Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales

ilustraciones

Autores:
Arbeláez Quintero, Sebastián
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83875
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83875
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
No linealidad
Modelos de umbral
Estacionalidad
Pronósticos
Economía
Non-linearity
Threshold models
Seasonality
Forecast
Economics
Previsión
Inferencia estadística
Series temporales
Forecasting
Statistical inference
Time series
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e713eee3ac0977316d07f0fead023891
oai_identifier_str oai:repositorio.unal.edu.co:unal/83875
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
dc.title.translated.spa.fl_str_mv Non-linear time series forecasting: application of the TSARX model and comparison with models for seasonal data
title Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
spellingShingle Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
No linealidad
Modelos de umbral
Estacionalidad
Pronósticos
Economía
Non-linearity
Threshold models
Seasonality
Forecast
Economics
Previsión
Inferencia estadística
Series temporales
Forecasting
Statistical inference
Time series
title_short Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
title_full Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
title_fullStr Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
title_full_unstemmed Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
title_sort Pronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionales
dc.creator.fl_str_mv Arbeláez Quintero, Sebastián
dc.contributor.advisor.spa.fl_str_mv Calderón Villanueva, Sergio Alejandro
dc.contributor.author.spa.fl_str_mv Arbeláez Quintero, Sebastián
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
No linealidad
Modelos de umbral
Estacionalidad
Pronósticos
Economía
Non-linearity
Threshold models
Seasonality
Forecast
Economics
Previsión
Inferencia estadística
Series temporales
Forecasting
Statistical inference
Time series
dc.subject.proposal.spa.fl_str_mv No linealidad
Modelos de umbral
Estacionalidad
Pronósticos
Economía
dc.subject.proposal.eng.fl_str_mv Non-linearity
Threshold models
Seasonality
Forecast
Economics
dc.subject.unesco.spa.fl_str_mv Previsión
Inferencia estadística
Series temporales
dc.subject.unesco.eng.fl_str_mv Forecasting
Statistical inference
Time series
description ilustraciones
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-05-25T20:33:21Z
dc.date.available.none.fl_str_mv 2023-05-25T20:33:21Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83875
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83875
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Bates, J. M., y Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational Research Society, 20 (4), 451-468.
Box, G., y Jenkins, G. M. (1991). Time Series Analysis: Forecasting and Control. PrenticeHall.
Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.
Brown, R. L., Durbin, J., y Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological), 37 (2), 149-192.
Cao, W., Zhu, W., Wang, W., Demazeau, Y., y Zhang, C. (2020). A deep coupled lstm approach for usd/cny exchange rate forecasting. IEEE Intelligent Systems, 35 (2), 43-53. doi: 10.1109/MIS.2020.2977283
Congodon, P. (2007). Bayesian statistical modelling. Southern Gate, Chichester: John Wiley & Sons.
DANE. (2015). Metodología general gran encuesta integrada de hogares geih.
DANE. (2016). Metodología general indicador de seguimiento a la economía ise
De Gooijer, J. G., y Vidiella-i Anguera, A. (2003). Nonlinear stochastic inflation modelling using seasetars. Insurance: Mathematics and Economics, 32 ((1)), 27–36.
Dellaportas, P., Foster, J. J., y Ntzoufras, I. (2002). On bayesian model and variable selection using mcmc. Statistics and Computing, 12 ((1)), 27–36.
Diebold, F., y Mariano, R. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13 ((3)), 253–263.
Dixon, M. F., Halperin, I., y Bilokon, P. (2020). Machine learning in finance from theory to practice. Switzerland: SP.
Edgerton, D., y Wells, C. (1994). Critical values for the cusumsq statistic in medium and large sized samples. Oxford Bulletin of Economics and Statistics, 56 (3), 355-365.
Etuk, E. H. (2012). Predicting inflation rates of nigeria using a seasonal box-jenkins model. Journal of Statistical and Econometric Methods, 1-3 , 27-37.
González, J., y Nieto, H., F. (2020). Bayesian analysis of multiplicative seasonal threshold autoregressive processes. Revista Colombiana de Estadística - Applied Statistics, 43 (2), 251–285.
Hansen, B. E. (2011). Threshold autoregression in economics. Statistics and their interface, 4 , 123–127.
Hochreiter, S., y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Holt, C. (2004). Forecasting seasonals and trends by exponentially weighted averages. En Onr memorandum no. 52.
Hyndman, R., y Athanasopoulos, G. (2021). Forecasting: principles and practice (3rd ed.). Melbourne: OTexts.
Jiehua, L., Chao, W., Wei, G., y Qiumin, Z. (2021). An economic forecasting method based on the lightgbm-optimized lstm and time-series model. Neural Computation, 2021 , 1-10.
Kryzanowski, L., y Zhang, H. (1992). Economic forces and seasonality in security returns. Review of Quantitative Finance and Accounting, 2 , 227-244.
Luetkepohl, H., y Xu, F. (2012). Forecasting annual inflation with seasonal monthly data: Using levels versus logs of the underlying price index. Journal of Statistical and Econometric Methods, 1-3 , 27-37.
