Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional
ilustraciones, diagramas
- Autores:
-
Acevedo Iles, Manuel Octavio
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86143
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Fuentes de generación basadas en inversores
Microrredes
Optimización distribuida
Protecciones adaptativas
Simulaciones en tiempo real
Subestaciones digitales
Adaptive protection
Digital substation
Distributed optimization
Inverter-based resources
Microgrid
Real-time simulation
Microgrid
Sistema de suministro eléctrico
algoritmo de optimización
microgrid
transmission of electricity
optimization algorithm
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e6e1ef4560f78f04d160f8b26099a707 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86143 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
dc.title.translated.eng.fl_str_mv |
Design of an advanced protection algorithm for AC microgrids interconnected with a traditional distribution system |
title |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
spellingShingle |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Fuentes de generación basadas en inversores Microrredes Optimización distribuida Protecciones adaptativas Simulaciones en tiempo real Subestaciones digitales Adaptive protection Digital substation Distributed optimization Inverter-based resources Microgrid Real-time simulation Microgrid Sistema de suministro eléctrico algoritmo de optimización microgrid transmission of electricity optimization algorithm |
title_short |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
title_full |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
title_fullStr |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
title_full_unstemmed |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
title_sort |
Diseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicional |
dc.creator.fl_str_mv |
Acevedo Iles, Manuel Octavio |
dc.contributor.advisor.spa.fl_str_mv |
Cortés Guerrero, Camilo Andres Romero Quete, David Fernando |
dc.contributor.author.spa.fl_str_mv |
Acevedo Iles, Manuel Octavio |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Investigación Emc-Un |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Fuentes de generación basadas en inversores Microrredes Optimización distribuida Protecciones adaptativas Simulaciones en tiempo real Subestaciones digitales Adaptive protection Digital substation Distributed optimization Inverter-based resources Microgrid Real-time simulation Microgrid Sistema de suministro eléctrico algoritmo de optimización microgrid transmission of electricity optimization algorithm |
dc.subject.proposal.spa.fl_str_mv |
Fuentes de generación basadas en inversores Microrredes Optimización distribuida Protecciones adaptativas Simulaciones en tiempo real Subestaciones digitales |
dc.subject.proposal.eng.fl_str_mv |
Adaptive protection Digital substation Distributed optimization Inverter-based resources Microgrid Real-time simulation |
dc.subject.wikidata.spa.fl_str_mv |
Microgrid Sistema de suministro eléctrico algoritmo de optimización |
dc.subject.wikidata.eng.fl_str_mv |
microgrid transmission of electricity optimization algorithm |
description |
ilustraciones, diagramas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-22T22:54:31Z |
dc.date.available.none.fl_str_mv |
2024-05-22T22:54:31Z |
dc.date.issued.none.fl_str_mv |
2024-05-20 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Image Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86143 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86143 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
