Diseño de la estructura interna de un andamio (scaffold) para tejido óseo

ilustraciones, diagramas, fotografías

Autores:
Toro Toro, Lina Fernanda
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86869
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86869
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ingeniería de Tejidos/métodos
Estereolitografía
Tecnología
Tissue Engineering/methods
Stereolithography
Technology
Scaffolds
Diseño
Ingeniera de tejidos óseo
Manufactura aditiva (MA)
Celdas poliédricas
Voronoi
Scaffolds
Design
Bone tissue engineer
Additive manufacturing (AM)
Polyhedral cells
Voronoi
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e6718206d1a0b57199a563fa3f1a52fe
oai_identifier_str oai:repositorio.unal.edu.co:unal/86869
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
dc.title.translated.eng.fl_str_mv Design of the internal structure of a scaffold for bone tissue
title Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
spellingShingle Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
610 - Medicina y salud::615 - Farmacología y terapéutica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ingeniería de Tejidos/métodos
Estereolitografía
Tecnología
Tissue Engineering/methods
Stereolithography
Technology
Scaffolds
Diseño
Ingeniera de tejidos óseo
Manufactura aditiva (MA)
Celdas poliédricas
Voronoi
Scaffolds
Design
Bone tissue engineer
Additive manufacturing (AM)
Polyhedral cells
Voronoi
title_short Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
title_full Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
title_fullStr Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
title_full_unstemmed Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
title_sort Diseño de la estructura interna de un andamio (scaffold) para tejido óseo
dc.creator.fl_str_mv Toro Toro, Lina Fernanda
dc.contributor.advisor.spa.fl_str_mv Garzón Alvarado, Diego Alexander
Velasco Peña, Marco Antonio
dc.contributor.author.spa.fl_str_mv Toro Toro, Lina Fernanda
dc.contributor.researchgroup.spa.fl_str_mv Gnum Grupo de Modelado y Métodos Numericos en Ingeniería
dc.contributor.orcid.spa.fl_str_mv Toro Toro, Lina Fernanda [0000-0002-0979-3241]
dc.contributor.cvlac.spa.fl_str_mv Toro Toro, Lina Fernanda [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001720717]
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Ingeniería de Tejidos/métodos
Estereolitografía
Tecnología
Tissue Engineering/methods
Stereolithography
Technology
Scaffolds
Diseño
Ingeniera de tejidos óseo
Manufactura aditiva (MA)
Celdas poliédricas
Voronoi
Scaffolds
Design
Bone tissue engineer
Additive manufacturing (AM)
Polyhedral cells
Voronoi
dc.subject.decs.spa.fl_str_mv Ingeniería de Tejidos/métodos
Estereolitografía
Tecnología
dc.subject.decs.eng.fl_str_mv Tissue Engineering/methods
Stereolithography
Technology
dc.subject.proposal.spa.fl_str_mv Scaffolds
Diseño
Ingeniera de tejidos óseo
Manufactura aditiva (MA)
Celdas poliédricas
Voronoi
dc.subject.proposal.eng.fl_str_mv Scaffolds
Design
Bone tissue engineer
Additive manufacturing (AM)
Polyhedral cells
Voronoi
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-09-26T19:58:53Z
dc.date.available.none.fl_str_mv 2024-09-26T19:58:53Z
dc.date.issued.none.fl_str_mv 2024-09-09
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86869
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86869
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv F. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, “Additive manufacturing of tissues and organs,” Prog Polym Sci, vol. 37, no. 8, pp. 1079–1104, 2012, doi: 10.1016/j.progpolymsci.2011.11.007.
“Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, Jan. 2016, doi: 10.1016/J.CIRP.2016.05.004.
M. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering ,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.
S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.
V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.
J. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos : una introducción,” Revista de Estudios Transdisciplinarios, vol. 1, no. 2, pp. 98–109, 2009.
J. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, 2014, doi: 10.4248/br201303002.
M. D. Mirjam Fröhlich, Warren L. Grayson, Leo Q. Wan, Darja Marolt, “Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance,” Curr Stem Cell Res, vol. 23, no. 1, pp. 254–264, 2008, doi: 10.1038/jid.2014.371.
V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.
Tony M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “BIOMECHANICS OF TRABECULAR BONE,” Annual Reviews, vol. 3, 2001.
R. S. F. y O. R. C. Edgar Isaac Ramírez D., Armando Ortiz P., “Modelado de hueso trabecular mediante paquetería de elemento finito basándose en estructuras de Voronoi,” Ingeniería Mecánica. Tecnología y Desarrollo, vol. 2, no. 5, pp. 151–156, 2007.