Nieto, F. H. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics. Theory and Methods, 34 , 905–930.
Nieto, F. H. (2008). Forecasting with univariate tar models. Statistical Methodology, 5 , 263–276.
Peirano, R., Kristjanpoller, W., y Minutolo, M. (2021). Forecasting inflation in latin american countries using a sarima–lstm combination. Neural Computation, 25 , 10851–10862.
Peña, D., y Tsay, R. S. (2021). Statistical Learning for Big Dependent Data. Wiley Series in Probability and Statistics
Siami-Namini, S., Tavakoli, N., y Siami Namin, A. (2018). A comparison of arima and lstm in forecasting time series. En 2018 17th ieee international conference on machine learning and applications (icmla) (p. 1394-1401). doi: 10.1109/ICMLA.2018.00227
Tong, H., y Chen, C. H. (1978). Pattern recognition and signal processing. Netherlands: Springer.
Tong, H., y Lim, K. S. (1980). Threshold autoregression, limit cycles, and cyclical data. Journal of the Royal Statistical Society, Series B, 42 ((3)), 245–292.
Tsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93 (443), 1188–1202.
Urrutia, J. D., Rivera, C. I., Quite, J. A., Belamide, J. A., y Quinto, J. Q. (2014). Application of seasonal autoregressive integrated moving average (sarima) in modeling and forecasting philippine real gross domestic product. European Academic Research, II, 11247-11297.
Vaca, P. A. (2018). Analysis of the forecasting performance of the threshold autorregresive model (Tesis de Master no publicada). Universidad Nacional de Colombia.
Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.
Zhang, G., y Qi, M. (2005). Neural network forecasting for seasonal and trend time series. EJOR, 160 (2), 501-514.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiii, 168 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83875/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83875/2/1030623144.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83875/3/1030623144.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
d3a36ee4a3f0e79ad430c96d76512905
cd32e1bd919c6654b6611fbb7d950945
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089345602158592
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Calderón Villanueva, Sergio Alejandro4435821363acfcc5a0b97c50464db9d4Arbeláez Quintero, Sebastián41e78b8f8b2fc68c04952ce1b6dff1d62023-05-25T20:33:21Z2023-05-25T20:33:21Z2022https://repositorio.unal.edu.co/handle/unal/83875Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa introducción de los modelos TAR en el análisis económico ha permitido capturar el comportamiento no lineal, usualmente observado en este tipo de series de tiempo. Adicional a la no linealidad, las series de tiempo económicas pueden presentar comportamientos estacionales cuyo análisis podría llevar a conclusiones más acordes con la realidad. Por otro lado, realizar pronósticos acertados sobre los valores que una serie de tiempo tomará, es un tema importante en economía, por lo que un sector de la literatura se ha encargado de comparar la precisión de los pronósticos generados a partir de diferentes tipos de modelos. En este trabajo se compara la precisión de los pronósticos obtenidos al ajustar el modelo Multiplicative Seasonal Threshold Autoregressive with exogenous input - TSARX, con respecto a otros modelos usualmente empleados en la literatura. El modelo TSARX permite capturar el comportamiento estacional multiplicativo de las series de tiempo para explicar el proceso de interés. (Texto tomado de la fuente).Introduction of TAR models in economic analysis has allowed to capture the non linear behavior usually observed this kind of time series. In addition to non linearity, economic time series may exhibit seasonal patterns whose analysis may carry to conclusions more in line with reality. Otherwise, accurate forecasting for time series its a relevant topic in economics, thus a part of literature has been in charge to compare the accuracy of forecasts generated by different types of models. In this work, accuracy of forecast obtained by adjusting Multiplicative Seasonal Threshold Autorregessive with exogenous input - TSARX models, is compared with those obtained by adjusting other models usually used in literature. TSARX model allows to capture time series multiplicative seasonality to explain the process of interest.Incluye anexosMaestríaMagíster en Ciencias - Estadísticaxiii, 168 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasNo linealidadModelos de umbralEstacionalidadPronósticosEconomíaNon-linearityThreshold modelsSeasonalityForecastEconomicsPrevisiónInferencia estadísticaSeries temporalesForecastingStatistical inferenceTime seriesPronósticos en series de tiempo no lineales: aplicación del modelo TSARX y comparación con modelos para datos estacionalesNon-linear time series forecasting: application of the TSARX model and comparison with models for seasonal dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBates, J. M., y Granger, C. W. J. (1969). The combination of forecasts. Journal of the Operational Research Society, 20 (4), 451-468.Box, G., y Jenkins, G. M. (1991). Time Series Analysis: Forecasting and Control. PrenticeHall.Brown, R. G. (1959). Statistical