M. J. Reno, S. Brahma, A. Bidram, and M. E. Ropp, “Influence of inverter-based resources on microgrid protection: Part 1: Microgrids in radial distribution systems,” IEEE Power and Energy Magazine, vol. 19, pp. 36–46, 5 2021. M. E. Ropp and M. J. Reno, “Influence of inverter-based resources on microgrid protec- tion: Part 2: Secondary networks and microgrid protection,” IEEE Power and Energy Magazine, vol. 19, pp. 47–57, 5 2021. S. Manson and E. McCullough, “Practical microgrid protection solutions: Promises and challenges,” IEEE Power and Energy Magazine, vol. 19, 2021. A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” 2015. B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” 2017. S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, 2014. D. B. Rathnayake, M. Akrami, C. Phurailatpam, S. P. Me, S. Hadavi, G. Jayasinghe, S. Zabihi, and B. Bahrani, “Grid forming inverter modeling, control, and applications,” IEEE Access, vol. 9, 2021. R. Furlaneto, I. Kocar, A. Grilo-Pavani, U. Karaagac, A. Haddadi, and E. Farantatos, “Short circuit network equivalents of systems with inverter-based resources,” Electric Power Systems Research, vol. 199, p. 107314, 10 2021. I. S. Association, IEEE Std. 1547-2018. Standard for Interconnection and Interoperabi- lity of Distributed Energy Resources with Associated Electric Power Systems Interfaces, 2018. CREG, “Resolución creg 060 de 2019,” 2019. R. Kabiri, D. G. Holmes, and B. P. McGrath, “Control of active and reactive power ripple to mitigate unbalanced grid voltages,” IEEE Transactions on Industry Applications, vol. 52, pp. 1660–1668, 3 2016. A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. D¨orfler, “Interactions of grid-forming power converters and synchronous machines,” 2 2019. B. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Transactions on Power Systems, vol. 37, 2022. B. Mahamedi, J. G. Zhu, M. Eskandari, L. Li, and A. Mehrizi-Sani, “Analysis of fault response of inverter-interfaced distributed generators in sequence networks,” 2018. A. Haddadi, I. Kocar, J. Mahseredjian, U. Karaagac, and E. Farantatos, “Performance of phase comparison line protection under inverter-based resources and impact of the german grid code,” IEEE Power and Energy Society General Meeting, vol. 2020-August, 2020. B. Mahamedi and J. E. Fletcher, “The equivalent models of grid-forming inverters in the sequence domain for the steady-state analysis of power systems,” IEEE Transactions on Power Systems, vol. 35, 2020. V. C. Cunha, T. Kim, N. Barry, P. Siratarnsophon, S. Santoso, W. Freitas, D. Rama-subramanian, and R. C. Dugan, “Generalized formulation of steady-state equivalent circuit models of grid-forming inverters,” IEEE Open Access Journal of Power and Energy, vol. 8, 2021. A. Haddadi, E. Farantatos, I. Kocar, and U. Karaagac, “Impact of inverter based resources on system protection,” Energies, vol. 14, 2021. I.-S. S. Board., “Ieee std 242-2001 (revision of ieee std 242-1986) [ieee buff book],” IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], 2001. W. A. Elmore, Protective Relaying Theory and Applicantions, 2003. A. Haddadi, M. Zhao, I. Kocar, E. Farantatos, and F. Martinez, “Impact of inverter-based resources on memory-polarized distance and directional protective relay elements,” 2020 52nd North American Power Symposium, NAPS 2020, 4 2021. H. C. Kili¸ckiran, ˙ Ibrahim S¸eng¨ or, H. Akdemir, B. Kekezo˘glu, O. Erdin¸ c, and N. G. Paterakis, “Power system protection with digital overcurrent relays: A review of non- standard characteristics,” Electric Power Systems Research, vol. 164, pp. 89–102, 11 2018. P. Barra, V. Lacerda, R. Fernandes, and D. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electric Power Systems Re- search, vol. 196, p. 107242, 7 2021. H. Cao, D. Zhang, and S. Yi, “Real-time machine learning-based fault detection, classification, and locating in large scale solar energy-based systems: Digital twin simulation,” Solar Energy, vol. 251, pp. 77–85, 2 2023. F. Aminifar, S. Teimourzadeh, A. Shahsavari, M. Savaghebi, and M. S. Golsorkhi, “Machine learning for protection of distribution networks and power electronics-interfaced systems,” Electricity Journal, vol. 34, 2021. J. Marín-Quintero, C. Orozco-Henao, W. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector,” Applied Soft Computing, vol. 98, p. 106839, 1 2021. R. Eslami and S. A. Hosseini, “A comprehensive method for fault detection in AC/DC hybrid microgrid,” Electric Power Components and Systems, vol. 50, 2022. M. A. Zamani, A. Yazdani, and T. S. