show the existence of projection operators that map a matrix-valued covariance function ϕ being positive definite on some Euclidean space Rd in another function, say ̺, being radial and positive definite on a Euclidean space of higher dimension, result which opens a future line of research in simulation of multivariate random fields. At the end, we present ascending dimensional walks, based on scale mixtures of Beta distribution function, that map a radial or multiradial matrix-valued covariance function valid in Rd into a radial or multiradial matrix-valued covariance function valid in a space of higher dimension.En este trabajo se estudian las funciones matriciales de correlación radiales (isotrópicas ) y multiradiales (d-anisotropías), asociadas a campos aleatorios multivariados Gaussianos en Rd. El punto de partida de esta investigación es el desarrollo de la representación integral para las funciones matriciales de correlación radiales y multiradiales. Como resultado se obtiene que dada una función matricial, ´esta es una función de correlación matricial válida en Rd si y sólo si se puede representar como una mixtura de una función característica y una matriz _d(•) con _d(b) − _d(a) matriz definida positiva donde a, b ∈ Rn y a ≤ b. Se introducen las versiones multivariadas de la Montée y la Descente, m-Montée y m-Descente respectivamente, operadores que fueron introducidos en el caso univariado por Matheron. Y análogo a los resultados del caso univariado, se muestra que estos operadores cambian la suavidad - diferenciabilidad - de las funciones transformadas y definen biyecciones entre clases de funciones de correlación matricial, esto es, dada una función de correlación matricial ϕ válida en Rd, esta función se transforma, a través de los operadores m-Montee y m-Descente, en una función de correlación matricial ̺ que es una función de correlación matricial válida en un espacio de mayor o menor dimensión. Comportamiento que permite hablar de estos operadores como caminatas entre espacios de diferente dimensión - caminatas dimensionales -. Unido a lo anterior se hallan las condiciones necesarias para que dichos operadores estén bien definidos y se presentan ejemplos para los cuales no están bien definidos. Adicional a los resultados anteriores, se presentan dos clases de caminatas dimensionales; en la primera se presenta las versiones multivariadas de las ecuaciones de soporte para el método de simulación de bandas rotantes - Turning Bands -, resultado que abre una línea de investigación en simulación de campos aleatorios multivariados. En la segunda clase se exponen operadores con base en mixturas con la función de distribución Beta que generan caminatas dimensionales ascendentes, esto es a partir de funciones de correlación matricial válidas en un espacio Euclideo d-dimensional es posible obtener funciones de correlación matricial válidas en espacios Euclideos de mayor dimensión.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaAlonso Malaver, Carlos Eduardo (2014) Multiradial matrix covariance functions: characterization and applications. Doctorado thesis, Universidad Nacional de Colombia.51 Matemáticas / Mathematics53 Física / PhysicsMultivariate random fieldStationarity-isotropyMatrix-covariance functionsFourier TransformSigned measuresCampos aleatorios multivariadosEstacionariedad-isotropíaFunciones de covarianza matricialesTransformada de FourierMedidas signadasMultiradial matrix covariance functions: characterization and applicationsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL832340.2014.pdfapplication/pdf967890https://repositorio.unal.edu.co/bitstream/unal/52078/1/832340.2014.pdf292fa1f810025bba9ab17247e68e1aabMD51THUMBNAIL832340.2014.pdf.jpg832340.2014.pdf.jpgGenerated Thumbnailimage/jpeg3935https://repositorio.unal.edu.co/bitstream/unal/52078/2/832340.2014.pdf.jpg54f74590879699c28214e06edb949b79MD52unal/52078oai:repositorio.unal.edu.co:unal/520782023-02-23 23:04:55.79Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |