Slashed Rayleigh Distribution
In this article we study a subfamily of the slashed-Weibull family. This subfamily can be seen as an extension of the Rayleigh distribution with more flexibility in terms of the kurtosis of distribution. This special feature makes the extension suitable for fitting atypical observations. It arises a...
- Autores:
-
Iriarte, Yuri A.
Gómez, Héctor W.
Varela, Héctor
Bolfarine, Heleno
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2015
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66540
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66540
http://bdigital.unal.edu.co/67568/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Kurtosis
Rayleigh Distribution
Slashed-elliptical Distributions
Slashed-Rayleigh Distribution
Slashed-Weibull Distribution
Weibull Distribution
Curtosis
Distribución Rayleigh
Distribuciones Slashed-elípticas
Distribución Slashed-Rayleigh
Distribución Slashed-Weibull
DistribuciónWeibull.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this article we study a subfamily of the slashed-Weibull family. This subfamily can be seen as an extension of the Rayleigh distribution with more flexibility in terms of the kurtosis of distribution. This special feature makes the extension suitable for fitting atypical observations. It arises as the ratio of two independent random variables, the one in the numerator being a Rayleigh distribution and a power of the uniform distribution in the denominator. We study some probability properties, discuss maximum likelihood estimation and present real data applications indicating that the slashed-Rayleigh distribution can improve the ordinary Rayleigh distribution in fitting real data. |
---|