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids,” IEEE Transactions on Smart Grid, vol. 3, 2012. C. Chandraratne, T. Logenthiran, R. T. Naayagi, and W. L. Woo, “Overview of adaptive protection system for modern power systems,” International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 2018. F. B. dos Reis, J. O. C. Pinto, F. S. dos Reis, D. Issicaba, and J. G. Rolim, “Multi-agent dual strategy based adaptive protection for microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100501, 9 2021. H. Wan, K. K. Li, and K. P. Wong, “An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system,” IEEE Transactions on Industry Applications, vol. 46, pp. 2118–2124, 9 2010. D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, 2021. V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation,” IEEE Transactions on Power Deli- very, vol. 32, 2017. M. Sadoughi, M. Hojjat, and M. H. Abardeh, “Smart overcurrent relay for operating in islanded and grid-connected modes of a micro-grid without needing communication systems,” Energy Systems, vol. 13, 2022. J. Mar´ın-Quintero, C. Orozco-Henao, J. C. Velez, and A. Bretas, “Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model,” International Journal of Electrical Power Energy Systems, vol. 130, p. 106960, 9 2021. M. A. U. Khan, Q. Hong, A. Egea- ` Alvarez, A. Dy´sko, and C. Booth, “A communication- free active unit protection scheme for inverter dominated islanded microgrids,” International Journal of Electrical Power and Energy Systems, vol. 142, 2022. B. K. Chaitanya, A. Yadav, and M. Pazoki, “An improved differential protection scheme for micro-grid using time-frequency transform,” International Journal of Electrical Power and Energy Systems, vol. 111, 2019. P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” International Journal of Electrical Power and Energy Systems, vol. 118, 2020. Y. Wang, M. Wen, and Y. Chen, “A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant,” International Journal of Electrical Power and Energy Systems, vol. 145, 2023. Z. Alhadrawi, M. N. Abdullah, and H. Mokhlis, “Differential protection scheme for a micro grid with inverter-type sources based on positive sequence fault currents,” International Journal of Integrated Engineering, vol. 14, 2022. S. P. Tiwari, E. Koley, and S. Ghosh, “Communication-less ensemble classifier-based protection scheme for dc microgrid with adaptiveness to network reconfiguration and weather intermittency,” Sustainable Energy, Grids and Networks, vol. 26, 2021. X. Xu, H. Wen, L. Jiang, and Y. Hu, “Hybrid control and protection scheme for inverter dominated microgrids,” Journal of Power Electronics, vol. 17, pp. 744–755, 2017. M. Acevedo-Iles, D. Romero-Quete, E. Mojica-Nava, and C. A. Cortes, “Distributed protection coordination algorithm applied to overcurrent-based schemes,” 2023 IEEE Belgrade PowerTech, pp. 1–6, 6 2023. M. Acevedo-Iles, D. Romero-Quete, and C. A. Cortes, “An Integrated Protection Scheme for Active Distribution Networks Based on a Distributed Coordination Algorithm,” 2023, Manuscript submitted for publication on “IEEE Transactions on power delivery”. Y. Chen, T. Ji, M. Li, Q. Wu, and X. Wang, “Power system harmonic estimation based on park transform,” Journal of Electrical Engineering and Technology, vol. 11, 2016. Q. Salem, R. Aljarrah, M. Karimi, and A. Al-Quraan, “Grid-forming inverter control for power sharing in microgrids based on p/f and q/v droop characteristics,” Sustainability (Switzerland), vol. 15, 2023. H. Just, “Modeling and control of power converters in weak and unbalanced electric grids.” The Deutsche Nationalbibliothek, 2021. M. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal protection coordination scheme for radial distribution network considering on/off-grid,” IEEE Access, vol. 9, 2021. J. Roberts and A. Guzm´an, “Directional element design and evaluation,” 21st Annual Western Protective Relay Conference, 1994. D. Jones and J. J. Kumm, “Future distribution feeder protection using directional overcurrent elements,” IEEE Transactions on Industry Applications, vol. 50, 2014. IEC Technical Committee 57, Communication networks and systems for power utility automation. Part 7-2, Basic information and communication structure–abstract communication service interface (ACSI). ——, Communication networks and systems for power utility automation. Part 9-2, Specific communication service mapping (SCSM)–sampled values over ISO/IEC 8802- 3, 2011. E. Mojica-Nava, Optimización y control en grafos. Editorial UN, 2022. S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” pp. 1–122, 2010. C. international des grands reseaux electriques. Comite d’etudes C6. and I. Conformes), Benchmark systems for network integration of renewable and distributed energy resources. CIGRE, 2014. Manuel Acevedo-Iles and David Romero-Quete and Camilo A. Cortes, “Open-Source Code of an adaptive protection scheme using LIBIEC61850,” 2023, [Online]. Available: https://github.com/ManuAce9/Integral-Protection-Scheme. M. Zillgith, “Libiec61850/ lib60870 open source libraries for iec 61850 and iec 60870-5- 101/104,” [Online; accessed Nov. 25,2023]. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 63 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86143/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86143/2/DocumentoFinal_ManuelAcevedo.pdf https://repositorio.unal.edu.co/bitstream/unal/86143/3/DocumentoFinal_ManuelAcevedo.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a e5f5d424a01911da90e0fc0c1d0f9381 8c2d634722bde3572821a3b731379565 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090158442545152 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Guerrero, Camilo Andres9249b00365b40d9879dfbb594fd070a3Romero Quete, David Fernando36432d6da50a6d19536d7075f7262c45600Acevedo Iles, Manuel Octavio8bf20dfba5b623a8b8b2429a2d210fb1600Grupo de Investigación Emc-Un2024-05-22T22:54:31Z2024-05-22T22:54:31Z2024-05-20https://repositorio.unal.edu.co/handle/unal/86143Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn las últimas décadas, el creciente interés en las formas de generación renovables ha impulsado el desarrollo de topologías de sistemas eléctricos locales que aprovechan los recursos energéticos disponibles, dando lugar al concepto de microrredes. Estas innovadoras topologías presentan amplios beneficios, especialmente al considerar los actuales requisitos energéticos y las deficiencias en el suministro de energ´ıa el´ectrica, como se evidencia en zonas no interconectadas en Colombia. No obstante, la integración de nuevas tecnologías en los sistemas eléctricos conlleva desafíos técnicos que pueden afectar su implementación. Uno de estos desafíos se asocia a las modificaciones en el comportamiento en falla de los sistemas con penetración de microrredes, debido a la inclusión de fuentes de generación basadas en inversores (IBRs en inglés). Estas fuentes presentan un comportamiento en falla significativamente diferente al de las fuentes tradicionales de generación. Las modificaciones en el comportamiento en falla exigen la implementación de nuevos esquemas de protección que respondan a los requisitos emergentes, caracterizados principalmente por su adaptabilidad. En esta tesis se presenta el proceso de investigación desarrollado para proponer una estrategia de protecciones innovadora. Esta estrategia capitaliza la controlabilidad de las fuentes de generación basadas en inversores para mejorar el rendimiento de las funciones de direccionalidad. Además, se fundamenta en dos esquemas de protección, uno asociado a la detección especializada de condiciones de falla y otro a la coordinación online. (Texto tomado de la fuente).In recent decades, the growing interest in renewable forms of generation has led to the development of local electrical system topologies that harness available energy resources, giving rise to the concept of microgrids. These innovative topologies offer extensive benefits, particularly in addressing current energy requirements and deficiencies in electrical power supply, as observed in non-interconnected areas in Colombia. However, the integration of new technologies into electrical systems poses technical challenges that may impact their implementation. One such challenge is associated with modifications in the fault behavior of systems with microgrid penetration due to the inclusion of inverter-based generation sources (IBRs). These sources exhibit significantly different fault behavior compared to traditional generation sources. Modifications in fault behavior necessitate the implementation of new protection schemes that respond to emerging requirements, characterized primarily by adaptability. This thesis presents a research process aimed at proposing an innovative protection strategy that leverages the controllability of inverter-based