Multiradial matrix covariance functions: characterization and applications

All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on th...

Full description

Autores:
Alonso Malaver, Carlos Eduardo
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/52078
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/52078
http://bdigital.unal.edu.co/46332/
Palabra clave:
51 Matemáticas / Mathematics
53 Física / Physics
Multivariate random field
Stationarity-isotropy
Matrix-covariance functions
Fourier Transform
Signed measures
Campos aleatorios multivariados
Estacionariedad-isotropía
Funciones de covarianza matriciales
Transformada de Fourier
Medidas signadas
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e75e8bdd979c12a88ff6fac73a25d29a
oai_identifier_str oai:repositorio.unal.edu.co:unal/52078
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Multiradial matrix covariance functions: characterization and applications
title Multiradial matrix covariance functions: characterization and applications
spellingShingle Multiradial matrix covariance functions: characterization and applications
51 Matemáticas / Mathematics
53 Física / Physics
Multivariate random field
Stationarity-isotropy
Matrix-covariance functions
Fourier Transform
Signed measures
Campos aleatorios multivariados
Estacionariedad-isotropía
Funciones de covarianza matriciales
Transformada de Fourier
Medidas signadas
title_short Multiradial matrix covariance functions: characterization and applications
title_full Multiradial matrix covariance functions: characterization and applications
title_fullStr Multiradial matrix covariance functions: characterization and applications
title_full_unstemmed Multiradial matrix covariance functions: characterization and applications
title_sort Multiradial matrix covariance functions: characterization and applications
dc.creator.fl_str_mv Alonso Malaver, Carlos Eduardo
dc.contributor.advisor.spa.fl_str_mv Porcu, Emilio (Thesis advisor)
dc.contributor.author.spa.fl_str_mv Alonso Malaver, Carlos Eduardo
dc.contributor.spa.fl_str_mv Giraldo Henao, Ramón
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
53 Física / Physics
topic 51 Matemáticas / Mathematics
53 Física / Physics
Multivariate random field
Stationarity-isotropy
Matrix-covariance functions
Fourier Transform
Signed measures
Campos aleatorios multivariados
Estacionariedad-isotropía
Funciones de covarianza matriciales
Transformada de Fourier
Medidas signadas
dc.subject.proposal.spa.fl_str_mv Multivariate random field
Stationarity-isotropy
Matrix-covariance functions
Fourier Transform
Signed measures
Campos aleatorios multivariados
Estacionariedad-isotropía
Funciones de covarianza matriciales
Transformada de Fourier
Medidas signadas
description All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on the radially symmetric case and, the more general case, (b) on multiradial obtained through isotropy between components of the lag vector. We call the later set of functions the class of multiradial matrix-valued covariance functions or the class of d-anisotropic matrix-valued covariance functions, this case includes, as special case, space-time and fully symmetric correlation functions. The classes of radial and multiradial matrix-valued covariance functions are characterized as the scale mixture of a uniquely determined matrix-valued measure d(·), with d(b) − d(a) positive definite matrix for any 0 ≤ a ≤ b, with a, b ∈ Rn +, for some n ∈ Z+. We call the matrix function d(·) the m-Schoenberg measure. Such result is the analogue of Schoenberg (1938) theorem for the class of univariate stationary-isotropic covariance functions. We introduce the multivariate versions of radial and multiradial Mont´ee and Descente operators which were introduced by Matheron in the univariate-radial case, calling these matrix operators the m-Mont´ee and m-Descente, m ≥ 2, and prove that these operators change the smoothness of the mapped functions and they are dimensional walks, i.e. each one of these operators map a matrix-valued covariance function valid in Rd in another matrix-valued covariance function valid in Euclidean space of higher o lower dimension. Also, we characterize the associated m-Schoenberg measures of the new covariance matrix functions, it is set up the necessary conditions for the m-Mont´ee and m-Descente are well define and obtain examples where these operators as dimension walks are not well defined. Analogue of the Turning Bands operator established by Matheron for univariate covariance functions, we show the existence of projection operators that map a matrix-valued covariance function ϕ being positive definite on some Euclidean space Rd in another function, say ̺, being radial and positive definite on a Euclidean space of higher dimension, result which opens a future line of research in simulation of multivariate random fields. At the end, we present ascending dimensional walks, based on scale mixtures of Beta distribution function, that map a radial or multiradial matrix-valued covariance function valid in Rd into a radial or multiradial matrix-valued covariance function valid in a space of higher dimension.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014
dc.date.accessioned.spa.fl_str_mv 2019-06-29T13:29:23Z
dc.date.available.spa.fl_str_mv 2019-06-29T13:29:23Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/52078
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/46332/
url https://repositorio.unal.edu.co/handle/unal/52078
http://bdigital.unal.edu.co/46332/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística
Departamento de Estadística
dc.relation.references.spa.fl_str_mv Alonso Malaver, Carlos Eduardo (2014) Multiradial matrix covariance functions: characterization and applications. Doctorado thesis, Universidad Nacional de Colombia.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/52078/1/832340.2014.pdf
https://repositorio.unal.edu.co/bitstream/unal/52078/2/832340.2014.pdf.jpg
bitstream.checksum.fl_str_mv 292fa1f810025bba9ab17247e68e1aab
54f74590879699c28214e06edb949b79
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089563972304896