G. A. R. Bilezikian, John P. Lawrence G. Raisz, principles of bone biology second edition, 2nd ed., vol. 1, no. 5. 2002. doi: 10.1002/j.1556-6676.1995.tb01790.x.
T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials, vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.
J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, 1998, doi: 10.1016/S1350-4533(98)00007-1.
M. A. Velasco, C. A. Narváez-tovar, and D. A. Garzón-alvarado, “Design , Materials , and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res Int, vol. 2015, no. Article ID 729076, p. 21, 2015, doi: doi:10.1155/2015/729076.
J. K. Carrow and A. K. Gaharwar, “Bioinspired Polymeric Nanocomposites for Regenerative Medicine,” Macromol Chem Phys, vol. 216, no. 3, pp. 248–264, Feb. 2015, doi: 10.1002/macp.201400427.
Robert langer and Vacanti Joseph P., “tissue Engineering,” STOR, vol. 260, no. 5110, pp. 920–926, 2007.
H. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, 2020, doi: 10.1016/j.mtcomm.2020.101024.
Ekta Pandey, K. Srivastava, S. Gupta, S. Srivastava, and N. Mishra, “SOME BIOCOMPATIBLE MATERIALS USED IN MEDICAL PRACTICES- A REVIEW,” International Jornal of Pharmaceutical Sciences and Research, vol. 7, no. 7, pp. 2748–2755, 2016, doi: 10.13040/IJPSR.0975-8232.7(7).2748-55.
H. Larry L and P. Julia M, “Third-generation biomedical materials,” Science (1979), vol. 295, no. 5557, pp. 1014–1017, 2002.
M. M. Stevens, “Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential,” Materialstoday, vol. 11, no. 5, pp. 18–25, 2008.
C. Z. Liu and J. T. Czernuszka, “Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology,” Materials Science and Technology, vol. 23, no. 4, pp. 379–391, 2007, doi: 10.1179/174328407x177027.
F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials Today, vol. 14, no. 3, pp. 88–95, 2011, doi: 10.1016/S1369-7021(11)70058-X.
L. Roseti et al., “Scaffolds for Bone Tissue Engineering: State of the art and new perspectives,” Materials Science and Engineering C, vol. 78, pp. 1246–1262, 2017, doi: 10.1016/j.msec.2017.05.017.
J. A. R. and A. R. B. Q. Chen, “Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials Q.,” in Topics in Tissue Engineering, Vol 4., 2008.
Y. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.
F. R. A. J. Rose and R. O. C. Oreffo, “Bone tissue engineering: Hope vs hype,” Biochem Biophys Res Commun, vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.
D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” The Biomaterials: Silver Jubilee Compendium, vol. 21, pp. 175–189, 2000, doi: 10.1016/B978-008045154-1.50021-6.
M. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.
V. Guarino, F. Causa, and L. Ambrosio, “Bioactive scaffolds for bone and ligament tissue,” Expert Rev Med Devices, vol. 4, no. 3, pp. 405–418, 2007, doi: 10.1586/17434440.4.3.405.
A. R. Amin, C. T. Laurenci, and S. P. Nukavarapu, “Bone Tissue Engineering: Recent Advances and Challenges,” vol. 71, no. 2. pp. 233–236, 2013. doi: 10.1038/mp.2011.182.doi.
Y. Yan et al., “Vascularized 3D printed scaffolds for promoting bone regeneration,” Biomaterials, vol. 190–191, no. August 2018, pp. 97–110, 2019, doi: 10.1016/j.biomaterials.2018.10.033.
S. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling, “Potential of ceramic materials as permanently implantable skeletal prostheses,” J Biomed Mater Res, vol. 4, no. 3, pp. 433–456, 1970, doi: 10.1002/jbm.820040309.
S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, “3D-printed cellular structures for bone biomimetic implants,” Addit Manuf, vol. 15, pp. 93–101, 2017, doi: 10.1016/j.addma.2017.03.010.
F. Zhao, Y. Xiong, K. Ito, B. van Rietbergen, and S. Hofmann, “Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering,” Frontiers in Bioengineering and Biotechnology, vol. 9. Frontiers Media S.A., Sep. 14, 2021. doi: 10.3389/fbioe.2021.736489.
D. W. Hutmacher, schantz jan Thorsten, lam christopher Xu, L. Thiam, and tan cheng, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective,” J Tissue Eng Regen Med, vol. 6, no. June, pp. 245–260, 2007, doi: 10.1002/term.
C. Ma, T. Du, X. Niu, and Y. Fan, “Biomechanics and mechanobiology of the bone matrix,” Bone Research, vol. 10, no. 1. Springer Nature, Dec. 01, 2022. doi: 10.1038/s41413-022-00223-y.
A. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering C, vol. 100, no. March, pp. 631–644, 2019, doi: 10.1016/j.msec.2019.03.037
J. Lee, M. J. Cuddihy, and N. A. Kotov, “Three-Dimensional Cell Culture Matrices: State of the Art,” Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008, doi: 10.1089/teb.2007.0150.
K. Hargroves and M. Smith, “Innovation inspired by nature: Biomimicry,” Ecos Science for Sustainability, no. 129, pp. 27–29, 2006, doi: 10.1071/EC129p27.
D. Bhate, C. Penick, L. Ferry, and C. Lee, “Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches,” Designs (Basel), vol. 3, no. 1, p. 19, 2019, doi: 10.3390/designs3010019.
Y. F. Tang, Y., & Zhao, “A survey of the design methods for additive manufacturing to improve,” Rapid Prototyp J, vol. 22 Iss 3 p, 2016, doi: 10.1108/RPJ-01-2015-0011.
G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review,” Appl Bionics Biomech, vol. 2018, 2018, doi: 10.1155/2018/1654782.
and S. Z. X. Wang, S. Xu, “topological design and additive manufacturing of porous metal for bone scaffolds and orthopaedic implants: A Review,” Biomaterials, vol. 83, pp. 127–141, 2016.
S.N.chiu, “Spatial point pattern analysis by using Voronoi diagrams and Delaunay tessellations - A comparative study,” Biometrical Journal, vol. 45, no. 3, pp. 367–376, 2003, doi: 10.1002/bimj.200390018.
M. F. A.- Lorna J. Gibson, Cellular solids - Second Edition (1), 2nd ed. Cambridge, 1999.
V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: Bending versus stretching dominated architectures,” Acta Mater, vol. 49, no. 6, pp. 1035–1040, 2001, doi: 10.1016/S1359-6454(00)00379-7.
X. Y. Kou, S. T. Tan, J. Møller, and D. Stoyan, “Stochastic Geometry and Random Tessellations,” CAD Computer Aided Design, vol. 42, no. 1995, pp. 1–32, 2010, doi: 10.1016/j.cad.2010.06.006.
C. Alsina, las mil caras de la belleza geometrica, vol. 1. 2010. doi: 10.1017/CBO9781107415324.004.
N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.
C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.
M. Godfrey, “Chapter-22 Extracellular Matrix,” Essentials of Biochemistry (For Medical Students), pp. 329–336, 2009, doi: 10.5005/jp/books/11965_22.
Q. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size,” Tissue Eng Part B Rev, vol. 19, no. 6, pp. 485–502, 2013, doi: 10.1089/ten.teb.2012.0437.
O. D. Acevedo Rueda, G. P. Fernández Morales, and J. F. Ramírez Patiño, “Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos,” Inge Cuc, vol. 15, no. 1, pp. 17–24, 2019, doi: 10.17981/ingecuc.15.1.2019.02.
Pearlin, S. Nayak, G. Manivasagam, and D. Sen, “Progress of Regenerative Therapy in Orthopedics,” Curr Osteoporos Rep, vol. 16, no. 2, pp. 169–181, 2018, doi: 10.1007/s11914-018-0428-x.
F. Matassi, L. Nistri, M. Innocenti, and D. C. Paez, “New biomaterials for bone regeneration Mini-review,” Clin Cases Miner Bone Metab, vol. 8, pp. 21–24, 2011, doi: 10.1007/s00264-012-1525-6.
ASTM, “ASTM F2792 - 12a. Standard Terminology for Additive Manufacturing Technologies,” ASTM F2792-10e1. pp. 2–4, 2013. doi: 10.1520/F2792-12A.2.
I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. 2015. doi: 10.1007/978-1-4939-2113-3.
M. K. Thompson et al., “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, 2016, doi: 10.1016/j.cirp.2016.05.004.
M. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Técnicas para la fabricación de andamios poliméricos con aplicaciones en ingeniería de tejidos,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.
P. J. Bártolo, Stereolithography: Materials, Processes and Applications. 2011.
A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater, vol. 9, no. 4, pp. 5989–5996, 2013, doi: 10.1016/j.actbio.2012.12.004.