generation sources to enhance the performance of directionality functions. It is based on two protection schemes: one associated with specialized fault condition detection, and the other with online coordination. The characteristics of the protection strategy are demonstrated through simulations and experimental setups for real-time simulations, highlighting its benefits.MaestríaMagíster en Ingeniería - Ingeniería ElectrónicaElectrónica de potencia-Smart Grids y energías renovablesxv, 63 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaFuentes de generación basadas en inversoresMicrorredesOptimización distribuidaProtecciones adaptativasSimulaciones en tiempo realSubestaciones digitalesAdaptive protectionDigital substationDistributed optimizationInverter-based resourcesMicrogridReal-time simulationMicrogridSistema de suministro eléctricoalgoritmo de optimizaciónmicrogridtransmission of electricityoptimization algorithmDiseño de un algoritmo de protección avanzado para microrredes AC interconectadas a un sistema de distribución tradicionalDesign of an advanced protection algorithm for AC microgrids interconnected with a traditional distribution systemTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionImageTexthttp://purl.org/redcol/resource_type/TMM. J. Reno, S. Brahma, A. Bidram, and M. E. Ropp, “Influence of inverter-based resources on microgrid protection: Part 1: Microgrids in radial distribution systems,” IEEE Power and Energy Magazine, vol. 19, pp. 36–46, 5 2021.M. E. Ropp and M. J. Reno, “Influence of inverter-based resources on microgrid protec- tion: Part 2: Secondary networks and microgrid protection,” IEEE Power and Energy Magazine, vol. 19, pp. 47–57, 5 2021.S. Manson and E. McCullough, “Practical microgrid protection solutions: Promises and challenges,” IEEE Power and Energy Magazine, vol. 19, 2021.A. A. Memon and K. Kauhaniemi, “A critical review of ac microgrid protection issues and available solutions,” 2015.B. J. Brearley and R. R. Prabu, “A review on issues and approaches for microgrid protection,” 2017.S. A. Gopalan, V. Sreeram, and H. H. Iu, “A review of coordination strategies and protection schemes for microgrids,” Renewable and Sustainable Energy Reviews, vol. 32, 2014.D. B. Rathnayake, M. Akrami, C. Phurailatpam, S. P. Me, S. Hadavi, G. Jayasinghe, S. Zabihi, and B. Bahrani, “Grid forming inverter modeling, control, and applications,” IEEE Access, vol. 9, 2021.R. Furlaneto, I. Kocar, A. Grilo-Pavani, U. Karaagac, A. Haddadi, and E. Farantatos, “Short circuit network equivalents of systems with inverter-based resources,” Electric Power Systems Research, vol. 199, p. 107314, 10 2021.I. S. Association, IEEE Std. 1547-2018. Standard for Interconnection and Interoperabi- lity of Distributed Energy Resources with Associated Electric Power Systems Interfaces, 2018.CREG, “Resolución creg 060 de 2019,” 2019.R. Kabiri, D. G. Holmes, and B. P. McGrath, “Control of active and reactive power ripple to mitigate unbalanced grid voltages,” IEEE Transactions on Industry Applications, vol. 52, pp. 1660–1668, 3 2016.A. Tayyebi, D. Groß, A. Anta, F. Kupzog, and F. D¨orfler, “Interactions of grid-forming power converters and synchronous machines,” 2 2019.B. Fan and X. Wang, “Equivalent circuit model of grid-forming converters with circular current limiter for transient stability analysis,” IEEE Transactions on Power Systems, vol. 37, 2022.B. Mahamedi, J. G. Zhu, M. Eskandari, L. Li, and A. Mehrizi-Sani, “Analysis of fault response of inverter-interfaced distributed generators in sequence networks,” 2018.A. Haddadi, I. Kocar, J. Mahseredjian, U. Karaagac, and E. Farantatos, “Performance of phase comparison line protection under inverter-based resources and impact of the german grid code,” IEEE Power and Energy Society General Meeting, vol. 2020-August, 2020.B. Mahamedi and J. E. Fletcher, “The equivalent models of grid-forming inverters in the sequence domain for the steady-state analysis of power systems,” IEEE Transactions on Power Systems, vol. 35, 2020.V. C. Cunha, T. Kim, N. Barry, P. Siratarnsophon, S. Santoso, W. Freitas, D. Rama-subramanian, and R. C. Dugan, “Generalized formulation of steady-state equivalent circuit models of grid-forming inverters,” IEEE Open Access Journal of Power and Energy, vol. 8, 2021.A. Haddadi, E. Farantatos, I. Kocar, and U. Karaagac, “Impact of inverter based resources on system protection,” Energies, vol. 14, 2021.I.