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Henao, RamónPorcu, Emilio (Thesis advisor)39d89afd-96dc-4e50-9301-5f44d320cbee-1Alonso Malaver, Carlos Eduardo7ab7e3b3-dfc7-4d14-88ff-55280d1e0f553002019-06-29T13:29:23Z2019-06-29T13:29:23Z2014https://repositorio.unal.edu.co/handle/unal/52078http://bdigital.unal.edu.co/46332/All results presented here concern to radial (isotropic) and multiradial (danisotropic) matrix-valued covariance functions. We specify some important properties of matrix-valued covariance functions associated to Multivariate Gaussian fields in a Euclidean space Rd. In particular, we focus (a) on the radially symmetric case and, the more general case, (b) on multiradial obtained through isotropy between components of the lag vector. We call the later set of functions the class of multiradial matrix-valued covariance functions or the class of d-anisotropic matrix-valued covariance functions, this case includes, as special case, space-time and fully symmetric correlation functions. The classes of radial and multiradial matrix-valued covariance functions are characterized as the scale mixture of a uniquely determined matrix-valued measure d(·), with d(b) − d(a) positive definite matrix for any 0 ≤ a ≤ b, with a, b ∈ Rn +, for some n ∈ Z+. We call the matrix function d(·) the m-Schoenberg measure. Such result is the analogue of Schoenberg (1938) theorem for the class of univariate stationary-isotropic covariance functions. We introduce the multivariate versions of radial and multiradial Mont´ee and Descente operators which were introduced by Matheron in the univariate-radial case, calling these matrix operators the m-Mont´ee and m-Descente, m ≥ 2, and prove that these operators change the smoothness of the mapped functions and they are dimensional walks, i.e. each one of these operators map a matrix-valued covariance function valid in Rd in another matrix-valued covariance function valid in Euclidean space of higher o lower dimension. Also, we characterize the associated m-Schoenberg measures of the new covariance matrix functions, it is set up the necessary conditions for the m-Mont´ee and m-Descente are well define and obtain examples where these operators as dimension walks are not well defined. Analogue of the Turning Bands operator established by Matheron for univariate covariance functions, we show the existence of projection operators that map a matrix-valued covariance function ϕ being positive definite on some Euclidean space Rd in another function, say ̺, being radial and positive definite on a Euclidean space of higher dimension, result which opens a future line of research in simulation of multivariate random fields. At the end, we present ascending dimensional walks, based on scale mixtures of Beta distribution function, that map a radial or multiradial matrix-valued covariance function valid in Rd into a radial or multiradial matrix-valued covariance function valid in a space of higher dimension.En este trabajo se estudian las funciones matriciales de correlación radiales (isotrópicas ) y multiradiales (d-anisotropías), asociadas a campos aleatorios multivariados Gaussianos en Rd. El punto de partida de esta investigación es el desarrollo de la representación integral para las funciones matriciales de correlación radiales y multiradiales. Como resultado se obtiene que dada una función matricial, ´esta es una función de correlación matricial válida en Rd si y sólo si se puede representar como una mixtura de una función característica y una matriz _d(•) con _d(b) − _d(a) matriz definida positiva donde a, b ∈ Rn y a ≤ b. Se introducen las versiones multivariadas de la Montée y la Descente, m-Montée y m-Descente respectivamente, operadores que fueron introducidos en el caso univariado por Matheron. Y análogo a los resultados del caso univariado, se muestra que estos operadores cambian la suavidad - diferenciabilidad - de las funciones transformadas y definen biyecciones entre clases de funciones de correlación matricial, esto es, dada una función de correlación matricial ϕ válida en Rd, esta función se transforma, a través de los operadores m-Montee y m-Descente, en una función de correlación matricial ̺ que es una función de correlación matricial válida en un espacio de mayor o menor dimensión. Comportamiento que permite hablar de estos operadores como caminatas entre espacios de diferente dimensión - caminatas dimensionales -. Unido a lo anterior se hallan las condiciones necesarias para que dichos operadores estén bien definidos y se presentan ejemplos para los cuales no están bien definidos. Adicional a los resultados anteriores, se presentan dos clases de caminatas dimensionales; en la primera se presenta las versiones multivariadas de las ecuaciones de soporte para el método de simulación de bandas rotantes - Turning Bands -, resultado que abre una línea de investigación en simulación de campos aleatorios multivariados. En la segunda clase se exponen operadores con base en mixturas con la función de distribución Beta que generan caminatas dimensionales ascendentes, esto es a partir de funciones de correlación matricial válidas en un espacio Euclideo d-dimensional es posible obtener funciones de correlación matricial válidas en espacios Euclideos de mayor dimensión.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaAlonso Malaver, Carlos Eduardo (2014) Multiradial matrix covariance functions: characterization and applications. Doctorado thesis, Universidad Nacional de Colombia.51 Matemáticas / Mathematics53 Física / PhysicsMultivariate random fieldStationarity-isotropyMatrix-covariance functionsFourier TransformSigned measuresCampos aleatorios multivariadosEstacionariedad-isotropíaFunciones de covarianza matricialesTransformada de FourierMedidas signadasMultiradial matrix covariance functions: characterization and applicationsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL832340.2014.pdfapplication/pdf967890https://repositorio.unal.edu.co/bitstream/unal/52078/1/832340.2014.pdf292fa1f810025bba9ab17247e68e1aabMD51THUMBNAIL832340.2014.pdf.jpg832340.2014.pdf.jpgGenerated Thumbnailimage/jpeg3935https://repositorio.unal.edu.co/bitstream/unal/52078/2/832340.2014.pdf.jpg54f74590879699c28214e06edb949b79MD52unal/52078oai:repositorio.unal.edu.co:unal/520782023-02-23 23:04:55.79Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co