Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.

ilustraciones

Autores:
Acosta Lobo, Mariano Eliécer
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80273
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80273
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología
590 - Animales
Mejoramiento animal
Animal breeding
Caballos crioyos
Criollo horse
Semen conservation
Conservación de semen
Criopreservación
Estrés oxidativo
Antioxidantes
Cinemática espermática
Criocapacitación
Cryopreservation
Oxidative stress
Antioxidants
Sperm kinematic
Cryocapacitation
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e6b28a5d8c421ab75b5ca95980e53f07
oai_identifier_str oai:repositorio.unal.edu.co:unal/80273
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
dc.title.translated.eng.fl_str_mv Evaluation of post-thaw sperm integrity and functionality of the Colombian Creole horse through the use of antioxidants and a capacitation inhibitor.
title Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
spellingShingle Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
570 - Biología
590 - Animales
Mejoramiento animal
Animal breeding
Caballos crioyos
Criollo horse
Semen conservation
Conservación de semen
Criopreservación
Estrés oxidativo
Antioxidantes
Cinemática espermática
Criocapacitación
Cryopreservation
Oxidative stress
Antioxidants
Sperm kinematic
Cryocapacitation
title_short Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
title_full Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
title_fullStr Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
title_full_unstemmed Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
title_sort Evaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.
dc.creator.fl_str_mv Acosta Lobo, Mariano Eliécer
dc.contributor.advisor.none.fl_str_mv Rojano, Benjamín Alberto
Restrepo Betancur, Giovanni
dc.contributor.author.none.fl_str_mv Acosta Lobo, Mariano Eliécer
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biotecnología Animal (GIBA)
dc.subject.ddc.spa.fl_str_mv 570 - Biología
590 - Animales
topic 570 - Biología
590 - Animales
Mejoramiento animal
Animal breeding
Caballos crioyos
Criollo horse
Semen conservation
Conservación de semen
Criopreservación
Estrés oxidativo
Antioxidantes
Cinemática espermática
Criocapacitación
Cryopreservation
Oxidative stress
Antioxidants
Sperm kinematic
Cryocapacitation
dc.subject.lemb.none.fl_str_mv Mejoramiento animal
Animal breeding
Caballos crioyos
Criollo horse
Semen conservation
Conservación de semen
dc.subject.proposal.spa.fl_str_mv Criopreservación
Estrés oxidativo
Antioxidantes
Cinemática espermática
Criocapacitación
dc.subject.proposal.eng.fl_str_mv Cryopreservation
Oxidative stress
Antioxidants
Sperm kinematic
Cryocapacitation
description ilustraciones
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-09-23T15:55:19Z
dc.date.available.none.fl_str_mv 2021-09-23T15:55:19Z
dc.date.issued.none.fl_str_mv 2021-08
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80273
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80273
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Agarwal, A., Rana, M., Qiu, E., AlBunni, H., Bui, A. D., & Henkel, R. (2018). Role of oxidative stress, infection and inflammation in male infertility. Andrologia, 50(11). Agarwal, A., Virk, G., Ong, C., & Du Plessis, S. S. (2014). Effect of oxidative stress on male reproduction. The world journal of men's health, 32(1), 1. Águila, L., Zambrano, F., Arias, M. E., & Felmer, R. (2017). Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Molecular reproduction and development, 84(7), 649-659. Aitken, R. J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development, 84(10), 1039-1052. Aitken, R. J., Gibb, Z., Mitchell, L. A., Lambourne, S. R., Connaughton, H. S., & De Iuliis, G. N. (2012). Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of reproduction, 110-121. Aitken, R. J., Smith, T. B., Jobling, M. S., Baker, M. A., & De Iuliis, G. N. (2014). Oxidative stress and male reproductive health. Asian journal of andrology, 16(1), 1-31. Aitken, R. J., Smith, T. B., Lord, T., Kuczera, L., Koppers, A. J., Naumovski, N., & De Iuliis, G. N. (2013). On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology, 1(2), 192-205. Aitken, R., & Drevet, J. R. (2020). The importance of oxidative stress in determining the functionality of mammalian spermatozoa: a two-edged sword. Antioxidants, 9(2), 111. Alahmar, A. T. (2019). Role of oxidative stress in male infertility: An updated review. Journal of human reproductive sciences, 12(1), 4. Alasmari, W., Costello, S., Correia, J., Oxenham, S. K., Morris, J., Fernandes, L., & Barratt, C. R. (2013). Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. Journal of Biological Chemistry, 288(9), 6248-6258. Al-Mutary, G. M. (2020). Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: a review. Journal of King Saud University-Science, 33(1), 1-6. Arcelay, E., Salicioni, A. M., Wertheimer, E., & Visconti, P. E. (2008). Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Journal of Developmental Biology, 52(5), 463-472. Aurich, C. (2005). Factors affecting the plasma membrane function of cooled-stored stallion spermatozoa. Animal Reproduction Science, 89(1-4), 65-75. Aurich, J. E. (2012). Artificial insemination in horses—more than a century of practice and research. Journal of Equine Veterinary Science, 38(2), 458-463. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. (2017). Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters, 38(1), 29-36. Bailey, J. L. (2010). Factors regulating sperm capacitation. Systems biology in reproductive medicine, 56(5), 334–348. Bansal, A. K., & Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. Veterinary medicine international. Battistone, M. A., Da Ros, V. G., Salicioni, A. M., Navarrete, F. A., Krapf, D., Visconti, P. E., & Cuasnicu, P. S. (2013). Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. MHR: Basic science of reproductive medicine, 19(9), 570-580. Battut, I. B., Kempfer, A., Lemasson, N., Chevrier, L., & Camugli, S. (2017). Prediction of the fertility of stallion frozen-thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry. Theriogenology, 97, 186-200. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews, 87(1), 245-313. Bengoa, A. J., Escobar, X. E., Macedo, N. M., Rivera, E. C., Barroso, G. C., & Sánchez, R. (2012). Efecto de la criopreservación espermática en muestras semifinales de hombres fértiles e infértiles. Hormonal Antimulleriane comme un marqueur de la réponse ovarienne en FIV, 1-8. Benson, J., Woods, E., Walters, E., & Critser, J. (2012). The cryobiology of spermatozoa. Theriogenology, 78(8), 1682-1699. Blottner, S., Warnke, C., Tuchscherer, A., Heinen, V., & Torner, H. (2001). Morphological and functional changes of stallion spermatozoa after cryopreservation during breeding and non-breeding season. Animal Reproduction Science, 65(1-2), 75-88. Boerke, A., Brouwers, J. F., Olkkonen, V. M., van de Lest, C. H., Sostaric, E., Schoevers, E. J., & Gadella, B. M. (2013). Involvement of bicarbonate-induced radical signaling in oxysterol formation and sterol depletion of capacitating mammalian sperm during in vitro fertilization. Biology of reproduction, 88(1), 21-1. Brohi, R. D., & Huo, L. J. (2017). Posttranslational modifications in spermatozoa and effects on male fertility and sperm viability. Omics: a journal of integrative biology, 21(5), 245-256. Bromfield, E. G., Aitken, R. J., Anderson, A. L., McLaughlin, E. A., & Nixon, B. (2015). The impact of oxidative stress on chaperone-mediated human sperm–egg interaction. Human Reproduction, 30(11), 2597-2613. Bucak, M. N., Ateşşahin, A., Varışlı, Ö., Yüce, A., Tekin, N., & Akçay, A. (2007). The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology, 67(5), 1060-1067. Bueno, V., Paul, L., de Araujo Bastos, H., Larentis, G., Mattos, R., & Rechsteiner, S. (2020). Seminal characteristics after thawing in stallions of the Creole breed. Rev. Bras. Reprod. Anim, 44(3), 100-107. Burnaugh, L., Sabeur, K., & Ball, B. A. (2007). Generation of superoxide anion by equine spermatozoa as detected by dihydroethidium. Theriogenology, 67(3), 580-589. Cabrera, M. P., & Chihuailaf, R. H. (2011). Antioxidants and the integrity of ocular tissues. Veterinary medicine international. Cabrera, P., & Fernández, A. (2006). Criopreservación de Embriones: una herramienta básica en la Reproducción Asistida. Revista de la Facultad de Ciencias Veterinarias UCV, 47(2). Cabrera, P., & Pantoja, C. (2012). Viabilidad espermática e integridad del acrosoma en semen congelado de toros nacionales. Revista de investigaciones veterinarias del Perú, 23(2), 192-200. Cabrita, E., Sarasquete, C., Martínez‐Páramo, S., Robles, V., Beirão, J., Pérez‐Cerezales, S., & Herráez, M. P. (2010). Cryopreservation of fish sperm: applications and perspectives. Journal of Applied Ichthyology, 26(5), 623-635. Campos, M., & Leme, F. (2017). Oxidative stress: pathophysiology and laboratory diagnosis. Pubvet, 12, 139. Celis, Á. D., Betancur, A. A., Suarez, A. U., & Páez, J. D. (2014). Evaluación de dos diluyentes para la criopreservación de semen de caballos de la raza criollo colombiano. Revista Lasallista de investigación, 11(2), 63-70. Chaichun, A., Arun, S., Burawat, J., Kanla, P., & Iamsaard, S. (2017). Localization and Identification of Tyrosine Phosphorylated Proteins in Adult Sprague-Dawley Rat Testis. International Journal of Morphology, 35(4). Chakrabarty, A., & Tan, K. C. (2007). The current state of six sigma application in services. Managing service quality: An international journal. Chen, X., Li, L., Yang, F., Wu, J., & Wang, S. (2020). Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food and Chemical Toxicology, 136. Chung, J. J., Miki, K., Kim, D., Shim, S. H., Shi, H. F., Hwang, J. Y., & Clapham, D. E. (2017). CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. Elife, 6. Clulow, J. R., Maxwell, W. M., Evans, G., & Morris, L. H. (2007). A comparison of duck and chicken egg yolk for cryopreservation of stallion sperm. Australian veterinary journal, 85(6), 232-235. Contreras, M. J., Treulen, F., Arias, M. E., Silva, M., Fuentes, F., Cabrera, P., & Felmer, R. (2020). Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology. Reproduction in Domestic Animals, 55(2), 229-239. Córdova-Izquierdo, A., Pérez-Gutiérrez, J. F., & Martín-Rillo, S. (2014). Fases previas y postcongelación del semen de verraco en pajillas de 5 ml y capacidad de fecundación de los espermatozoides. Ecosistemas y Recursos Agropecuarios, 20(40), 61-68. Dalal, J., Kumar, A., Dutt, R., Singh, G., & Chandolia, R. K. (2018). Different cooling rate for cryopreservation of semen in various livestock species: a review. International Journal of Current Microbiology and Applied Sciences, 7, 1903-1911. Darszon, A., Nishigaki, T., Beltran, C., & Treviño, C. L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiological reviews, 91(4), 1305-1355. Darszon, A., Nishigaki, T., López-González, I., Visconti, P. E., & Treviño, C. L. (2020). Differences and similarities: the richness of comparative sperm physiology. Physiology, 35(3), 196-208. De Castro, L. S., De Assis, P. M., Siqueira, A. F., Hamilton, T. R., Mendes, C. M., Losano, J. D., & Assumpção, M. E. (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxidative Medicine and Cellular Longevity. De Oliveira, R. L., Rodrigues, M. C., Souza, J. B., Moreira, T. S., Barros, V. L., & Dall’Acqua, P. C. (2019). Inseminação artificial em equinos. In Anais Colóquio Estadual de Pesquisa Multidisciplinar (ISSN-2527-2500) & Congresso Nacional de Pesquisa Multidisciplinar. Druart, X., Rickard, J. P., Tsikis, G., & de Graaf, S. P. (2019). Seminal plasma proteins as markers of sperm fertility. Theriogenology, 30-35. Dutta, S., Majzoub, A., & Agarwal, A. (2019). Oxidative stress and sperm function: A systematic review on evaluation and management. Arab journal of urology, 17(2), 87-97. Espinoza, J. A., Schulz, M. A., Sanchez, R., & Villegas, J. V. (2009). Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia, 41(1), 51-54. Fleming, A., Abdalla, E., Maltecca, C., & Baes, C. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43-57. Flores, J., Fernández, V., Huamán, H., Ruiz, L., & Santiani, A. (2010). Refrigeración de semen canino utilizando glucosa, fructosa, trehalosa o sacarosa para prolongar la supervivencia espermática. Revista de Investigaciones Veterinarias del Perú, 21(1), 26-34. Fraser, L. R. (2010). The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Molecular Reproduction and Development: Incorporating Gamete Research, 77(3), 197-208. Gibb, Z., Butler, T., Morris, L., Maxwell, W., & Grupen, C. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted y nonsorted stallion sperm. Theriogenology, 79, 1001-1009. Guzel, E., Arlier, S., Guzeloglu-Kayisli, O., Tabak, M. S., Ekiz, T., Semerci, N., & Kayisli, U. A. (2017). Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. International journal of molecular sciences, 18(4), 792. Hall, S. E., Aitken, R. J., Nixon, B., Smith, N. D., & Gibb, Z. (2017). Electrophilic aldehyde products of lipid peroxidation selectively adduct to heat shock protein 90 and arylsulfatase A in stallion spermatozoa. Biology of reproduction, 96(1), 107-121. Ickowicz, D., Finkelstein, M., & Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian journal of andrology, 14(6), 816. Inoue, N., Satouh, Y., Ikawa, M., Okabe, M., & Yanagimachi, R. (2011). Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proceedings of the National Academy of Sciences, 108(5), 20008-20011. Jain, R. K., Jain, A., Kumar, R., Verma, V., Maikhuri, J. P., Sharma, V. L., & Gupta, G. (2010). Functional attenuation of human sperm by novel, non-surfactant spermicides: precise targeting of membrane physiology without affecting structure. 1165-1176., 25(5), Human reproduction. Jannatifar, R., Parivar, K., Roodbari, N. H., & Nasr-Esfahani, M. H. (2019). Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reproductive Biology and Endocrinology, 17(1), 1-9. Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., & Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences, 108(12), 4892-4896. Jobim, M., Trein, C., Zirkler, H., Gregory, R., Sieme, H., & Mattos, R. (2011). Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins y their relation with semen freezability. Theriogenology, 76, 765-771. Kalmar, J., Ball, B., Troedsson, M., McQuerry, K., Baumber-Skaife, J., Loomis, P., & Squires, E. (2014). Effect of number of mounts y pre-freeze concentration on stallion seminal parameters. J Equine Vet Sci, 34, 30. Kamal, M. A., & Raghunathan, V. A. (2012). Modulated phases of phospholipid bilayers induced by tocopherols. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(11), 2486-2493. Kamel, M. M., El Razek, A. H., Ahmed, K. A., & Kamel, G. M. (2011). Exposure of adult male rats to cadmium: assessment of sexual behaviour, fertility, aggression as well as anxiety like behaviour with special reference to biochemical and pathological alterations. Life Science Journal, 8(2), 106-119. Koppers, A. J., Garg, M. L., & Aitken, R. J. (2010). Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free radical biology and medicine, 48(1), 112-119. Kothari, S., Thompson, A., Agarwal, A., & du Plessis, S. S. (2010). Free radicals: their beneficial and detrimental effects on sperm function. Krapf, D., Arcelay, E., Wertheimer, E., Sanjay, A., Pilder, S., Salicioni, A., & Visconti, P. (2010). Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem, 285, 7977–7985. Kumar, A., Prasad, J. K., Srivastava, N., & Ghosh, S. K. (2019). Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation and biobanking, 17(6), 603-612. Kumaresan, A., Siqueira, A. P., Hossain, M. S., & Bergqvist, A. S. (2011). Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate. Cryobiology, 63(3), 137-144. Kumaresan, A., Siqueira, A. P., Hossain, M. S., Johannisson, A., Eriksson, I., Wallgren, M., & Bergqvist, A. S. (2012). Quantification of kinetic changes in protein tyrosine phosphorylation and cytosolic Ca2+ concentration in boar spermatozoa during cryopreservation. Reproduction, Fertility and Development, 24(4), 531-542. Layek, S. S., Mohanty, T. K., Kumaresan, A., & Parks, J. E. (2016). Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Animal Reproduction Science, 172, 1-9. Layek, S., Mohanty, T., Kumaresan, A., & Parks, J. (2019). Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Animal Reproduction Science, 172, 1-9. Leahy, T., & Gadella, B. M. (2011). Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction, 142(6), 759. Lecewicz, M., Strzeżek, R., Kordan, W., & Majewska, A. (2018). Effect of extender supplementation with low-molecular-weight antioxidants on selected quality parameters of cryopreserved canine spermatozoa. Journal of veterinary research, 62(2), 221. Lee, G. Y., & Han, S. N. (2018). The role of vitamin E in immunity. Nutrients, 10(11), 1614. Leemans, B., Stout, T. A., De Schauwer, C., Heras, S., Nelis, H., Hoogewijs, M., & Gadella, B. M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species?. Reproduction, 157(5), 181-197. Lemma, A. (2011). Effect of cryopreservation on sperm quality and fertility. Artificial insemination in farm animals, 12, 191-216. Len, J. S., Koh, W. S., & Tan, S. X. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Bioscience reports, 39(8). Lishko, P. V., & Kirichok, Y. (2010). The role of Hv1 and CatSper channels in sperm activation. The Journal of physiology, 588(23), 4667-4672. Lishko, P. V., Botchkina, I. L., & Kirichok, Y. (2011). Progesterone activates the principal Ca 2+ channel of human sperm. Nature, 471(7338), 387-391. Liu, X., Sharma, R. K., Mishra, A., Chinnaboina, G. K., Gupta, G., & Singh, M. (2019). Role of aqueous extract of the wood ear mushroom, auricularia polytricha (agaricomycetes), in avoidance of haloperidol-lnduced catalepsy via oxidative stress in rats. International journal of medicinal mushrooms, 21(4). Lv, C., Wu, G., Hong, Q., & Quan, G. (2019). Spermatozoa cryopreservation: state of art and future in small ruminants. Biopreservation and biobanking, 17(2), 171-182. Macias García, B., Fernández, L., Ferrusola, C., Salazar-Sandoval, C., Rodríguez, A., Martinez, H., & Peña, F. (2011). Membrane lipids of the stallion spermatozoon in relation to sperm quality y susceptibility to lipid peroxidation. Reprod Domest Anim, 46. Macías García, B., Ortega Ferrusola, C., Aparicio, I., Miró-Morán, A., & Morillo Rodriguez, A. (2012). Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity y cytoskeleton, lipid peroxidation y mitochondrial membrane potential. Theriogenology, 77(7), 1280-1289. Malo, C., Elwing, B., Soederstroem, L., Lundeheim, N., Morrell, J. M., & Skidmore, J. A. (2019). Effect of different freezing rates and thawing temperatures on cryosurvival of dromedary camel spermatozoa. Theriogenology, 125, 43-48. Marasco, M., & Carlomagno, T. (2020). Specificity and regulation of phosphotyrosine signaling through SH2 domains. Journal of Structural Biology: X, 4. Maravi Carmen, C., & Cayo Colca, I. (2021). Efecto de dos dilutores comerciales en la calidad de semen congelado de Bos taurus. Revista Científica UNTRM: Ciencias Naturales E Ingeniería, 3(3), 62-67. Maziero, R., de Freitas Guaitolini, R., Guasti, P. N., Monteiro, G. A., Martin, I., da Silva, J. P., & Papa, F. O. (2019). Effect of Using Two Cryopreservation Methods on Viability and Fertility of Frozen Stallion Sperm. Journal of equine veterinary science, 72, 37-40. Metcalf, E. S., Dideon, B. A., Blehr, R., Schlimgen, T., Bertrand, W., Varner, D. D., & Hausman, M. S. (2008). Effects of DMSO and L-Ergothioneine on post-thaw semen parameters in stallions: preliminary results. Animal Reproduction Science, 3(107), 332-333. Mohanarao, G. J., & Atreja, S. K. (2012). Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Research in veterinary science, 93(2), 618-623. Morel, M. (2020). Equine reproductive physiology, breeding and stud management. CABI. Najafi, A., Kia, H., Mohammadi, H., Najafi, M., Zanganeh, Z., Sharafi, M., & Adeldust, H. (2014). Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology, 69(1), 68-73. Naresh, S., & Atreja, S. K. (2015). The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology, 70(3), 211-216. O’Flaherty, C., & de Souza, A. (2011). Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod, 238-247. Oldenhof, H., Friedel, K., Akhoondi, M., Gojowsky, M., Wolkers, W., & Sieme, H. (2012). Membrane phase behavior during cooling of stallion sperm y its correlation with freezability. Mol Membr Biol, 29, 95-106. Oldenhof, H., Gojowsky, M., Wang, S., Henke, S., Yu, C., Rohn, K., & Sieme, H. (2013). Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biology of reproduction, 88(3). Oldenhof, H., Heutelbeck, A., Blässe, A. K., Bollwein, H., Martinsson, G., Wolkers, W. F., & Sieme, H. (2015). Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity and correlation with cryosurviva. Reproduction, Fertility and Development, 27(2), 285-293. Oldenhof, H., Heutelbeck, A., Blässe, A.-K., Bollwein, H., Martinsson, G., Wolkers, W., & Sieme, H. (2015). Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity y correlation with cryosurvival. Reprod Fert Dev, 27, 285-293. Olguín, C., Guiller, G., Zúñiga, R., & Pasquetti, P. (2004). Antioxidantes y aterosclerosis. Revista de Endocrinología y Nutrición, 12(4), 199-206. Olivares, L. D., Cabrera, G. B., & Martínez, M. T. (2010). Importancia de los antioxidantes dietarios en la disminución del estrés oxidativo. Investigación y ciencia, 18(50), 10-15. Parker, T., Wang, K. W., Manning, D., & Dart, C. (2019). Soluble adenylyl cyclase links Ca 2+ entry to Ca 2+/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Scientific reports, 9(1), 1-10. Peña, F. J., O’Flaherty, C., Ortiz Rodríguez, J. M., Martín Cano, F. E., Gaitskell-Phillips, G. L., Gil, M. C., & Ortega Ferrusola, C. (2019). Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants, 8(11). Pérez-Rico, A., Crespo, F., Sanmartín, M., De Santiago, A., & Vega-Pla, J. (2014). Determining ACTB, ATP5B y RPL32 as optimal reference genes for quantitative RT-PCR studies of cryopreserved stallion semen. Anim Reprod Sci, 149, 204-211. Phelan, D. E., Mota, C., Lai, C., Kierans, S. J., & Cummins, E. P. (2021). Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus, 11(2). Pini, T., Leahy, T., & de Graaf, S. P. (2018). Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology, 118, 172-181. Pintus, E., Kadlec, M., Jovičić, M., Sedmíková, M., & Ros-Santaella, J. L. (2018). Aminoguanidine protects boar spermatozoa against the deleterious effects of oxidative stress. Pharmaceutics, 10(4), 212. Puga Molina, L. C., Luque, G. M., Balestrini, P. A., Marín-Briggiler, C. I., Romarowski, A., & Buffone, M. G. (2018). Molecular basis of human sperm capacitation. Frontiers in cell and developmental biology, 6, 72. Puglisi, R., Bornaghi, V., Severgnini, A., Vanni, R., Montedoro, M., & Galli, A. (2017). Evaluation of two prototype directional freezing methods and a 2ml flattened straw for cryopreservation of boar semen. Animal Science Papers & Reports, 35(4). Ramón, M., Pérez-Guzmán, M., Jiménez-Rabadán, P., Esteso, M., & García-Álvarez, O. (2013). Sperm cell population dynamics in ram remen during the cryopreservation process. PLoS ONE. Ravi, S. K., Kumar, H., Vyas, S., Narayanan, K., Kumari, S., Singh, J., & Jan, M. H. (2016). Effect of omega-3 fatty acids enriched diet on semen characteristics in Marwari horses. Indian J. Anim. Sci, 86, 726-728. Reis, A., & Spickett, C. M. (2012). Chemistry of phospholipid oxidation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(10), 2374-2387. Restrepo, G., Montoya, J. D., & Rojano, B. (2016). Antioxidant capacity and post-thaw quality of stallion semen cryopreserved with quercetin and ergothioneine. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 63(3), 167-178. Rickard, J. P., & de Graaf, S. P. (2020). Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology, 150, 96-105. Rickard, J. P., Pool, K. R., Druart, X., & de Graaf, S. P. (2019). The fate of spermatozoa in the female reproductive tract: a comparative review. Theriogenology, 137, 104-112. Rocha, C. C. (2017). Identificação e quantificação da carnosina no plasma seminal, características seminais e congelabilidade do sêmen de garanhões. (Doctoral dissertation, Universidade de São Paulo. Rossetti, T., Jackvony, S., Buck, J., & Levin, L. R. (2021). Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus, 11(2). Roy, S. C., & Atreja, S. K. (2009). Capacitation-associated protein tyrosine phosphorylation starts early in buffalo (Bubalus bubalis) spermatozoa as compared to cattle. Animal reproduction science, 110(3), 319-325. Sanocka, D., & Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology, 2(1), 1-7. Saraswat, S., Kharche, S. D., & Jindal, S. K. (2014). Impact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects. Iranian Journal of Applied Animal Science, 42(2), 247-255. Shah, N., Singh, V., Yadav, H. P., Verma, M., Chauhan, D. S., Saxena, A., & Swain, D. K. (2017). Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa. Animal reproduction science, 182, 111-122. Sieme, H., Oldenhof, H., & Oldenhof, H. (2015). Cryopreservation y freeze-drying protocols. Methods Mol Biol, 277–287. Silva, E. C., Cajueiro, J. F., Silva, S. V., Soares, P. C., & Guerra, M. M. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 78(8), 1722-1726. Singh, V. K., Atreja, S. K., Kumar, R., Chhillar, S., & Singh, A. K. (2012). Assessment of intracellular Ca2+, cAMP and 1, 2‐Diacylglycerol in cryopreserved buffalo (Bubalus bubalis) spermatozoa on supplementation of taurine and trehalose in the extender. Reproduction in domestic animals, 47(4), 584-590. Staicu, F. D., Lopez-Úbeda, R., Romero-Aguirregomezcorta, J., Martínez-Soto, J. C., & Parra, C. M. (2019). Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. Journal of assisted reproduction and genetics, 36(8), 1721-1736. Sue-Hee, K., Yong-Jun, L., & Yong-Jun, K. (2011). Changes in sperm membrane y EROS following cryopreservation of liquid boar semen stored at 15°C. Anim Reprod Sci, 1118-1124. Talukdar, D. J., Ahmed, K., Sinha, S., Deori, S., Das, G. C., & Talukdar, P. (2017). Cryopreservation induces capacitation-like changes of the swamp buffalo spermatozoa. Buffalo Bulletin, 36(1), 221-230. Tateno, H., Krapf, D., Hino, T., Sánchez-Cárdenas, C., Darszon, A., Yanagimachi, R., & Visconti, P. E. (2013). Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proceedings of the National Academy of Sciences, 110(46), 18543-18548. Tepwong, P., Giri, A., Sasaki, F., Fukui, R., & Ohshima, T. (2012). Mycobial enhancement of ergothioneine by submerged cultivation of edible mushroom mycelia and its application as an antioxidative compound. Food chemistry, 31(1), 247-258. Tiwari, S., Mohanty, T. K., Bhakat, M., Kumar, N., Baithalu, R. K., Nath, S., & Dewry, R. K. (2021). Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology. Tourzani, D. A., Paudel, B., Miranda, P. V., Visconti, P. E., & Gervasi, M. G. (2018). Changes in protein O-GlcNAcylation during mouse epididymal sperm maturation. Frontiers in cell and developmental biology, 6, 60. Tresguerres, M., Levin, L. R., & Buck, J. (2011). Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney international, 79(12), 1277-1288. Truong, V. L., Jun, M., & Jeong, W. S. (2018). Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 44(1), 36-49. Vargas Mendivil, S. A. (2013). Criopreservación de semen de caballo peruano de paso utilizando Glicerol, Etilenglicol, Dimetilsulfóxido y Dimetilacetamida como agentes Crioprotectores. Visconti, P. E. (2009). Understanding the molecular basis of sperm capacitation through kinase design. Proceedings of the National Academy of Sciences, 106(3), 667-668. Visconti, P. E., Krapf, D., De La Vega-beltrán, J. L., Acevedo, J. J., & Darszon, A. (2011). Ion channels, phosphorylation and mammalian sperm capacitation. Asian journal of andrology, 13(3), 395. Wolkers, W. F., & Oldenhof, H. (2015). Cryopreservation and freeze-drying protocols. Humana Press. Xia, J., & Ren, D. (2009). The BSA-induced Ca (2+) influx during sperm capacitation is CATSPER channel-dependent. Reproductive Biology and Endocrinology, 7(1), 1-9. Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. Zhang, W., Yi, K., Chen, C., Houa, X, & Zhou, X. (2012). Application of antioxidants y centrifugation for cryopreservation of of boar spermatozoa. Animal reproduction science, 132(3-4), 123-128. Zhu, Z., Li, R., Fan, X., Lv, Y., Zheng, Y., Hoque, S. A., & Zeng, W. (2019). Resveratrol Improves Boar Sperm Quality via 5AMP-Activated Protein Kinase Activation during Cryopreservation. Oxidative medicine and cellular longevity. Zribi, N., Chakroun, N. F., Abdallah, F. B., Elleuch, H., Sellami, A., Gargouri, J., & Keskes, L. A. (2012). Effect of freezing–thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology, 65(3), 326-331. Amidi, F., Pazhohan, A., Nashtaei, M. S., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: a review. Cell and tissue banking, 17(4), 74
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 122 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Doctorado en Biotecnología
dc.publisher.department.spa.fl_str_mv Escuela de biociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80273/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80273/8/78753206.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80273/9/78753206.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
504eaef8d7747d22184a0c1337ba24bd
35d2f931bb567f3dfe2b39060ce37d68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089252090150912
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rojano, Benjamín Alberto9ff6800a33d6a53c3e514a9324ad17c7Restrepo Betancur, Giovannibd03434c72051e913ab3e03d3c37d88d600Acosta Lobo, Mariano Eliécer8e63a83845cf6876806c5a409fbb2959Grupo de Investigación en Biotecnología Animal (GIBA)2021-09-23T15:55:19Z2021-09-23T15:55:19Z2021-08https://repositorio.unal.edu.co/handle/unal/80273Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesLa criopreservación de semen equino facilita su uso en programas de inseminación artificial y mejoramiento genético, independientemente de la ubicación, disponibilidad o estado del ejemplar equino. Adicionalmente, su uso se ha extendido al desarrollo de biotecnologías de la reproducción asistida y a procesos de producción de embriones tanto in vivo como in vitro. Sin embargo, con el semen criopreservado se han conseguido tasas más bajas de fertilidad comparadas con las obtenidas con semen refrigerado. A nivel mundial se llevan a cabos múltiples estudios enfocados a mejorar los procesos de congelación del semen equino y a encontrar sustancias que atenúen los daños producidos por el estrés oxidativo y el choque osmótico ocasionados por este proceso. Precisamente, para contribuir al conocimiento sobre moléculas que disminuyan el estrés de la célula espermática durante el proceso de congelación, disminuyendo el daño a su estructura, maquinaria molecular y fisiología, en este trabajo evaluamos el efecto de dos antioxidantes no enzimáticos, Quercetina (Q) y L-Ergotioneína (E) y un inhibidor de la PKA (H89), adicionados al diluyente de congelación seminal, sobre la integridad y funcionalidad espermática. Con este fin, en la posdescongelación, en la primera parte del estudio evaluamos la cinemática espermática, la integridad de membrana, y la capacidad de fertilización in vitro. Posteriormente, en la segunda parte se evaluó el estrés oxidativo y en la última fase se evaluó la viabilidad, actividad mitocondrial y la estabilidad de la membrana celular. Se utilizó el análisis espermático computarizado (CASA), el test hiposmótico, la fertilización heteróloga in vitro, la espectroflurimetría y la citometría de flujo. En los 6 grupos experimentales evaluados (Control, Q, E, H89, H89Q, H89E), en el primer estudio se evidenció que H89 disminuye la hiperactivación y Q incrementa BCF. Sin embargo, la combinación de ambas moléculas altera patrones cinemáticos importantes para llevar a cabo la fertilización. No se observaron diferencias estadísticas significativas entre tratamientos y el control en otros patrones cinemáticos, integridad de membrana o capacidad fertilizante. En la segunda parte se encontró que todos los tratamientos, excepto el H89 disminuyeron la cantidad de especies reactivas de oxígeno en el semen criopreservado, siendo Q el mejor tratamiento. Por otro lado, todos los tratamientos, excepto E disminuyeron la peroxidación lipídica con respecto al control, siendo mejor la combinación de H89 y Q. Aunque Q tuvo un efecto positivo en el decrecimiento de la peroxidación lipídica, su combinación con H89 mostró una reducción mayor, sugiriendo un efecto sinérgico con el H89. Por su parte, en la fase final se encontró que la combinación H89 + E tuvo una tendencia a mejorar la actividad mitocondrial alta. Sin embargo, ninguno de los seis tratamientos evaluados tuvo efecto estadístico significativo sobre la estabilidad de membrana, la viabilidad, contenido o captación de calcio y actividad mitocondrial. Con estos resultados se concluyó que la Q y E actúan como antioxidantes de manera diferencial para la protección del espermatozoide durante la criopreservación. Adicionalmente se encontró que la combinación Q y E con H89 muestra efectos contrastantes entre la cinemática y su capacidad antioxidante, alterando la primera, pero favoreciendo la segunda. Estos resultados abren una ventana de estudio en los mecanismos moleculares que pueden acompañar el sinergismo entre H89 con Q y E, explorar combinaciones de otras concentraciones de las tres moléculas y llevar a cabo estudios más extensos de las vías de señalización asociadas. (Texto tomado de la fuente)Equine semen cryopreservation is used in artificial insemination and genetic improvement programs, it does not depend on the location, availability or condition of the equine specimen. Its use has been extended to the development of biotechnologies of assisted reproduction and to embryo production processes both in vivo and in vitro. However, cryopreserved semen has lower fertility rates compared to those obtained with refrigerated semen. Worldwide, multiple studies have been focused on improving the freezing processes of equine semen and finding substances that mitigate the damage caused by oxidative stress and osmotic shock. In order to contribute to the knowledge about molecules that