-S. S. Board., “Ieee std 242-2001 (revision of ieee std 242-1986) [ieee buff book],” IEEE Std 242-2001 (Revision of IEEE Std 242-1986) [IEEE Buff Book], 2001.W. A. Elmore, Protective Relaying Theory and Applicantions, 2003.A. Haddadi, M. Zhao, I. Kocar, E. Farantatos, and F. Martinez, “Impact of inverter-based resources on memory-polarized distance and directional protective relay elements,” 2020 52nd North American Power Symposium, NAPS 2020, 4 2021.H. C. Kili¸ckiran, ˙ Ibrahim S¸eng¨ or, H. Akdemir, B. Kekezo˘glu, O. Erdin¸ c, and N. G. Paterakis, “Power system protection with digital overcurrent relays: A review of non- standard characteristics,” Electric Power Systems Research, vol. 164, pp. 89–102, 11 2018.P. Barra, V. Lacerda, R. Fernandes, and D. Coury, “A hardware-in-the-loop testbed for microgrid protection considering non-standard curves,” Electric Power Systems Re- search, vol. 196, p. 107242, 7 2021.H. Cao, D. Zhang, and S. Yi, “Real-time machine learning-based fault detection, classification, and locating in large scale solar energy-based systems: Digital twin simulation,” Solar Energy, vol. 251, pp. 77–85, 2 2023.F. Aminifar, S. Teimourzadeh, A. Shahsavari, M. Savaghebi, and M. S. Golsorkhi, “Machine learning for protection of distribution networks and power electronics-interfaced systems,” Electricity Journal, vol. 34, 2021.J. Marín-Quintero, C. Orozco-Henao, W. Percybrooks, J. C. Vélez, O. D. Montoya, and W. Gil-González, “Toward an adaptive protection scheme in active distribution networks: Intelligent approach fault detector,” Applied Soft Computing, vol. 98, p. 106839, 1 2021.R. Eslami and S. A. Hosseini, “A comprehensive method for fault detection in AC/DC hybrid microgrid,” Electric Power Components and Systems, vol. 50, 2022.M. A. Zamani, A. Yazdani, and T. S. Sidhu, “A communication-assisted protection strategy for inverter-based medium-voltage microgrids,” IEEE Transactions on Smart Grid, vol. 3, 2012.C. Chandraratne, T. Logenthiran, R. T. Naayagi, and W. L. Woo, “Overview of adaptive protection system for modern power systems,” International Conference on Innovative Smart Grid Technologies, ISGT Asia 2018, 2018.F. B. dos Reis, J. O. C. Pinto, F. S. dos Reis, D. Issicaba, and J. G. Rolim, “Multi-agent dual strategy based adaptive protection for microgrids,” Sustainable Energy, Grids and Networks, vol. 27, p. 100501, 9 2021.H. Wan, K. K. Li, and K. P. Wong, “An adaptive multiagent approach to protection relay coordination with distributed generators in industrial power distribution system,” IEEE Transactions on Industry Applications, vol. 46, pp. 2118–2124, 9 2010.D. Gutierrez-Rojas, P. H. J. Nardelli, G. Mendes, and P. Popovski, “Review of the state of the art on adaptive protection for microgrids based on communications,” IEEE Transactions on Industrial Informatics, vol. 17, 2021.V. A. Papaspiliotopoulos, G. N. Korres, V. A. Kleftakis, and N. D. Hatziargyriou, “Hardware-in-the-loop design and optimal setting of adaptive protection schemes for distribution systems with distributed generation,” IEEE Transactions on Power Deli- very, vol. 32, 2017.M. Sadoughi, M. Hojjat, and M. H. Abardeh, “Smart overcurrent relay for operating in islanded and grid-connected modes of a micro-grid without needing communication systems,” Energy Systems, vol. 13, 2022.J. Mar´ın-Quintero, C. Orozco-Henao, J. C. Velez, and A. Bretas, “Micro grids decentralized hybrid data-driven cuckoo search based adaptive protection model,” International Journal of Electrical Power Energy Systems, vol. 130, p. 106960, 9 2021.M. A. U. Khan, Q. Hong, A. Egea- ` Alvarez, A. Dy´sko, and C. Booth, “A communication- free active unit protection scheme for inverter dominated islanded microgrids,” International Journal of Electrical Power and Energy Systems, vol. 142, 2022.B. K. Chaitanya, A. Yadav, and M. Pazoki, “An improved differential protection scheme for micro-grid using time-frequency transform,” International Journal of Electrical Power and Energy Systems, vol. 111, 2019.P. T. Manditereza and R. C. Bansal, “Protection of microgrids