B. Yuan, S. yuan Zhou, and X. sheng Chen, “Rapid prototyping technology and its application in bone tissue engineering,” J Zhejiang Univ Sci B, vol. 18, no. 4, pp. 303–315, 2017, doi: 10.1631/jzus.B1600118.
L. C.-S. Chua Chee Kai, Leong Kah Fai, RAPID PROTOTYPING: PRINCIPLES AND APPLICATIONS, 2nd Edition, 2nd ed. World Scientific Publishing Co. Pte. Ltd, 2003.
K. Tappa and U. Jammalamadaka, “Novel biomaterials used in medical 3D printing techniques,” J Funct Biomater, vol. 9, no. 1, 2018, doi: 10.3390/jfb9010017.
Stratasys, “How PolyJet 3D Printing Works,” computer aided technology. Accessed: Jan. 22, 2020. [Online]. Available: https://www.cati.com/3d-printing/polyjet-technology/
Y. W. Chen, H. Y. Fang, M. Y. Shie, and Y. F. Shen, “The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold,” Int J Bioprint, vol. 5, no. 2, pp. 83–88, 2019, doi: 10.18063/ijb.v5i2.197.
S. M. Peltola, F. P. W. Melchels, D. W. Grijpma, and M. Kellomäki, “A review of rapid prototyping techniques for tissue engineering purposes,” Annals of Medicine, vol. 40, no. 4. pp. 268–280, 2008. doi: 10.1080/07853890701881788.
A. M. Tarawneh, M. Wettergreen, and M. A. K. Liebschner, “Computer-aided tissue engineering: Benefiting from the control over scaffold micro-architecture,” Methods in Molecular Biology, vol. 868, pp. 1–25, 2012, doi: 10.1007/978-1-61779-764-4_1.
C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.
N. Sudarmadji, C. K. Chua, and K. F. Leong, “The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds,” Methods in Molecular Biology, vol. 868, pp. 111–123, 2012, doi: 10.1007/978-1-61779-764-4_7.
P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, 2022, doi: 10.1016/j.oceram.2022.100235.
M. M. Bazyar, S. A. A. B. Tabary, D. Rahmatabdi, K. Mohammadi, and R. Hashemi, “A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing,” J Manuf Process, vol. 103, pp. 136–143, Oct. 2023, doi: 10.1016/j.jmapro.2023.08.018.
B. ALICONA, “No Title,” Surface Roughness vs. Surface texture measurement comparison | Alicona. Accessed: May 03, 2023. [Online]. Available: https://www.alicona.com/en/publications/publication/surface-roughness-vs-surface-texture-measurement-comparison/
S. Ponader et al., “Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts,” J Biomed Mater Res A, vol. 84, no. 4, pp. 1111–1119, Mar. 2008, doi: 10.1002/jbm.a.31540.
P. Mondal, A. Das, A. Wazeer, and A. Karmakar, “Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization,” International Journal of Lightweight Materials and Manufacture, vol. 5, no. 3, pp. 384–396, Sep. 2022, doi: 10.1016/j.ijlmm.2022.04.005.
É. Lakatos, L. Magyar, and I. Bojtár, “Material properties of the mandibular trabecular bone,” in 28th Danubia - Adria - Symposium on Advances in Experimental Mechanics, DAS 2011, 2011. doi: 10.1155/2014/470539.
N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.
P. Bogusz, A. Popławski, M. Stankiewicz, and B. Kowalski, “Citation: materials Experimental Research of Selected Lattice Structures Developed with 3D Printing Technology,” 2022, doi: 10.3390/ma.
B. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, Dec. 2021, doi: 10.1016/j.matdes.2021.110224.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxi, 131 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86869/4/1013601639.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86869/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86869/6/1013601639.2024.pdf.jpg
bitstream.checksum.fl_str_mv a901c4e4205d570eb3799ba09dd7b847
eb34b1cf90b7e1103fc9dfd26be24b4a
deaed7101c139fcaf9bae6ad0574ee50
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1812169756662300672
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Garzón Alvarado, Diego Alexander3bd3300e515de537404ed24aaad21afe600Velasco Peña, Marco Antoniobb4cd0c04e320d75286a75bbe3f48188600Toro Toro, Lina Fernanda1a70d19b4b60d97bd67552ca4bd69759600Gnum Grupo de Modelado y Métodos Numericos en IngenieríaToro Toro, Lina Fernanda [0000-0002-0979-3241]Toro Toro, Lina Fernanda [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001720717]2024-09-26T19:58:53Z2024-09-26T19:58:53Z2024-09-09https://repositorio.unal.edu.co/handle/unal/86869Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa ingeniería de tejidos óseos busca la regeneración de tejido óseo dañado o perdido. Los scaffolds son estructuras tridimensionales que proporcionan un andamiaje para el crecimiento de células y tejidos. Los avances en las tecnologías de manufactura aditiva (MA) han facilitado la fabricación de scaffolds complejos y personalizados. Este estudio evaluó el diseño y fabricación de scaffolds para ingeniería de tejido óseo basados en la arquitectura interna del hueso. Se utilizaron geometrías de poliedros y diagramas Voronoi con tamaños de celdas de 1.500 µm a 1.250 µm y trabéculas de 200 µm a 250 µm. Los scaffolds se fabricaron mediante estereolitografía (SLA). Se evaluó la precisión geométrica y dimensional de los scaffolds comparando el modelo CAD, STL y MA, así como su rugosidad superficial y propiedades mecánicas. Los resultados mostraron que las geometrías fabricadas presentaban poros cerrados en las esquinas entre celdas y en el centro de la celda unitaria. Esto se debe al proceso de manufactura, el tamaño de la celda y la complejidad geométrica. Los scaffolds se sometieron a ensayos a compresión para evaluar su viabilidad como sustituto óseo. Los resultados mostraron que la geometría del octaedro truncado con tamaño de celda de 1.250 µm y tamaño de trabécula de 250 µm presentó los valores más altos del módulo elástico, esfuerzo y deformación. por último, se evalúa los scaffolds por análisis de elementos finitos (FEA) para comparar con los resultados experimentales y encontrar la geometría adecuada para el hueso trabecular. (Texto tomado de la fuente).Bone tissue engineering seeks the regeneration of damaged or lost bone tissue. Scaffolds are three-dimensional structures that provide a scaffolding for the growth of cells and tissues. Advances in additive manufacturing (AM) technologies have facilitated the manufacturing of complex and customized scaffolds. This study evaluated the design and fabrication of scaffolds for bone tissue engineering based on the internal architecture of the bone. Polyhedra geometries and Voronoi diagrams were used with cell sizes from 1,500 µm to 1,250 µm and trabeculae from 200 µm to 250 µm. The scaffolds were manufactured using stereolithography (SLA). The geometric and dimensional precision of the scaffolds was evaluated by comparing the CAD, STL and MA model, as well as their surface roughness and mechanical properties. The results showed that the fabricated geometries presented closed pores at the corners between cells and in the center of the unit cell. This is due to the manufacturing process, cell size and geometric complexity. The scaffolds were subjected to compression tests to evaluate their viability as a bone substitute. The results showed that the geometry of the truncated octahedron with a cell size of 1,250 µm and a trabecula size of 250 µm presented the highest values of elastic modulus, stress and deformation. Finally, the scaffolds are evaluated by finite element analysis (FEA) to compare with the experimental results and find the appropriate geometry for the trabecular bone.MaestríaMagíster en Ingeniería - Materiales y ProcesosMecanobiología de órganos y tejidosxxi, 131 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéutica620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaIngeniería de Tejidos/métodosEstereolitografíaTecnologíaTissue Engineering/methodsStereolithographyTechnologyScaffoldsDiseñoIngeniera de tejidos óseoManufactura aditiva (MA)Celdas poliédricasVoronoiScaffoldsDesignBone tissue engineerAdditive manufacturing (AM)Polyhedral cellsVoronoiDiseño de la estructura interna de un andamio (scaffold) para tejido óseoDesign of the internal structure of a scaffold for bone tissueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeF. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, “Additive manufacturing of tissues and organs,” Prog Polym Sci, vol. 37, no. 8, pp. 1079–1104, 2012, doi: 10.1016/j.progpolymsci.2011.11.007.“Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, Jan. 2016, doi: 10.1016/J.CIRP.2016.05.004.M. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering ,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.S. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.J. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos : una introducción,” Revista de Estudios Transdisciplinarios, vol. 1, no. 2, pp. 98–109, 2009.J. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, 2014, doi: 10.4248/br201303002.M. D. Mirjam Fröhlich, Warren L. Grayson, Leo Q. Wan, Darja Marolt, “Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance,” Curr Stem Cell Res, vol. 23, no. 1, pp. 254–264, 2008, doi: 10.1038/jid.2014.371.V. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.Tony M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “BIOMECHANICS OF TRABECULAR BONE,” Annual Reviews, vol. 3, 2001.R. S. F. y O. R. C. Edgar Isaac Ramírez D., Armando Ortiz P., “Modelado de hueso trabecular mediante paquetería de elemento finito basándose en estructuras de Voronoi,” Ingeniería Mecánica. Tecnología y Desarrollo, vol. 2, no. 5, pp. 151–156, 2007.G. A. R. Bilezikian, John P. Lawrence G. Raisz, principles of bone biology second edition, 2nd ed., vol. 1, no. 5. 2002. doi: 10.1002/j.1556-6676.1995.tb01790.x.T. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials, vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, 1998, doi: 10.1016/S1350-4533(98)00007-1.M. A. Velasco, C. A. Narváez-tovar, and D. A. Garzón-alvarado, “Design , Materials , and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res Int, vol. 2015, no. Article ID 729076, p. 21, 2015, doi: doi:10.1155/2015/729076.J. K. Carrow and A. K. Gaharwar, “Bioinspired Polymeric Nanocomposites for Regenerative Medicine,” Macromol Chem Phys, vol. 216, no. 3, pp. 248–264, Feb. 2015, doi: 10.1002/macp.201400427.Robert langer and Vacanti Joseph P., “tissue Engineering,” STOR, vol. 260, no. 5110, pp. 920–926, 2007.H. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, 2020, doi: 10.1016/j.mtcomm.2020.101024.Ekta Pandey, K. Srivastava, S. Gupta, S. Srivastava, and N. Mishra, “SOME BIOCOMPATIBLE MATERIALS USED IN MEDICAL PRACTICES- A REVIEW,” International Jornal of Pharmaceutical Sciences and Research, vol. 7, no. 7, pp. 2748–2755, 2016, doi: 10.13040/IJPSR.0975-8232.7(7).2748-55.H. Larry L and P. Julia M, “Third-generation biomedical materials,” Science (1979), vol. 295, no. 5557, pp. 1014–1017, 2002.M. M. Stevens, “Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential,” Materialstoday, vol. 11, no. 5, pp. 18–25, 2008.C. Z. Liu and J. T. Czernuszka, “Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology,” Materials Science and Technology, vol. 23, no. 4, pp. 379–391, 2007, doi: 10.1179/174328407x177027.F. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials Today, vol. 14, no. 3, pp. 88–95, 2011, doi: 10.1016/S1369-7021(11)70058-X.L. Roseti et al., “Scaffolds for Bone Tissue Engineering: State of the art and new perspectives,” Materials Science and Engineering C, vol. 78, pp. 1246–1262, 2017, doi: 10.1016/j.msec.2017.05.017.J. A. R. and A. R. B. Q. Chen, “Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials Q.,” in Topics in Tissue Engineering, Vol 4., 2008.Y. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.F. R. A. J. Rose and R. O. C. Oreffo, “Bone tissue engineering: Hope vs hype,” Biochem Biophys Res Commun, vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.D. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” The Biomaterials: Silver Jubilee Compendium, vol. 21, pp. 175–189, 2000, doi: 10.1016/B978-008045154-1.50021-6.M. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.V. Guarino, F. Causa, and L. Ambrosio, “Bioactive scaffolds for bone and ligament tissue,” Expert Rev Med Devices, vol. 4, no. 3, pp. 405–418, 2007, doi: 10.1586/17434440.4.3.405.A. R. Amin, C. T. Laurenci, and S. P. Nukavarapu, “Bone Tissue Engineering: Recent Advances and Challenges,” vol. 71, no. 2. pp. 233–236, 2013. doi: 10.1038/mp.2011.182.doi.Y. Yan et al., “Vascularized 3D printed scaffolds for promoting bone regeneration,” Biomaterials, vol. 190–191, no. August 2018, pp. 97–110, 2019, doi: 10.1016/j.biomaterials.2018.10.033.S. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling, “Potential of ceramic materials as permanently implantable skeletal prostheses,” J Biomed Mater Res, vol. 4, no. 3, pp. 433–456, 1970, doi: 10.1002/jbm.820040309.S. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, “3D-printed cellular structures for bone biomimetic implants,” Addit Manuf, vol. 15, pp. 93–101, 2017, doi: 10.1016/j.addma.2017.03.010.F. Zhao, Y. Xiong, K. Ito, B. van Rietbergen, and S. Hofmann, “Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering,” Frontiers in Bioengineering and Biotechnology, vol. 9. Frontiers Media S.A., Sep. 14, 2021. doi: 10.3389/fbioe.2021.736489.D. W. Hutmacher, schantz jan Thorsten, lam christopher Xu, L. Thiam, and tan cheng, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective,” J Tissue Eng Regen Med, vol. 6, no. June, pp. 245–260, 2007, doi: 10.1002/term.C. Ma, T. Du, X. Niu, and Y. Fan, “Biomechanics and mechanobiology of the bone matrix,” Bone Research, vol. 10, no. 1. Springer Nature, Dec. 01, 2022. doi: 10.1038/s41413-022-00223-y.A. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering C, vol. 100, no. March, pp. 631–644, 2019, doi: 10.1016/j.msec.2019.03.037J. Lee, M. J. Cuddihy, and N. A. Kotov, “Three-Dimensional Cell Culture Matrices: State of the Art,” Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008, doi: 10.1089/teb.2007.0150.K. Hargroves and M. Smith, “Innovation inspired by nature: Biomimicry,” Ecos Science for Sustainability, no. 129, pp. 27–29, 2006, doi: 10.1071/EC129p27.D. Bhate, C. Penick, L. Ferry, and C. Lee, “Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches,” Designs (Basel), vol. 3, no. 1, p. 19, 2019, doi: 10.3390/designs3010019.Y. F. Tang, Y., & Zhao, “A survey of the design methods for additive manufacturing to improve,” Rapid Prototyp J, vol. 22 Iss 3 p, 2016, doi: 10.1108/RPJ-01-2015-0011.G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review,” Appl Bionics Biomech, vol. 2018, 2018, doi: 10.1155/2018/1654782.and S. Z. X. Wang, S. Xu, “topological design and additive manufacturing of porous metal for bone scaffolds and orthopaedic implants: A Review,” Biomaterials, vol. 83, pp. 127–141, 2016.S.N.chiu, “Spatial point pattern analysis by using Voronoi diagrams and Delaunay tessellations - A comparative study,” Biometrical Journal, vol. 45, no. 3, pp. 367–376, 2003, doi: 10.1002/bimj.200390018.M. F. A.- Lorna J. Gibson, Cellular solids - Second Edition (1), 2nd ed. Cambridge, 1999.V. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: Bending versus stretching dominated architectures,” Acta Mater, vol. 49, no. 6, pp. 1035–1040, 2001, doi: 10.1016/S1359-6454(00)00379-7.X. Y. Kou, S. T. Tan, J. Møller, and D. Stoyan, “Stochastic Geometry and Random Tessellations,” CAD Computer Aided Design, vol. 42, no. 1995, pp. 1–32, 2010, doi: 10.1016/j.cad.2010.06.006.C. Alsina, las mil caras de la belleza geometrica, vol. 1. 2010. doi: 10.1017/CBO9781107415324.004.N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.M. Godfrey, “Chapter-22 Extracellular Matrix,” Essentials of Biochemistry (For Medical Students), pp. 329–336, 2009, doi: 10.5005/jp/books/11965_22.Q. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size,” Tissue Eng Part B Rev, vol. 19, no. 6, pp. 485–502, 2013, doi: 10.1089/ten.teb.2012.0437.O. D. Acevedo Rueda, G. P. Fernández Morales, and J. F. Ramírez Patiño, “Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos,” Inge Cuc, vol. 15, no. 1, pp. 17–24, 2019, doi: 10.17981/ingecuc.15.1.2019.02.Pearlin, S. Nayak, G. Manivasagam, and D. Sen, “Progress of Regenerative Therapy in Orthopedics,” Curr Osteoporos Rep, vol. 16, no. 2, pp. 169–181, 2018, doi: 10.1007/s11914-018-0428-x.F. Matassi, L. Nistri, M. Innocenti, and D. C. Paez, “New biomaterials for bone regeneration Mini-review,” Clin Cases Miner Bone Metab, vol. 8, pp. 21–24, 2011, doi: 10.1007/s00264-012-1525-6.ASTM, “ASTM F2792 - 12a. Standard Terminology for Additive Manufacturing Technologies,” ASTM F2792-10e1. pp. 2–4, 2013. doi: 10.1520/F2792-12A.2.I. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. 2015. doi: 10.1007/978-1-4939-2113-3.M. K. Thompson et al., “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, 2016, doi: 10.1016/j.cirp.2016.05.004.M. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Técnicas para la fabricación de andamios poliméricos con aplicaciones en ingeniería de tejidos,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.P. J. Bártolo, Stereolithography: Materials, Processes and Applications. 2011.A. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater, vol. 9, no. 4, pp. 5989–5996, 2013, doi: 10.1016/j.actbio.2012.12.004.B. Yuan, S. yuan Zhou, and X. sheng Chen, “Rapid prototyping technology and its application in bone tissue engineering,” J Zhejiang Univ Sci B, vol. 18, no. 4, pp. 303–315, 2017, doi: 10.1631/jzus.B1600118.L. C.-S. Chua Chee Kai, Leong Kah Fai, RAPID PROTOTYPING: PRINCIPLES AND APPLICATIONS, 2nd Edition, 2nd ed. World Scientific Publishing Co. Pte. Ltd, 2003.K. Tappa and U. Jammalamadaka, “Novel biomaterials used in medical 3D printing techniques,” J Funct Biomater, vol. 9, no. 1, 2018, doi: 10.3390/jfb9010017.Stratasys, “How PolyJet 3D Printing Works,” computer aided technology. Accessed: Jan. 22, 2020. [Online]. Available: https://www.cati.com/3d-printing/polyjet-technology/Y. W. Chen, H. Y. Fang, M. Y. Shie, and Y. F. Shen, “The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold,” Int J Bioprint, vol. 5, no. 2, pp. 83–88, 2019, doi: 10.18063/ijb.v5i2.197.S. M. Peltola, F. P. W. Melchels, D. W. Grijpma, and M. Kellomäki, “A review of rapid prototyping techniques for tissue engineering purposes,” Annals of Medicine, vol. 40, no. 4. pp. 268–280, 2008. doi: 10.1080/07853890701881788.A. M. Tarawneh, M. Wettergreen, and M. A. K. Liebschner, “Computer-aided tissue engineering: Benefiting from the control over scaffold micro-architecture,” Methods in Molecular Biology, vol. 868, pp. 1–25, 2012, doi: 10.1007/978-1-61779-764-4_1.C. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.N. Sudarmadji, C. K. Chua, and K. F. Leong, “The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds,” Methods in Molecular Biology, vol. 868, pp. 111–123, 2012, doi: 10.1007/978-1-61779-764-4_7.P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, 2022, doi: 10.1016/j.oceram.2022.100235.M. M. Bazyar, S. A. A. B. Tabary, D. Rahmatabdi, K. Mohammadi, and R. Hashemi, “A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing,” J Manuf Process, vol. 103, pp. 136–143, Oct. 2023, doi: 10.1016/j.jmapro.2023.08.018.B. ALICONA, “No Title,” Surface Roughness vs. Surface texture measurement comparison | Alicona. Accessed: May 03, 2023. [Online]. Available: https://www.alicona.com/en/publications/publication/surface-roughness-vs-surface-texture-measurement-comparison/S. Ponader et al., “Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts,” J Biomed Mater Res A, vol. 84, no. 4, pp. 1111–1119, Mar. 2008, doi: 10.1002/jbm.a.31540.P. Mondal, A. Das, A. Wazeer, and A. Karmakar, “Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization,” International Journal of Lightweight Materials and Manufacture, vol. 5, no. 3, pp. 384–396, Sep. 2022, doi: 10.1016/j.ijlmm.2022.04.005.É. Lakatos, L. Magyar, and I. Bojtár, “Material properties of the mandibular trabecular bone,” in 28th Danubia - Adria - Symposium on Advances in Experimental Mechanics, DAS 2011, 2011. doi: 10.1155/2014/470539.N. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.P. Bogusz, A. Popławski, M. Stankiewicz, and B. Kowalski, “Citation: materials Experimental Research of Selected Lattice Structures Developed with 3D Printing Technology,” 2022, doi: 10.3390/ma.B. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, Dec. 2021, doi: 10.1016/j.matdes.2021.110224.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1013601639.2024.pdf1013601639.2024.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf6967366https://repositorio.unal.edu.co/bitstream/unal/86869/4/1013601639.2024.pdfa901c4e4205d570eb3799ba09dd7b847MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86869/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55THUMBNAIL1013601639.2024.pdf.jpg1013601639.2024.pdf.jpgGenerated Thumbnailimage/jpeg4850https://repositorio.unal.edu.co/bitstream/unal/86869/6/1013601639.2024.pdf.jpgdeaed7101c139fcaf9bae6ad0574ee50MD56unal/86869oai:repositorio.unal.edu.co:unal/868692024-09-26 23:11:54.957Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=