decrease the stress of the spermatic cell during the freezing process, reducing the damage to its structure, molecular machinery and physiology, in this work was evaluated the effect of two non-enzymatic antioxidants, Quercetin (Q) and L -Ergotioneine (E) and a PKA inhibitor (H89), added to the seminal freezing diluent, on sperm integrity and functionality. Subsequently, in the second part, oxidative stress was evaluated and in the last phase, viability, mitochondrial activity, and cell membrane stability were evaluated. Computerized sperm analysis (CASA), hyposmotic test, heterologous in vitro fertilization, spectrofluorimetry and flow cytometry were used. In the 6 experimental groups evaluated (Control, Q, E, H89, H89Q, H89E), in the first study it was shown that H89 decreases hyperactivation and Q increases BCF. However, the combination of both molecules alters important kinematic patterns to carry out fertilization. No significant statistical differences were observed between treatments and control in other kinematic patterns, membrane integrity or fertilizing capacity. In the second part, it was found that all treatments, except H89, decreased the amount of reactive oxygen species in cryopreserved semen, with Q being the best treatment. On the other hand, all the treatments, except E, decreased lipid peroxidation with respect to the control, the combination of H89 and Q being better. Although Q had a positive effect in the decrease of lipid peroxidation, their combination with H89 showed a greater reduction, suggesting a synergistic effect with H89. On the other hand, in the final phase it was found that the H89 + E combination had a tendency to improve high mitochondrial activity. However, none of the six treatments evaluated had a statistically significant effect on membrane stability, viability, calcium content or uptake, and mitochondrial activity. With these results, it was concluded that Q and E act as antioxidants in a differential way for the protection of sperm during cryopreservation. In addition, it was found that the combination Q and E with H89 shows contrasting effects between the kinematics and its antioxidant capacity, altering the first, but favoring the second. These results open a window of study in the molecular mechanisms that can accompany the synergism between H89 with Q and E, to exploring combinations of other concentrations of the three molecules and and carry out more extensive studies of associated signaling pathways.DoctoradoDoctor en BiotecnologíaBiotecnología reproductivaxvii, 122 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias - Doctorado en BiotecnologíaEscuela de biocienciasFacultad de CienciasMedellínUniversidad Nacional de Colombia - Sede Medellín570 - Biología590 - AnimalesMejoramiento animalAnimal breedingCaballos crioyosCriollo horseSemen conservationConservación de semenCriopreservaciónEstrés oxidativoAntioxidantesCinemática espermáticaCriocapacitaciónCryopreservationOxidative stressAntioxidantsSperm kinematicCryocapacitationEvaluación de la integridad y funcionalidad espermática post-descongelación del caballo criollo colombiano mediante el uso de antioxidantes y un inhibidor de la capacitación.Evaluation of post-thaw sperm integrity and functionality of the Colombian Creole horse through the use of antioxidants and a capacitation inhibitor.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaAgarwal, A., Rana, M., Qiu, E., AlBunni, H., Bui, A. D., & Henkel, R. (2018). Role of oxidative stress, infection and inflammation in male infertility. Andrologia, 50(11). Agarwal, A., Virk, G., Ong, C., & Du Plessis, S. S. (2014). Effect of oxidative stress on male reproduction. The world journal of men's health, 32(1), 1. Águila, L., Zambrano, F., Arias, M. E., & Felmer, R. (2017). Sperm capacitation pretreatment positively impacts bovine intracytoplasmic sperm injection. Molecular reproduction and development, 84(7), 649-659. Aitken, R. J. (2017). Reactive oxygen species as mediators of sperm capacitation and pathological damage. Molecular reproduction and development, 84(10), 1039-1052. Aitken, R. J., Gibb, Z., Mitchell, L. A., Lambourne, S. R., Connaughton, H. S., & De Iuliis, G. N. (2012). Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of reproduction, 110-121. Aitken, R. J., Smith, T. B., Jobling, M. S., Baker, M. A., & De Iuliis, G. N. (2014). Oxidative stress and male reproductive health. Asian journal of andrology, 16(1), 1-31. Aitken, R. J., Smith, T. B., Lord, T., Kuczera, L., Koppers, A. J., Naumovski, N., & De Iuliis, G. N. (2013). On methods for the detection of reactive oxygen species generation by human spermatozoa: analysis of the cellular responses to catechol oestrogen, lipid aldehyde, menadione and arachidonic acid. Andrology, 1(2), 192-205. Aitken, R., & Drevet, J. R. (2020). The importance of oxidative stress in determining the functionality of mammalian spermatozoa: a two-edged sword. Antioxidants, 9(2), 111. Alahmar, A. T. (2019). Role of oxidative stress in male infertility: An updated review. Journal of human reproductive sciences, 12(1), 4. Alasmari, W., Costello, S., Correia, J., Oxenham, S. K., Morris, J., Fernandes, L., & Barratt, C. R. (2013). Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. Journal of Biological Chemistry, 288(9), 6248-6258. Al-Mutary, G. M. (2020). Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: a review. Journal of King Saud University-Science, 33(1), 1-6. Arcelay, E., Salicioni, A. M., Wertheimer, E., & Visconti, P. E. (2008). Identification of proteins undergoing tyrosine phosphorylation during mouse sperm capacitation. Journal of Developmental Biology, 52(5), 463-472. Aurich, C. (2005). Factors affecting the plasma membrane function of cooled-stored stallion spermatozoa. Animal Reproduction Science, 89(1-4), 65-75. Aurich, J. E. (2012). Artificial insemination in horses—more than a century of practice and research. Journal of Equine Veterinary Science, 38(2), 458-463. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. (2017). Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters, 38(1), 29-36. Bailey, J. L. (2010). Factors regulating sperm capacitation. Systems biology in reproductive medicine, 56(5), 334–348. Bansal, A. K., & Bilaspuri, G. S. (2011). Impacts of oxidative stress and antioxidants on semen functions. Veterinary medicine international. Battistone, M. A., Da Ros, V. G., Salicioni, A. M., Navarrete, F. A., Krapf, D., Visconti, P. E., & Cuasnicu, P. S. (2013). Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. MHR: Basic science of reproductive medicine, 19(9), 570-580. Battut, I. B., Kempfer, A., Lemasson, N., Chevrier, L., & Camugli, S. (2017). Prediction of the fertility of stallion frozen-thawed semen using a combination of computer-assisted motility analysis, microscopical observation and flow cytometry. Theriogenology, 97, 186-200. Bedard, K., & Krause, K. H. (2007). The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews, 87(1), 245-313. Bengoa, A. J., Escobar, X. E., Macedo, N. M., Rivera, E. C., Barroso, G. C., & Sánchez, R. (2012). Efecto de la criopreservación espermática en muestras semifinales de hombres fértiles e infértiles. Hormonal Antimulleriane comme un marqueur de la réponse ovarienne en FIV, 1-8. Benson, J., Woods, E., Walters, E., & Critser, J. (2012). The cryobiology of spermatozoa. Theriogenology, 78(8), 1682-1699. Blottner, S., Warnke, C., Tuchscherer, A., Heinen, V., & Torner, H. (2001). Morphological and functional changes of stallion spermatozoa after cryopreservation during breeding and non-breeding season. Animal Reproduction Science, 65(1-2), 75-88. Boerke, A., Brouwers, J. F., Olkkonen, V. M., van de Lest, C. H., Sostaric, E., Schoevers, E. J., & Gadella, B. M. (2013). Involvement of bicarbonate-induced radical signaling in oxysterol formation and sterol depletion of capacitating mammalian sperm during in vitro fertilization. Biology of reproduction, 88(1), 21-1. Brohi, R. D., & Huo, L. J. (2017). Posttranslational modifications in spermatozoa and effects on male fertility and sperm viability. Omics: a journal of integrative biology, 21(5), 245-256. Bromfield, E. G., Aitken, R. J., Anderson, A. L., McLaughlin, E. A., & Nixon, B. (2015). The impact of oxidative stress on chaperone-mediated human sperm–egg interaction. Human Reproduction, 30(11), 2597-2613. Bucak, M. N., Ateşşahin, A., Varışlı, Ö., Yüce, A., Tekin, N., & Akçay, A. (2007). The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology, 67(5), 1060-1067. Bueno, V., Paul, L., de Araujo Bastos, H., Larentis, G., Mattos, R., & Rechsteiner, S. (2020). Seminal characteristics after thawing in stallions of the Creole breed. Rev. Bras. Reprod. Anim, 44(3), 100-107. Burnaugh, L., Sabeur, K., & Ball, B. A. (2007). Generation of superoxide anion by equine spermatozoa as detected by dihydroethidium. Theriogenology, 67(3), 580-589. Cabrera, M. P., & Chihuailaf, R. H. (2011). Antioxidants and the integrity of ocular tissues. Veterinary medicine international. Cabrera, P., & Fernández, A. (2006). Criopreservación de Embriones: una herramienta básica en la Reproducción Asistida. Revista de la Facultad de Ciencias Veterinarias UCV, 47(2). Cabrera, P., & Pantoja, C. (2012). Viabilidad espermática e integridad del acrosoma en semen congelado de toros nacionales. Revista de investigaciones veterinarias del Perú, 23(2), 192-200. Cabrita, E., Sarasquete, C., Martínez‐Páramo, S., Robles, V., Beirão, J., Pérez‐Cerezales, S., & Herráez, M. P. (2010). Cryopreservation of fish sperm: applications and perspectives. Journal of Applied Ichthyology, 26(5), 623-635. Campos, M., & Leme, F. (2017). Oxidative stress: pathophysiology and laboratory diagnosis. Pubvet, 12, 139. Celis, Á. D., Betancur, A. A., Suarez, A. U., & Páez, J. D. (2014). Evaluación de dos diluyentes para la criopreservación de semen de caballos de la raza criollo colombiano. Revista Lasallista de investigación, 11(2), 63-70. Chaichun, A., Arun, S., Burawat, J., Kanla, P., & Iamsaard, S. (2017). Localization and Identification of Tyrosine Phosphorylated Proteins in Adult Sprague-Dawley Rat Testis. International Journal of Morphology, 35(4). Chakrabarty, A., & Tan, K. C. (2007). The current state of six sigma application in services. Managing service quality: An international journal. Chen, X., Li, L., Yang, F., Wu, J., & Wang, S. (2020). Effects of gelatin-based antifreeze peptides on cell viability and oxidant stress of Streptococcus thermophilus during cold stage. Food and Chemical Toxicology, 136. Chung, J. J., Miki, K., Kim, D., Shim, S. H., Shi, H. F., Hwang, J. Y., & Clapham, D. E. (2017). CatSperζ regulates the structural continuity of sperm Ca2+ signaling domains and is required for normal fertility. Elife, 6. Clulow, J. R., Maxwell, W. M., Evans, G., & Morris, L. H. (2007). A comparison of duck and chicken egg yolk for cryopreservation of stallion sperm. Australian veterinary journal, 85(6), 232-235. Contreras, M. J., Treulen, F., Arias, M. E., Silva, M., Fuentes, F., Cabrera, P., & Felmer, R. (2020). Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology. Reproduction in Domestic Animals, 55(2), 229-239. Córdova-Izquierdo, A., Pérez-Gutiérrez, J. F., & Martín-Rillo, S. (2014). Fases previas y postcongelación del semen de verraco en pajillas de 5 ml y capacidad de fecundación de los espermatozoides. Ecosistemas y Recursos Agropecuarios, 20(40), 61-68. Dalal, J., Kumar, A., Dutt, R., Singh, G., & Chandolia, R. K. (2018). Different cooling rate for cryopreservation of semen in various livestock species: a review. International Journal of Current Microbiology and Applied Sciences, 7, 1903-1911. Darszon, A., Nishigaki, T., Beltran, C., & Treviño, C. L. (2011). Calcium channels in the development, maturation, and function of spermatozoa. Physiological reviews, 91(4), 1305-1355. Darszon, A., Nishigaki, T., López-González, I., Visconti, P. E., & Treviño, C. L. (2020). Differences and similarities: the richness of comparative sperm physiology. Physiology, 35(3), 196-208. De Castro, L. S., De Assis, P. M., Siqueira, A. F., Hamilton, T. R., Mendes, C. M., Losano, J. D., & Assumpção, M. E. (2016). Sperm oxidative stress is detrimental to embryo development: a dose-dependent study model and a new and more sensitive oxidative status evaluation. Oxidative Medicine and Cellular Longevity. De Oliveira, R. L., Rodrigues, M. C., Souza, J. B., Moreira, T. S., Barros, V. L., & Dall’Acqua, P. C. (2019). Inseminação artificial em equinos. In Anais Colóquio Estadual de Pesquisa Multidisciplinar (ISSN-2527-2500) & Congresso Nacional de Pesquisa Multidisciplinar. Druart, X., Rickard, J. P., Tsikis, G., & de Graaf, S. P. (2019). Seminal plasma proteins as markers of sperm fertility. Theriogenology, 30-35. Dutta, S., Majzoub, A., & Agarwal, A. (2019). Oxidative stress and sperm function: A systematic review on evaluation and management. Arab journal of urology, 17(2), 87-97. Espinoza, J. A., Schulz, M. A., Sanchez, R., & Villegas, J. V. (2009). Integrity of mitochondrial membrane potential reflects human sperm quality. Andrologia, 41(1), 51-54. Fleming, A., Abdalla, E., Maltecca, C., & Baes, C. (2018). Invited review: Reproductive and genomic technologies to optimize breeding strategies for genetic progress in dairy cattle. Archives Animal Breeding, 61(1), 43-57. Flores, J., Fernández, V., Huamán, H., Ruiz, L., & Santiani, A. (2010). Refrigeración de semen canino utilizando glucosa, fructosa, trehalosa o sacarosa para prolongar la supervivencia espermática. Revista de Investigaciones Veterinarias del Perú, 21(1), 26-34. Fraser, L. R. (2010). The “switching on” of mammalian spermatozoa: molecular events involved in promotion and regulation of capacitation. Molecular Reproduction and Development: Incorporating Gamete Research, 77(3), 197-208. Gibb, Z., Butler, T., Morris, L., Maxwell, W., & Grupen, C. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted y nonsorted stallion sperm. Theriogenology, 79, 1001-1009. Guzel, E., Arlier, S., Guzeloglu-Kayisli, O., Tabak, M. S., Ekiz, T., Semerci, N., & Kayisli, U. A. (2017). Endoplasmic reticulum stress and homeostasis in reproductive physiology and pathology. International journal of molecular sciences, 18(4), 792. Hall, S. E., Aitken, R. J., Nixon, B., Smith, N. D., & Gibb, Z. (2017). Electrophilic aldehyde products of lipid peroxidation selectively adduct to heat shock protein 90 and arylsulfatase A in stallion spermatozoa. Biology of reproduction, 96(1), 107-121. Ickowicz, D., Finkelstein, M., & Breitbart, H. (2012). Mechanism of sperm capacitation and the acrosome reaction: role of protein kinases. Asian journal of andrology, 14(6), 816. Inoue, N., Satouh, Y., Ikawa, M., Okabe, M., & Yanagimachi, R. (2011). Acrosome-reacted mouse spermatozoa recovered from the perivitelline space can fertilize other eggs. Proceedings of the National Academy of Sciences, 108(5), 20008-20011. Jain, R. K., Jain, A., Kumar, R., Verma, V., Maikhuri, J. P., Sharma, V. L., & Gupta, G. (2010). Functional attenuation of human sperm by novel, non-surfactant spermicides: precise targeting of membrane physiology without affecting structure. 1165-1176., 25(5), Human reproduction. Jannatifar, R., Parivar, K., Roodbari, N. H., & Nasr-Esfahani, M. H. (2019). Effects of N-acetyl-cysteine supplementation on sperm quality, chromatin integrity and level of oxidative stress in infertile men. Reproductive Biology and Endocrinology, 17(1), 1-9. Jin, M., Fujiwara, E., Kakiuchi, Y., Okabe, M., Satouh, Y., Baba, S. A., & Hirohashi, N. (2011). Most fertilizing mouse spermatozoa begin their acrosome reaction before contact with the zona pellucida during in vitro fertilization. Proceedings of the National Academy of Sciences, 108(12), 4892-4896. Jobim, M., Trein, C., Zirkler, H., Gregory, R., Sieme, H., & Mattos, R. (2011). Two-dimensional polyacrylamide gel electrophoresis of equine seminal plasma proteins y their relation with semen freezability. Theriogenology, 76, 765-771. Kalmar, J., Ball, B., Troedsson, M., McQuerry, K., Baumber-Skaife, J., Loomis, P., & Squires, E. (2014). Effect of number of mounts y pre-freeze concentration on stallion seminal parameters. J Equine Vet Sci, 34, 30. Kamal, M. A., & Raghunathan, V. A. (2012). Modulated phases of phospholipid bilayers induced by tocopherols. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(11), 2486-2493. Kamel, M. M., El Razek, A. H., Ahmed, K. A., & Kamel, G. M. (2011). Exposure of adult male rats to cadmium: assessment of sexual behaviour, fertility, aggression as well as anxiety like behaviour with special reference to biochemical and pathological alterations. Life Science Journal, 8(2), 106-119. Koppers, A. J., Garg, M. L., & Aitken, R. J. (2010). Stimulation of mitochondrial reactive oxygen species production by unesterified, unsaturated fatty acids in defective human spermatozoa. Free radical biology and medicine, 48(1), 112-119. Kothari, S., Thompson, A., Agarwal, A., & du Plessis, S. S. (2010). Free radicals: their beneficial and detrimental effects on sperm function. Krapf, D., Arcelay, E., Wertheimer, E., Sanjay, A., Pilder, S., Salicioni, A., & Visconti, P. (2010). Inhibition of Ser/Thr phosphatases induces capacitation-associated signaling in the presence of Src kinase inhibitors. J Biol Chem, 285, 7977–7985. Kumar, A., Prasad, J. K., Srivastava, N., & Ghosh, S. K. (2019). Strategies to minimize various stress-related freeze–thaw damages during conventional cryopreservation of mammalian spermatozoa. Biopreservation and biobanking, 17(6), 603-612. Kumaresan, A., Siqueira, A. P., Hossain, M. S., & Bergqvist, A. S. (2011). Cryopreservation-induced alterations in protein tyrosine phosphorylation of spermatozoa from different portions of the boar ejaculate. Cryobiology, 63(3), 137-144. Kumaresan, A., Siqueira, A. P., Hossain, M. S., Johannisson, A., Eriksson, I., Wallgren, M., & Bergqvist, A. S. (2012). Quantification of kinetic changes in protein tyrosine phosphorylation and cytosolic Ca2+ concentration in boar spermatozoa during cryopreservation. Reproduction, Fertility and Development, 24(4), 531-542. Layek, S. S., Mohanty, T. K., Kumaresan, A., & Parks, J. E. (2016). Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Animal Reproduction Science, 172, 1-9. Layek, S., Mohanty, T., Kumaresan, A., & Parks, J. (2019). Cryopreservation of bull semen: Evolution from egg yolk based to soybean based extenders. Animal Reproduction Science, 172, 1-9. Leahy, T., & Gadella, B. M. (2011). Sperm surface changes and physiological consequences induced by sperm handling and storage. Reproduction, 142(6), 759. Lecewicz, M., Strzeżek, R., Kordan, W., & Majewska, A. (2018). Effect of extender supplementation with low-molecular-weight antioxidants on selected quality parameters of cryopreserved canine spermatozoa. Journal of veterinary research, 62(2), 221. Lee, G. Y., & Han, S. N. (2018). The role of vitamin E in immunity. Nutrients, 10(11), 1614. Leemans, B., Stout, T. A., De Schauwer, C., Heras, S., Nelis, H., Hoogewijs, M., & Gadella, B. M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species?. Reproduction, 157(5), 181-197. Lemma, A. (2011). Effect of cryopreservation on sperm quality and fertility. Artificial insemination in farm animals, 12, 191-216. Len, J. S., Koh, W. S., & Tan, S. X. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Bioscience reports, 39(8). Lishko, P. V., & Kirichok, Y. (2010). The role of Hv1 and CatSper channels in sperm activation. The Journal of physiology, 588(23), 4667-4672. Lishko, P. V., Botchkina, I. L., & Kirichok, Y. (2011). Progesterone activates the principal Ca 2+ channel of human sperm. Nature, 471(7338), 387-391. Liu, X., Sharma, R. K., Mishra, A., Chinnaboina, G. K., Gupta, G., & Singh, M. (2019). Role of aqueous extract of the wood ear mushroom, auricularia polytricha (agaricomycetes), in avoidance of haloperidol-lnduced catalepsy via oxidative stress in rats. International journal of medicinal mushrooms, 21(4). Lv, C., Wu, G., Hong, Q., & Quan, G. (2019). Spermatozoa cryopreservation: state of art and future in small ruminants. Biopreservation and biobanking, 17(2), 171-182. Macias García, B., Fernández, L., Ferrusola, C., Salazar-Sandoval, C., Rodríguez, A., Martinez, H., & Peña, F. (2011). Membrane lipids of the stallion spermatozoon in relation to sperm quality y susceptibility to lipid peroxidation. Reprod Domest Anim, 46. Macías García, B., Ortega Ferrusola, C., Aparicio, I., Miró-Morán, A., & Morillo Rodriguez, A. (2012). Toxicity of glycerol for the stallion spermatozoa: effects on membrane integrity y cytoskeleton, lipid peroxidation y mitochondrial membrane potential. Theriogenology, 77(7), 1280-1289. Malo, C., Elwing, B., Soederstroem, L., Lundeheim, N., Morrell, J. M., & Skidmore, J. A. (2019). Effect of different freezing rates and thawing temperatures on cryosurvival of dromedary camel spermatozoa. Theriogenology, 125, 43-48. Marasco, M., & Carlomagno, T. (2020). Specificity and regulation of phosphotyrosine signaling through SH2 domains. Journal of Structural Biology: X, 4. Maravi Carmen, C., & Cayo Colca, I. (2021). Efecto de dos dilutores comerciales en la calidad de semen congelado de Bos taurus. Revista Científica UNTRM: Ciencias Naturales E Ingeniería, 3(3), 62-67. Maziero, R., de Freitas Guaitolini, R., Guasti, P. N., Monteiro, G. A., Martin, I., da Silva, J. P., & Papa, F. O. (2019). Effect of Using Two Cryopreservation Methods on Viability and Fertility of Frozen Stallion Sperm. Journal of equine veterinary science, 72, 37-40. Metcalf, E. S., Dideon, B. A., Blehr, R., Schlimgen, T., Bertrand, W., Varner, D. D., & Hausman, M. S. (2008). Effects of DMSO and L-Ergothioneine on post-thaw semen parameters in stallions: preliminary results. Animal Reproduction Science, 3(107), 332-333. Mohanarao, G. J., & Atreja, S. K. (2012). Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Research in veterinary science, 93(2), 618-623. Morel, M. (2020). Equine reproductive physiology, breeding and stud management. CABI. Najafi, A., Kia, H., Mohammadi, H., Najafi, M., Zanganeh, Z., Sharafi, M., & Adeldust, H. (2014). Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology, 69(1), 68-73. Naresh, S., & Atreja, S. K. (2015). The protein tyrosine phosphorylation during in vitro capacitation and cryopreservation of mammalian spermatozoa. Cryobiology, 70(3), 211-216. O’Flaherty, C., & de Souza, A. (2011). Hydrogen peroxide modifies human sperm peroxiredoxins in a dose-dependent manner. Biol Reprod, 238-247. Oldenhof, H., Friedel, K., Akhoondi, M., Gojowsky, M., Wolkers, W., & Sieme, H. (2012). Membrane phase behavior during cooling of stallion sperm y its correlation with freezability. Mol Membr Biol, 29, 95-106. Oldenhof, H., Gojowsky, M., Wang, S., Henke, S., Yu, C., Rohn, K., & Sieme, H. (2013). Osmotic stress and membrane phase changes during freezing of stallion sperm: mode of action of cryoprotective agents. Biology of reproduction, 88(3). Oldenhof, H., Heutelbeck, A., Blässe, A. K., Bollwein, H., Martinsson, G., Wolkers, W. F., & Sieme, H. (2015). Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity and correlation with cryosurviva. Reproduction, Fertility and Development, 27(2), 285-293. Oldenhof, H., Heutelbeck, A., Blässe, A.-K., Bollwein, H., Martinsson, G., Wolkers, W., & Sieme, H. (2015). Tolerance of spermatozoa to hypotonic stress: role of membrane fluidity y correlation with cryosurvival. Reprod Fert Dev, 27, 285-293. Olguín, C., Guiller, G., Zúñiga, R., & Pasquetti, P. (2004). Antioxidantes y aterosclerosis. Revista de Endocrinología y Nutrición, 12(4), 199-206. Olivares, L. D., Cabrera, G. B., & Martínez, M. T. (2010). Importancia de los antioxidantes dietarios en la disminución del estrés oxidativo. Investigación y ciencia, 18(50), 10-15. Parker, T., Wang, K. W., Manning, D., & Dart, C. (2019). Soluble adenylyl cyclase links Ca 2+ entry to Ca 2+/cAMP-response element binding protein (CREB) activation in vascular smooth muscle. Scientific reports, 9(1), 1-10. Peña, F. J., O’Flaherty, C., Ortiz Rodríguez, J. M., Martín Cano, F. E., Gaitskell-Phillips, G. L., Gil, M. C., & Ortega Ferrusola, C. (2019). Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants, 8(11). Pérez-Rico, A., Crespo, F., Sanmartín, M., De Santiago, A., & Vega-Pla, J. (2014). Determining ACTB, ATP5B y RPL32 as optimal reference genes for quantitative RT-PCR studies of cryopreserved stallion semen. Anim Reprod Sci, 149, 204-211. Phelan, D. E., Mota, C., Lai, C., Kierans, S. J., & Cummins, E. P. (2021). Carbon dioxide-dependent signal transduction in mammalian systems. Interface Focus, 11(2). Pini, T., Leahy, T., & de Graaf, S. P. (2018). Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology, 118, 172-181. Pintus, E., Kadlec, M., Jovičić, M., Sedmíková, M., & Ros-Santaella, J. L. (2018). Aminoguanidine protects boar spermatozoa against the deleterious effects of oxidative stress. Pharmaceutics, 10(4), 212. Puga Molina, L. C., Luque, G. M., Balestrini, P. A., Marín-Briggiler, C. I., Romarowski, A., & Buffone, M. G. (2018). Molecular basis of human sperm capacitation. Frontiers in cell and developmental biology, 6, 72. Puglisi, R., Bornaghi, V., Severgnini, A., Vanni, R., Montedoro, M., & Galli, A. (2017). Evaluation of two prototype directional freezing methods and a 2ml flattened straw for cryopreservation of boar semen. Animal Science Papers & Reports, 35(4). Ramón, M., Pérez-Guzmán, M., Jiménez-Rabadán, P., Esteso, M., & García-Álvarez, O. (2013). Sperm cell population dynamics in ram remen during the cryopreservation process. PLoS ONE. Ravi, S. K., Kumar, H., Vyas, S., Narayanan, K., Kumari, S., Singh, J., & Jan, M. H. (2016). Effect of omega-3 fatty acids enriched diet on semen characteristics in Marwari horses. Indian J. Anim. Sci, 86, 726-728. Reis, A., & Spickett, C. M. (2012). Chemistry of phospholipid oxidation. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1818(10), 2374-2387. Restrepo, G., Montoya, J. D., & Rojano, B. (2016). Antioxidant capacity and post-thaw quality of stallion semen cryopreserved with quercetin and ergothioneine. Revista de la Facultad de Medicina Veterinaria y de Zootecnia, 63(3), 167-178. Rickard, J. P., & de Graaf, S. P. (2020). Sperm surface changes and their consequences for sperm transit through the female reproductive tract. Theriogenology, 150, 96-105. Rickard, J. P., Pool, K. R., Druart, X., & de Graaf, S. P. (2019). The fate of spermatozoa in the female reproductive tract: a comparative review. Theriogenology, 137, 104-112. Rocha, C. C. (2017). Identificação e quantificação da carnosina no plasma seminal, características seminais e congelabilidade do sêmen de garanhões. (Doctoral dissertation, Universidade de São Paulo. Rossetti, T., Jackvony, S., Buck, J., & Levin, L. R. (2021). Bicarbonate, carbon dioxide and pH sensing via mammalian bicarbonate-regulated soluble adenylyl cyclase. Interface Focus, 11(2). Roy, S. C., & Atreja, S. K. (2009). Capacitation-associated protein tyrosine phosphorylation starts early in buffalo (Bubalus bubalis) spermatozoa as compared to cattle. Animal reproduction science, 110(3), 319-325. Sanocka, D., & Kurpisz, M. (2004). Reactive oxygen species and sperm cells. Reproductive Biology and Endocrinology, 2(1), 1-7. Saraswat, S., Kharche, S. D., & Jindal, S. K. (2014). Impact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects. Iranian Journal of Applied Animal Science, 42(2), 247-255. Shah, N., Singh, V., Yadav, H. P., Verma, M., Chauhan, D. S., Saxena, A., & Swain, D. K. (2017). Effect of reduced glutathione supplementation in semen extender on tyrosine phosphorylation and apoptosis like changes in frozen thawed Hariana bull spermatozoa. Animal reproduction science, 182, 111-122. Sieme, H., Oldenhof, H., & Oldenhof, H. (2015). Cryopreservation y freeze-drying protocols. Methods Mol Biol, 277–287. Silva, E. C., Cajueiro, J. F., Silva, S. V., Soares, P. C., & Guerra, M. M. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 78(8), 1722-1726. Singh, V. K., Atreja, S. K., Kumar, R., Chhillar, S., & Singh, A. K. (2012). Assessment of intracellular Ca2+, cAMP and 1, 2‐Diacylglycerol in cryopreserved buffalo (Bubalus bubalis) spermatozoa on supplementation of taurine and trehalose in the extender. Reproduction in domestic animals, 47(4), 584-590. Staicu, F. D., Lopez-Úbeda, R., Romero-Aguirregomezcorta, J., Martínez-Soto, J. C., & Parra, C. M. (2019). Regulation of boar sperm functionality by the nitric oxide synthase/nitric oxide system. Journal of assisted reproduction and genetics, 36(8), 1721-1736. Sue-Hee, K., Yong-Jun, L., & Yong-Jun, K. (2011). Changes in sperm membrane y EROS following cryopreservation of liquid boar semen stored at 15°C. Anim Reprod Sci, 1118-1124. Talukdar, D. J., Ahmed, K., Sinha, S., Deori, S., Das, G. C., & Talukdar, P. (2017). Cryopreservation induces capacitation-like changes of the swamp buffalo spermatozoa. Buffalo Bulletin, 36(1), 221-230. Tateno, H., Krapf, D., Hino, T., Sánchez-Cárdenas, C., Darszon, A., Yanagimachi, R., & Visconti, P. E. (2013). Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proceedings of the National Academy of Sciences, 110(46), 18543-18548. Tepwong, P., Giri, A., Sasaki, F., Fukui, R., & Ohshima, T. (2012). Mycobial enhancement of ergothioneine by submerged cultivation of edible mushroom mycelia and its application as an antioxidative compound. Food chemistry, 31(1), 247-258. Tiwari, S., Mohanty, T. K., Bhakat, M., Kumar, N., Baithalu, R. K., Nath, S., & Dewry, R. K. (2021). Comparative evidence support better antioxidant efficacy of mitochondrial-targeted (Mitoquinone) than cytosolic (Resveratrol) antioxidant in improving in-vitro sperm functions of cryopreserved buffalo (Bubalus bubalis) semen. Cryobiology. Tourzani, D. A., Paudel, B., Miranda, P. V., Visconti, P. E., & Gervasi, M. G. (2018). Changes in protein O-GlcNAcylation during mouse epididymal sperm maturation. Frontiers in cell and developmental biology, 6, 60. Tresguerres, M., Levin, L. R., & Buck, J. (2011). Intracellular cAMP signaling by soluble adenylyl cyclase. Kidney international, 79(12), 1277-1288. Truong, V. L., Jun, M., & Jeong, W. S. (2018). Role of resveratrol in regulation of cellular defense systems against oxidative stress. Biofactors, 44(1), 36-49. Vargas Mendivil, S. A. (2013). Criopreservación de semen de caballo peruano de paso utilizando Glicerol, Etilenglicol, Dimetilsulfóxido y Dimetilacetamida como agentes Crioprotectores. Visconti, P. E. (2009). Understanding the molecular basis of sperm capacitation through kinase design. Proceedings of the National Academy of Sciences, 106(3), 667-668. Visconti, P. E., Krapf, D., De La Vega-beltrán, J. L., Acevedo, J. J., & Darszon, A. (2011). Ion channels, phosphorylation and mammalian sperm capacitation. Asian journal of andrology, 13(3), 395. Wolkers, W. F., & Oldenhof, H. (2015). Cryopreservation and freeze-drying protocols. Humana Press. Xia, J., & Ren, D. (2009). The BSA-induced Ca (2+) influx during sperm capacitation is CATSPER channel-dependent. Reproductive Biology and Endocrinology, 7(1), 1-9. Yahfoufi, N., Alsadi, N., Jambi, M., & Matar, C. (2018). The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients, 10(11), 1618. Zhang, W., Yi, K., Chen, C., Houa, X, & Zhou, X. (2012). Application of antioxidants y centrifugation for cryopreservation of of boar spermatozoa. Animal reproduction science, 132(3-4), 123-128. Zhu, Z., Li, R., Fan, X., Lv, Y., Zheng, Y., Hoque, S. A., & Zeng, W. (2019). Resveratrol Improves Boar Sperm Quality via 5AMP-Activated Protein Kinase Activation during Cryopreservation. Oxidative medicine and cellular longevity. Zribi, N., Chakroun, N. F., Abdallah, F. B., Elleuch, H., Sellami, A., Gargouri, J., & Keskes, L. A. (2012). Effect of freezing–thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology, 65(3), 326-331. Amidi, F., Pazhohan, A., Nashtaei, M. S., Khodarahmian, M., & Nekoonam, S. (2016). The role of antioxidants in sperm freezing: a review. Cell and tissue banking, 17(4), 745-756. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. (2017). Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters, 38(1), 29-36. Baumber, J., Ball, B. A., & Linfor, J. J. (2005). Assessment of the cryopreservation of equine spermatozoa in the presence of enzyme scavengers and antioxidants. American Journal of Veterinary Research, 66(5), 772-779. Brito, L. F. C., Greene, L. M., Kelleman, A., Knobbe, M., and Turner, R. (2011). Effect of method and clinician on stallion sperm morphology evaluation. Theriogenology 76(4), 745–750. Brum, A. M., Sabeur, K., & Ball, B. A. (2008). Apoptotic-like changes in equine spermatozoa separated by density-gradient centrifugation or after cryopreservation. Theriogenology, 69(9), 1041-1055. Cheah, I. K., & Halliwell, B. (2012). Ergothioneine; antioxidant potential, physiological function and role in disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1822(5), 784-793. da Silva, M. C., Seidel, G. E., Squires, E. L., Choi, Y. H., & Carnevale, E. M. (2003). 263 binding of stallion sperm to equine and bovine zonaepellucidae: effect of milk, milk proteins and glucose. Reproduction, Fertility and Development, 16(2), 252-252. de Vasconcelos Franco, J. S., Faheem, M., Chaveiro, A., & da Silva, F. M. (2016). Effects of α-tocopherol and freezing rates on the quality and heterologous in vitro fertilization capacity of stallion sperm after cryopreservation. Theriogenology, 86(4), 957-962. Filho, J. S., Corcini, C. D., & Santos, F. (2017). Quercetin in equine frozen semen. CryoLetters, 38(4), 299-304. Gaviria, S. M., Herrera, A. L., Urrego, R., Betancur, G. R., & Zuluaga, J. J. (2019). Effect of resveratrol on vitrified in vitro produced bovine embryos: Recovering the initial quality. Cryobiology, 89, 42-50. Ghallab, A. M., Shahat, A. M., Fadl, A. M., Ayoub, M. M., & Moawad, A. R. (2017). Impact of supplementation of semen extender with antioxidants on the quality of chilled or cryopreserved Arabian stallion spermatozoa. Cryobiology, 79, 14-20. Gibb, Z., Butler, T. J., Morris, L. H., Maxwell, W. M., & Grupen, C. G. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology, 79(6), 1001-1009. Grace, S. C. (2005). Phenolics as antioxidants. Antioxidants and reactive oxygen species in plants, 141-168. Hoffmann, N., Oldenhof, H., Morandini, C., Rohn, K., & Sieme, H. (2011). Optimal concentrations of cryoprotective agents for semen from stallions that are classified ‘good’or ‘poor’for freezing. Animal Reproduction Science, 125(1-4), 112-118. Lakhanpal, P., & Rai, D. K. (2007). Quercetin: a versatile flavonoid. Internet Journal of Medical Update, 2(2), 22-37. Lasko, J., Schlingmann, K., Klocke, A., Mengel, G. A., & Turner, R. (2012). Calcium/calmodulin and cAMP/protein kinase-A pathways regulate sperm motility in the stallion. Animal reproduction science, 132(3-4), 169-177. Leemans, B., Stout, T. A., De Schauwer, C., Heras, S., Nelis, H., Hoogewijs, M., & Gadella, B. M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction, 157(5), 181-197. Loomis, P. R., & Graham, J. K. (2008). Commercial semen freezing: individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Animal reproduction science, 105(1-2), 119-128. Miller, C. (2008). Optimizing the use of frozen–thawed equine semen. Theriogenology, 70(3), 463-468. Miró-Arias, M., Vallecillo, A., León, J. M., & Vega-Pla, J. L. (2011). Efecto del semental sobre las características seminales del Caballo de las Retuertas. Archivos de zootecniaQ, 60(231), 345-348. Morris, G. J., Faszer, K., Green, J. E., Draper, D., Grout, B. W., & Fonseca, F. (2007). Rapidly cooled horse spermatozoa: loss of viability is due to osmotic imbalance during thawing, not intracellular ice formation. Theriogenology, 68(5), 804-812. Najafi, A., Kia, H. D., Mohammadi, H., Najafi, M. H., Zanganeh, Z., Sharafi, M., & Adeldust, H. (2014). Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology, 69(1), 68-73. Neild, D. M., Gadella, B. M., Chaves, M. G., Miragaya, M. H., Colenbrander, B., & Agüero, A. (2003). Membrane changes during different stages of a freeze–thaw protocol for equine semen cryopreservation. Theriogenology, 59(8), 1693-1705. Neild, D., Chaves, G., Flores, M., Mora, N., Beconi, M., & Agüero, A. (1999). Hypoosmotic test in equine spermatozoa. Theriogenology, 51(4), 721-727. Okabe, M. (2013). The cell biology of mammalian fertilization. Development, 140(22), 4471-4479. Prien, S., & Iacovides, S. (2016). Cryoprotectants & cryopreservation of equine semen: a review of industry cryoprotectants and the effects of cryopreservation on equine semen membranes. Journal of Dairy, Veterinary & Animal Research, 3(1), 1-8. Restrepo, G., Ocampo, D., and Velásquez, A. (2013). Assessment of cryopreserved sperm motility from Colombian creole stallions by sperm class analyzer. Rev. Udca Actual. Divulg. Cient. 16(2), 445–450. Restrepo, G., Varela, E., Duque, J. E., & Rojas, M. (2019). Freezing, vitrification, and freeze-drying of equine spermatozoa: Impact on mitochondrial membrane potential, lipid peroxidation, and DNA integrity. Journal of equine veterinary science, 72, 8-15. Restrepo, Montoya, J. D., & Rojano, B. (2016). Antioxidant capacity and post-thaw quality of stallion semen cryopreserved with quercetin and ergothioneine. Revista de Medicina Veterianaria y Zootecnia, 63(3), 167-178. Said, T. M., Fischer-Hammadeh, C., Hamad, M., Refaat, K., & Hammadeh, M. E. (2012). Oxidative stress, DNA damage, and apoptosis in male infertility. Studies on men's health and fertility, 433-448. Seifi-Jamadi, A., Kohram, H., Shahneh, A. Z., Ansari, M., & Macías-García, B. (2016). Quercetin ameliorate motility in frozen-thawed Turkmen stallion’s sperm. Journal of Equine Veterinary Science, 45, 73-77. Shan, W., Lu, S., Ou, B., Feng, J., Wang, Z., Li, H., & Ma, Y. (2021). PACAP ameliorates the fertility of obese mice through PAC1/PKA/ERK/Nrf2 signal axis. Journal of Endocrinology, 248(3), 337-354. Squires, E. L. (2013). Semen cryopreservation-challenges and perspectives. Revista Brasileira de Reproducao Animal, 37, 136-139. Usuga, A., Rojano, B. A., & Restrepo, G. (2018). Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reproduction, Fertility and Development, 30(3), 563-569. Watson, P. F. (2000). The causes of reduced fertility with cryopreserved semen. Animal reproduction science, 60, 481-492. Yıldız, S., Öztürkler, Y., Arı, U. Ç., Lehİmcİoğlu, N. C., Atakİșİ, E., & Kulaksız, R. (2015). The effects of L-Ergothioneine, N-acetylcystein and cystein on freezing of ram semen. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21(1), 81-86. Ahmed, H., Jahan, S., Salman, M. M., & Ullah, F. (2019). Stimulating effects of quercetin (QUE) in tris citric acid extender on post thaw quality and in vivo fertility of buffalo (Bubalus bubalis) bull spermatozoa. Theriogenology, 134, 18-23. Aitken, R. J., Muscio, L., Whiting, S., Connaughton, H. S., Fraser, B. A., Nixon, B., & De Iuliis, G. N. (2016). Analysis of the effects of polyphenols on human spermatozoa reveals unexpected impacts on mitochondrial membrane potential, oxidative stress and DNA integrity; implications for assisted reproductive technology. Biochemical pharmacology, 121, 78-96. Amer, Y. O., & Hebert-Chatelain, E. (2018). Mitochondrial cAMP-PKA signaling: What do we really know? Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1859(9), 868-877. Azadi, L., Tavalaee, M., Deemeh, M. R., Arbabian, M., & Nasr-Esfahani, M. H. (2017). Effects of tempol and quercetin on human sperm function after cryopreservation. CryoLetters, 38(1), 29-36. Ball, B. A., & Vo, A. (2001). Osmotic tolerance of equine spermatozoa and the effects of soluble cryoprotectants on equine sperm motility, viability, and mitochondrial membrane potential. Journal of andrology, 22(6), 1061-1069. Ball, B. A., Vo, A. T., & Baumber, J. (2001). Generation of reactive oxygen species by equine spermatozoa. American journal of veterinary research, 62(4), 508-515. Banday, M. N., Lone, F. A., Rasool, F., Rashid, M., & Shikari, A. (2017). Use of antioxidants reduce lipid peroxidation and improve quality of crossbred ram sperm during its cryopreservation. Cryobiology, 74, 25-30. Ben Abdallah, F., Zribi, N., & Ammar‐Keskes, L. (2011). Antioxidative potential of Quercetin against hydrogen peroxide induced oxidative stress in spermatozoa in vitro. Andrologia, 43(34), 261-265. Brito, L. F. C., Greene, L. M., Kelleman, A., Knobbe, M., and Turner, R. (2011). Effect of method and clinician on stallion sperm morphology evaluation. Theriogenology 76(4), 745–750. Castro, L. S., Hamilton, T. R., Mendes, C. M., Nichi, M., Barnabe, V. H., Visintin, J. A., & Assumpção, M. E. (2016). Sperm cryodamage occurs after rapid freezing phase: flow cytometry approach and antioxidant enzymes activity at different stages of cryopreservation. Journal of animal science and biotechnology, 7(1), 1-9. de Oliveira, R. A., Wolf, C. A., de Oliveira Viu, M. A., & Gambarini, M. L. (2013). Addition of glutathione to an extender for frozen equine semen. Journal of Equine Veterinary Science, 33(12), 1148-1152. Drummen, G. P., van Liebergen, L. C., den Kamp, J. A., & Post, J. A. (2001). C11-BODIPY581/591, an oxidation-sensitive fluorescent lipid peroxidation probe: (micro) spectroscopic characterization and validation of methodology. Free Radical Biology and Medicine, 33(4), 473-490. Fair, S., Doyle, D. N., Diskin, M. G., Hennessy, A. A., & Kenny, D. A. (2014). The effect of dietary n-3 polyunsaturated fatty acids supplementation of rams on semen quality and subsequent quality of liquid stored semen. Theriogenology, 81(2), 210-219. Franco, J. S., Chaveiro, A., Góis, A., & da Silva, F. M. (2013). Effects of α-tocopherol and ascorbic acid on equine semen quality after cryopreservation. Journal of equine veterinary science, 33(10), 787-793. Fu, L., Lu, W., & Zhou, X. (2016). Phenolic compounds and in vitro antibacterial and antioxidant activities of three tropic fruits: persimmon, guava, and sweetsop. BioMed research international, 2016, 1-10. Gibb, Z., Butler, T. J., Morris, L. H., Maxwell, W. M., & Grupen, C. G. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology, 79(6), 1001-1009. Gonçalves, C. G., Leivas, F. G., Missio, D., Santos, F. W., Schwengber, E. B., Folchini, N. P., & dos Santos Brum, D. (2018). Use of a colloid to optimize centrifugation in the selection of bovine sperm for IVF. Semina: Ciências Agrárias, 39(4), 1607-1616. Jerez, R., González, N., Olaciregui, M., Luño, V., de Blas, I., & Gil, L. (2016). Use of soy milk combined with different cryoprotectants for the ram semen cryopreservation. Small Ruminant Research, 134, 34-38. Krishnappa, B. S., Kumar, D., Ghosh, S. K., Kalyan, D. E., Paul, R. K., & Naqvi, S. M. (2018). Effect of hydroxytyrosol on sperm post-thaw motion and velocity of cryopreserved ram semen. Indian Journal of Small Ruminants, 24(1), 75-79. Lançoni, R., Leite, T. G., Arruda, R. P., Celeghini, E. C., Bianchi-Alves, M. R., Santos, G. C., & Florez-Rodriguez, S. A. (2015). Use of melatonin and ferulic acid as promoters of cryopreserved equine sperm. Animal Reproduction, 12(3), 559. Len, J. S., Koh, W. S., & Tan, S. X. (2019). The roles of reactive oxygen species and antioxidants in cryopreservation. Bioscience reports, 39(8), 1-25. Lessard, C., Danielson, J., Rajapaksha, K., Adams, G. P., & McCorkell, R. (2009). Banking north American buffalo semen. Theriogenology, 71(7), 1112-1119. Miró-Arias, M., Vallecillo, A., León, J. M., & Vega-Pla, J. L. (2011). Efecto del semental sobre las características seminales del Caballo de las Retuertas. Archivos de zootecniaQ, 60(231), 345-348. Moretti, E., Mazzi, L., Terzuoli, G., Bonechi, C., Iacoponi, F., Martini, S., & Collodel, G. (2012). Effect of quercetin, rutin, naringenin and epicatechin on lipid peroxidation induced in human sperm. Reproductive Toxicology, 34(4), 651-657. Naing, S. W., Wahid, H., Azam, K. M., Rosnina, Y. Z., Kazhal, S., & San, M. M. (2010). Effect of sugars on characteristics of Boer goat semen after cryopreservation. Animal reproduction science, 122(1-2), 23-28. Najafi, A., Kia, H. D., Mohammadi, H., Najafi, M. H., Zanganeh, Z., Sharafi, M., & Adeldust, H. (2014). Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology, 69(1), 68-73. Naseer, Z., Ahmad, E., Şahiner, H. S., Epikmen, E. T., Fiaz, M., Yousuf, M. R., & Aksoy, M. (2018). Dietary quercetin maintains the semen quality in rabbits under summer heat stress. Theriogenology, 122, 88-93. Nikfarjam, B. A., Hajiali, F., Adineh, M., & Nassiri-Asl, M. (2017). Anti-inflammatory effects of quercetin and vitexin on activated human peripheral blood neutrophils-The effects of quercetin and vitexin on human neutrophils. Journal of pharmacopuncture, 20(2), 127-131. Rahmatzadeh, M., Kohram, H., Zare Shahneh, A., Seifi‐Jamadi, A., & Ahmad, E. (2017). Antioxidative effect of BHA in soya bean lecithin‐based extender containing Glycerol or DMSO on freezing capacity of goat semen. Reproduction in Domestic Animals, 52(6), 985-991. Restrepo, G., Ocampo, D., and Velásquez, A. (2013). Assessment of cryopreserved sperm motility from Colombian creole stallions by sperm class analyzer. Rev. Udca Actual. Divulg. Cient. 16(2), 445–450. Restrepo Betancur, G., Duque Cortés, J. E., & Rojano, B. A. (2016). Efecto de la quercetina, la L-ergotioneina y la pentoxifilina en el semen equino posdescongelado. Revista de Salud Animal, 38(3), 154-163. Sahu, S. C., & Green, S. (2017). Food antioxidants: their dual role in carcinogenesis. Oxidants, antioxidants, and free radicals, 327-340. Seifi-Jamadi, A., Ahmad, E., Ansari, M., & Kohram, H. (2017). Antioxidant effect of quercetin in an extender containing DMA or glycerol on freezing capacity of goat semen. Cryobiology, 75, 15-20. Seifi-Jamadi, A., Kohram, H., Shahneh, A. Z., Ansari, M., & Macías-García, B. (2016). Quercetin ameliorate motility in frozen-thawed Turkmen stallions sperm. Journal of Equine Veterinary Science, 45, 73-77. Shu, L., Zhang, W., Su, G., Zhang, J., Liu, C., & Xu, J. (2013). Modulation of HERG K+ channels by chronic exposure to activators and inhibitors of PKA and PKC: actions independent of PKA and PKC phosphorylation. Cellular Physiology and Biochemistry, 32(6), 1830-1844. Sies, H. (2018). On the history of oxidative stress: Concept and some aspects of current development. Current Opinion in Toxicology, 7, 122-126. Silva, E. C., Cajueiro, J. F., Silva, S. V., Soares, P. C., & Guerra, M. M. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 77(8), 1722-1726. Silva, E., Cajueiro, J. F., Silva, S. V., Soares, P. C., & Guerra, M. (2012). Effect of antioxidants resveratrol and quercetin on in vitro evaluation of frozen ram sperm. Theriogenology, 77(8), 1722-1726. Stojanović, S., Sprinz, H., & Brede, O. (2001). Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Archives of Biochemistry and Biophysics, 391(1), 79-89. Taylor, C. T. (2001). Antioxidants and reactive oxygen species in human fertility. Environmental toxicology and pharmacology, 10(4), 189-198. Topraggaleh, T. R., Shahverdi, A., Rastegarnia, A., Ebrahimi, B., Shafiepour, V., Sharbatoghli, M., & Janzamin, E. (2014). Effect of cysteine and glutamine added to extender on post‐thaw sperm functional parameters of buffalo bull. Andrologia, 46(7), 777-783. Tvrdá, E., Debacker, M., Ďuračka, M., Kováč, J., & Bučko, O. (2020). Quercetin and Naringenin Provide Functional and Antioxidant Protection to Stored Boar Semen. Animals, 10(10), 1930. Usuga, A., Rojano, B. A., & Restrepo, G. (2018). Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reproduction, Fertility and Development, 30(3), 563-569. Yoon, S. J., Rahman, M. S., Kwon, W. S., Park, Y. J., & Pang, M. G. (2016). Addition of cryoprotectant significantly alters the epididymal sperm proteome. PLoS One, 11(3), 1-15. Zribi, N., Chakroun, N. F., Abdallah, F. B., Elleuch, H., Sellami, A., Gargouri, J., & Keskes, L. A. (2012). Effect of freezing–thawing process and quercetin on human sperm survival and DNA integrity. Cryobiology, 65(3), 326-331. Alasmari, W. C., Correia, J., Oxenham, S. K., Morris, J., Fernandes, L., & Barratt, C. R. (2013). Ca2+ signals generated by CatSper and Ca2+ stores regulate different behaviors in human sperm. Journal of Biological Chemistry, 288(9), 6248-6258. Al-Mutary, G. M. (2020). Use of antioxidants to augment semen efficiency during liquid storage and cryopreservation in livestock animals: A review. Journal of King Saud University-Science., 33, 1-6. Battistone, M. A., Da Ros, V. G., Salicioni, A. M., Navarrete, F. A., Krapf, D., Visconti, P. E., & Cuasnicu, P. S. (2013). Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. Basic science of reproductive medicine, 19(9), 570-580. Battistone, M. A., Da Ros, V. G., Salicioni, A. M., Navarrete, F. A., Krapf, D., Visconti, P. E., & Cuasnicu, P. S. (2013). Functional human sperm capacitation requires both bicarbonate-dependent PKA activation and down-regulation of Ser/Thr phosphatases by Src family kinases. MHR: Basic science of reproductive medicine, 19(9), 570-580. Brewis, I. A., Morton, I. E., Mohammad, S. N., Browes, C. E., & Moore, H. D. (2000). Measurement of Intracellular Calcium Concentration and Plasma Membrane Potential in Human Spermatozoa Using Flow Cytometry. Journal of andrology, 21(2), 238-249. Brito, L. F. C., Greene, L. M., Kelleman, A., Knobbe, M., and Turner, R. (2011). Effect of method and clinician on stallion sperm morphology evaluation. Theriogenology 76(4), 745–750. Carneiro, J. A., Canisso, I. F., Bandeira, R. S., Scheeren, V. F., Freitas-Dell’Aqua, C. P., Alvarenga, M. A., & Dell’Aqua Jr, J. A. (2018). Effects of coenzyme Q10 on semen cryopreservation of stallions classified as having good or bad semen freezing ability. Animal reproduction science, 192, 107-118. Contreras, M. J., Treulen, F., Arias, M. E., Silva, M., Fuentes, F., Cabrera, P., & Felmer, R. (2020). Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology. Reproduction in Domestic Animals, 55(2), 229-239. de Vasconcelos Franco, J. S., Faheem, M., Chaveiro, A., & da Silva, F. M. (2016). Effects of α-tocopherol and freezing rates on the quality and heterologous in vitro fertilization capacity of stallion sperm after cryopreservation. Theriogenology, 86(4), 957-962. Florman, H. M., Arnoult, C., Kazam, I. G., & O'Toole, C. M. (1998). A perspective on the control of mammalian fertilization by egg-activated ion channels in sperm: a tale of two channels. Biology of Reproduction, 59(1), 12-16. Gadani, B., Bucci, D., Spinaci, M., Tamanini, C., & Galeati, G. (2017). Resveratrol and Epigallocatechin-3-gallate addition to thawed boar sperm improves in vitro fertilization. Theriogenology, 90(+), 88-93. Gibb, Z., Butler, T. J., Morris, L. H., Maxwell, W. M., & Grupen, C. G. (2013). Quercetin improves the postthaw characteristics of cryopreserved sex-sorted and nonsorted stallion sperm. Theriogenology, 79(6), 1001-1009. Gil, J., Rodriguez-Irazoqui, M., Lundeheim, N., Söderquist, L., & Rodrı́guez-Martı́nez, H. (2003). Fertility of ram semen frozen in Bioexcell® and used for cervical artificial insemination. Theriogenology, 59(5-6), 1157-1170. Grynkiewicz, G., Poenie, M., & Tsien, R. Y. (1985). A new generation of Ca2+ indicators with greatly improved fluorescence properties. Journal of biological chemistry, 260(6), 3440-3450. Huang, Z., Danshina, P. V., Mohr, K., Qu, W., Goodson, S. G., O’Connell, T. M., & O’Brien, D. A. (2017). Sperm function, protein phosphorylation, and metabolism differ in mice lacking successive sperm-specific glycolytic enzymes. Biology of reproduction, 97(4), 586-597. Kavak, A., Johannisson, A., Lundeheim, N., Rodriguez-Martinez, H., Aidnik, M., & Einarsson, S. (2003). Evaluation of cryopreserved stallion semen from Tori and Estonian breeds using CASA and flow cytometry. Animal Reproduction Science,, 76(3-4), 205-216. Khumran, A. M., Yimer, N., Rosnina, Y., Wahid, H., Ariff, M. O., Homayoun, H., & Bello, T. K. (2019). Butylated hydroxytoluene protects bull sperm surface protein-P25b in different extenders following cryopreservation. Veterinary world, 13(4), 649. Lançoni, R., Celeghini, E. C., Alves, M. B., Lemes, K. M., Gonella-Diaza, A. M., Oliveira, L. Z., & de Arruda, R. P. (2018). Melatonin added to cryopreservation extenders improves the mitochondrial membrane potential of postthawed equine sperm. Journal of equine veterinary science, 69, 78-83. Lançoni, R., Leite, T. G., Arruda, R. P., Celeghini, E. C., Bianchi-Alves, M. R., Santos, G. C., & Florez-Rodriguez, S. A. (2015). Use of melatonin and ferulic acid as promoters of cryopreserved equine sperm. Animal Reproduction, 12(3), 559. Leemans, B., Stout, T. A., De Schauwer, C., Heras, S., Nelis, H., Hoogewijs, M., & Gadella, B. M. (2019). Update on mammalian sperm capacitation: how much does the horse differ from other species? Reproduction, 157(5), 181-197. Li, X., Wang, L., Liu, H., Fu, J., Zhen, L., Li, Y., & Zhang, Y. (2019). C 60 Fullerenes Suppress Reactive Oxygen Species Toxicity Damage in Boar Sperm. Nano-Micro Letters, 11(1), 1-17. Masoudi, R., Sharafi, M., Shahneh, A. Z., Towhidi, A., Kohram, H., Esmaeili, V., & Davachi, N. D. (2016). Fertility and flow cytometry study of frozen-thawed sperm in cryopreservation medium supplemented with soybean lecithin. Cryobiology, 73(1), 69-72. Miró-Arias, M., Vallecillo, A., León, J. M., & Vega-Pla, J. L. (2011). Efecto del semental sobre las características seminales del Caballo de las Retuertas. Archivos de zootecniaQ, 60(231), 345-348. Mohanarao, G. J., & Atreja, S. K. (2012). Identification of NO induced and capacitation associated tyrosine phosphoproteins in buffalo (Bubalus bubalis) spermatozoa. Research in veterinary, 93(2), 618-623. Moreno-Irusta, A., Dominguez, E. M., Marín-Briggiler, C. I., Matamoros-Volante, A., Lucchesi, O., Tomes, C. N., & Giojalas, L. C. (2020). Reactive oxygen species are involved in the signaling of equine sperm chemotaxis. Reproduction, 159(4), 423-436. Mostek, A., Dietrich, M. A., Słowińska, M., & Ciereszko, A. (2017). Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology, 92, 95-102. Papas, M., Catalán, J., Fernandez-Fuertes, B., Arroyo, L., Bassols, A., Miró, J., & Yeste, M. (2019). Specific activity of superoxide dismutase in stallion seminal plasma is related to sperm cryotolerance. Antioxidants, 8(11), 539. Peris-Frau, P., Soler, A. J., Iniesta-Cuerda, M., Martín-Maestro, A., Sánchez-Ajofrín, I., Medina-Chávez, D. A., & Garde, J. J. (2020). Sperm cryodamage in ruminants: understanding the molecular changes induced by the cryopreservation process to optimize sperm quality. International journal of molecular sciences, 21(8), 2781. Perry, S. W., Norman, J. P., Barbieri, J., Brown, E. B., & Gelbard, H. A. (2011). Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques, 50(2), 98-115. Rathi, R., Colenbrander, B., Bevers, M. M., & Gadella, B. M. (2001). Evaluation of in vitro capacitation of stallion spermatozoa. Biology of reproduction, 65(2), 462-470. Restrepo, G., Ocampo, D., and Velásquez, A. (2013). Assessment of cryopreserved sperm motility from Colombian creole stallions by sperm class analyzer. Rev. Udca Actual. Divulg. Cient. 16(2), 445–450. Shu, L., Zhang, W., Su, G., Zhang, J., Liu, C., & Xu, J. (2013). Modulation of HERG K+ channels by chronic exposure to activators and inhibitors of PKA and PKC: actions independent of PKA and PKC phosphorylation. Cellular Physiology and Biochemistry, 32(6), 1830-1844. Sieme, H., & Oldenhof, H. (2015). Cryopreservation of semen from domestic livestock. Cryopreservation and freeze-drying protocols, 277-287. Silva, L. F., Araujo, E. A., Oliveira, S. N., Dalanezi, F. M., Junior, L. R., Carneiro, J. A., & Papaa, F. O. (2018). Quercetin promotes increase in the fertility rate of frozen semen of Stallions considered sensitive to freezing. Journal of Equine Veterinary Science, 66, 82. Tateno, H., Krapf, D., Hino, T., Sánchez-Cárdenas, C., Darszon, A., Yanagimachi, R., & Visconti, P. E. (2013). Ca2+ ionophore A23187 can make mouse spermatozoa capable of fertilizing in vitro without activation of cAMP-dependent phosphorylation pathways. Proceedings of the National Academy of Sciences, 110(46), 18543-18548. Usuga, A., Rojano, B. A., & Restrepo, G. (2018). Association of the cysteine-rich secretory protein-3 (CRISP-3) and some of its polymorphisms with the quality of cryopreserved stallion semen. Reproduction, Fertility and Development, 30(3), 563-569. Visconti, P. E., Krapf, D., De La Vega-beltrán, J. L., Acevedo, J. J., & Darszon, A. (2011). Ion channels, phosphorylation and mammalian sperm capacitation. Asian journal of andrology, 13(3), 395. Yıldız, S., Öztürkler, Y., Arı, U. Ç., Lehİmcİoğlu, N. C., Atakİșİ, E., & Kulaksız, R. (2015). The effects of L-Ergothioneine, N-acetylcystein and cystein on freezing of ram semen. Kafkas Üniversitesi Veteriner Fakültesi Dergisi, 21(1), 81-86.InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80273/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL78753206.2021.pdf78753206.2021.pdfTesis de Doctorado en Biotecnologíaapplication/pdf4534070https://repositorio.unal.edu.co/bitstream/unal/80273/8/78753206.2021.pdf504eaef8d7747d22184a0c1337ba24bdMD58THUMBNAIL78753206.2021.pdf.jpg78753206.2021.pdf.jpgGenerated Thumbnailimage/jpeg5487https://repositorio.unal.edu.co/bitstream/unal/80273/9/78753206.2021.pdf.jpg35d2f931bb567f3dfe2b39060ce37d68MD59unal/80273oai:repositorio.unal.edu.co:unal/802732023-07-28 23:03:45.647Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==