forecasting for inventory control. McGraw/Hill.Brown, R. L., Durbin, J., y Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society. Series B (Methodological), 37 (2), 149-192.Cao, W., Zhu, W., Wang, W., Demazeau, Y., y Zhang, C. (2020). A deep coupled lstm approach for usd/cny exchange rate forecasting. IEEE Intelligent Systems, 35 (2), 43-53. doi: 10.1109/MIS.2020.2977283Congodon, P. (2007). Bayesian statistical modelling. Southern Gate, Chichester: John Wiley & Sons.DANE. (2015). Metodología general gran encuesta integrada de hogares geih.DANE. (2016). Metodología general indicador de seguimiento a la economía iseDe Gooijer, J. G., y Vidiella-i Anguera, A. (2003). Nonlinear stochastic inflation modelling using seasetars. Insurance: Mathematics and Economics, 32 ((1)), 27–36.Dellaportas, P., Foster, J. J., y Ntzoufras, I. (2002). On bayesian model and variable selection using mcmc. Statistics and Computing, 12 ((1)), 27–36.Diebold, F., y Mariano, R. (1995). Comparing predictive accuracy. Journal of Business & Economic Statistics, 13 ((3)), 253–263.Dixon, M. F., Halperin, I., y Bilokon, P. (2020). Machine learning in finance from theory to practice. Switzerland: SP.Edgerton, D., y Wells, C. (1994). Critical values for the cusumsq statistic in medium and large sized samples. Oxford Bulletin of Economics and Statistics, 56 (3), 355-365.Etuk, E. H. (2012). Predicting inflation rates of nigeria using a seasonal box-jenkins model. Journal of Statistical and Econometric Methods, 1-3 , 27-37.González, J., y Nieto, H., F. (2020). Bayesian analysis of multiplicative seasonal threshold autoregressive processes. Revista Colombiana de Estadística - Applied Statistics, 43 (2), 251–285.Hansen, B. E. (2011). Threshold autoregression in economics. Statistics and their interface, 4 , 123–127.Hochreiter, S., y Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.Holt, C. (2004). Forecasting seasonals and trends by exponentially weighted averages. En Onr memorandum no. 52.Hyndman, R., y Athanasopoulos, G. (2021). Forecasting: principles and practice (3rd ed.). Melbourne: OTexts.Jiehua, L., Chao, W., Wei, G., y Qiumin, Z. (2021). An economic forecasting method based on the lightgbm-optimized lstm and time-series model. Neural Computation, 2021 , 1-10.Kryzanowski, L., y Zhang, H. (1992). Economic forces and seasonality in security returns. Review of Quantitative Finance and Accounting, 2 , 227-244.Luetkepohl, H., y Xu, F. (2012). Forecasting annual inflation with seasonal monthly data: Using levels versus logs of the underlying price index. Journal of Statistical and Econometric Methods, 1-3 , 27-37.Nieto, F. H. (2005). Modeling bivariate threshold autoregressive processes in the presence of missing data. Communications in Statistics. Theory and Methods, 34 , 905–930.Nieto, F. H. (2008). Forecasting with univariate tar models. Statistical Methodology, 5 , 263–276.Peirano, R., Kristjanpoller, W., y Minutolo, M. (2021). Forecasting inflation in latin american countries using a sarima–lstm combination. Neural Computation, 25 , 10851–10862.Peña, D., y Tsay, R. S. (2021). Statistical Learning for Big Dependent Data. Wiley Series in Probability and StatisticsSiami-Namini, S., Tavakoli, N., y Siami Namin, A. (2018). A comparison of arima and lstm in forecasting time series. En 2018 17th ieee international conference on machine learning and applications (icmla) (p. 1394-1401). doi: 10.1109/ICMLA.2018.00227Tong, H., y Chen, C. H. (1978). Pattern recognition and signal processing. Netherlands: Springer.Tong, H., y Lim, K. S. (1980). Threshold autoregression, limit cycles, and cyclical data. Journal of the Royal Statistical Society, Series B, 42 ((3)), 245–292.Tsay, R. S. (1998). Testing and modeling multivariate threshold models. Journal of the American Statistical Association, 93 (443), 1188–1202.Urrutia, J. D., Rivera, C. I., Quite, J. A., Belamide, J. A., y Quinto, J. Q. (2014). Application of seasonal autoregressive integrated moving average (sarima) in modeling and forecasting philippine real gross domestic product. European Academic Research, II, 11247-11297.Vaca, P. A. (2018). Analysis of the forecasting performance of the threshold autorregresive model (Tesis de Master no publicada). Universidad Nacional de Colombia.Winters, P. R. (1960). Forecasting sales by exponentially weighted moving averages. Management Science, 6(3), 324-342.Zhang, G., y Qi, M. (2005). Neural network forecasting for seasonal and trend time series. EJOR, 160 (2), 501-514.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83875/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1030623144.2022.pdf1030623144.2022.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1873337https://repositorio.unal.edu.co/bitstream/unal/83875/2/1030623144.2022.pdfd3a36ee4a3f0e79ad430c96d76512905MD52THUMBNAIL1030623144.2022.pdf.jpg1030623144.2022.pdf.jpgGenerated Thumbnailimage/jpeg4760https://repositorio.unal.edu.co/bitstream/unal/83875/3/1030623144.2022.pdf.jpgcd32e1bd919c6654b6611fbb7d950945MD53unal/83875oai:repositorio.unal.edu.co:unal/838752023-08-06 23:03:56.034Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=