using voltage-based power differential and sensitivity analysis,” International Journal of Electrical Power and Energy Systems, vol. 118, 2020.Y. Wang, M. Wen, and Y. Chen, “A novel directional element for transmission line connecting inverter-interfaced renewable energy power plant,” International Journal of Electrical Power and Energy Systems, vol. 145, 2023.Z. Alhadrawi, M. N. Abdullah, and H. Mokhlis, “Differential protection scheme for a micro grid with inverter-type sources based on positive sequence fault currents,” International Journal of Integrated Engineering, vol. 14, 2022.S. P. Tiwari, E. Koley, and S. Ghosh, “Communication-less ensemble classifier-based protection scheme for dc microgrid with adaptiveness to network reconfiguration and weather intermittency,” Sustainable Energy, Grids and Networks, vol. 26, 2021.X. Xu, H. Wen, L. Jiang, and Y. Hu, “Hybrid control and protection scheme for inverter dominated microgrids,” Journal of Power Electronics, vol. 17, pp. 744–755, 2017.M. Acevedo-Iles, D. Romero-Quete, E. Mojica-Nava, and C. A. Cortes, “Distributed protection coordination algorithm applied to overcurrent-based schemes,” 2023 IEEE Belgrade PowerTech, pp. 1–6, 6 2023.M. Acevedo-Iles, D. Romero-Quete, and C. A. Cortes, “An Integrated Protection Scheme for Active Distribution Networks Based on a Distributed Coordination Algorithm,” 2023, Manuscript submitted for publication on “IEEE Transactions on power delivery”.Y. Chen, T. Ji, M. Li, Q. Wu, and X. Wang, “Power system harmonic estimation based on park transform,” Journal of Electrical Engineering and Technology, vol. 11, 2016.Q. Salem, R. Aljarrah, M. Karimi, and A. Al-Quraan, “Grid-forming inverter control for power sharing in microgrids based on p/f and q/v droop characteristics,” Sustainability (Switzerland), vol. 15, 2023.H. Just, “Modeling and control of power converters in weak and unbalanced electric grids.” The Deutsche Nationalbibliothek, 2021.M. Usama, M. Moghavvemi, H. Mokhlis, N. N. Mansor, H. Farooq, and A. Pourdaryaei, “Optimal protection coordination scheme for radial distribution network considering on/off-grid,” IEEE Access, vol. 9, 2021.J. Roberts and A. Guzm´an, “Directional element design and evaluation,” 21st Annual Western Protective Relay Conference, 1994.D. Jones and J. J. Kumm, “Future distribution feeder protection using directional overcurrent elements,” IEEE Transactions on Industry Applications, vol. 50, 2014.IEC Technical Committee 57, Communication networks and systems for power utility automation. Part 7-2, Basic information and communication structure–abstract communication service interface (ACSI).——, Communication networks and systems for power utility automation. Part 9-2, Specific communication service mapping (SCSM)–sampled values over ISO/IEC 8802- 3, 2011.E. Mojica-Nava, Optimización y control en grafos. Editorial UN, 2022.S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction method of multipliers,” pp. 1–122, 2010.C. international des grands reseaux electriques. Comite d’etudes C6. and I. Conformes), Benchmark systems for network integration of renewable and distributed energy resources. CIGRE, 2014.Manuel Acevedo-Iles and David Romero-Quete and Camilo A. Cortes, “Open-Source Code of an adaptive protection scheme using LIBIEC61850,” 2023, [Online]. Available: https://github.com/ManuAce9/Integral-Protection-Scheme.M. Zillgith, “Libiec61850/ lib60870 open source libraries for iec 61850 and iec 60870-5- 101/104,” [Online; accessed Nov. 25,2023].EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86143/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALDocumentoFinal_ManuelAcevedo.pdfDocumentoFinal_ManuelAcevedo.pdfTesis de Maestría en Ingeniería - Ingeniería Electrónicaapplication/pdf9232817https://repositorio.unal.edu.co/bitstream/unal/86143/2/DocumentoFinal_ManuelAcevedo.pdfe5f5d424a01911da90e0fc0c1d0f9381MD52THUMBNAILDocumentoFinal_ManuelAcevedo.pdf.jpgDocumentoFinal_ManuelAcevedo.pdf.jpgGenerated Thumbnailimage/jpeg4839https://repositorio.unal.edu.co/bitstream/unal/86143/3/DocumentoFinal_ManuelAcevedo.pdf.jpg8c2d634722bde3572821a3b731379565MD53unal/86143oai:repositorio.unal.edu.co:unal/861432024-08-24 23:14:29.405Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |