Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia)
ilustraciones, diagramas, fotografías
- Autores:
-
Correa Lozano, Camilo Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84865
- Palabra clave:
- 540 - Química y ciencias afines::547 - Química orgánica
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
540 - Química y ciencias afines::543 - Química analítica
Uva
Grapes
Cytotoxins
Neoplasms
Neoplasias
Citotoxinas
Pourouma cecropiifolia
Análisis no direcionado
UPLC-ESI-TOF-MSE
Actividad antiproliferativa
caracterización química
Pourouma cecropiifolia
Untargeted analysis
UPLC-ESI-TOF-MSE
Antiproliferative activity
Chemical characterization
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_e654b2d032fea765a8f6ee6cc3d9e7b3 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84865 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
dc.title.translated.eng.fl_str_mv |
Chemical study of compounds with cytotoxic activity in uva caimarona (Pourouma cecropiifolia) |
title |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
spellingShingle |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) 540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales 540 - Química y ciencias afines::543 - Química analítica Uva Grapes Cytotoxins Neoplasms Neoplasias Citotoxinas Pourouma cecropiifolia Análisis no direcionado UPLC-ESI-TOF-MSE Actividad antiproliferativa caracterización química Pourouma cecropiifolia Untargeted analysis UPLC-ESI-TOF-MSE Antiproliferative activity Chemical characterization |
title_short |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
title_full |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
title_fullStr |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
title_full_unstemmed |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
title_sort |
Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia) |
dc.creator.fl_str_mv |
Correa Lozano, Camilo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Osorio Roa, Coralia Franco Ospina, Luis Alberto |
dc.contributor.author.none.fl_str_mv |
Correa Lozano, Camilo Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Especies Vegetales como Fuente de Aroma, Pigmentos y Compuestos Bioactivos |
dc.contributor.orcid.spa.fl_str_mv |
0009-0008-1226-4835 |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales 540 - Química y ciencias afines::543 - Química analítica |
topic |
540 - Química y ciencias afines::547 - Química orgánica 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales 540 - Química y ciencias afines::543 - Química analítica Uva Grapes Cytotoxins Neoplasms Neoplasias Citotoxinas Pourouma cecropiifolia Análisis no direcionado UPLC-ESI-TOF-MSE Actividad antiproliferativa caracterización química Pourouma cecropiifolia Untargeted analysis UPLC-ESI-TOF-MSE Antiproliferative activity Chemical characterization |
dc.subject.agrovoc.none.fl_str_mv |
Uva Grapes |
dc.subject.decs.eng.fl_str_mv |
Cytotoxins Neoplasms |
dc.subject.decs.spa.fl_str_mv |
Neoplasias |
dc.subject.lemb.spa.fl_str_mv |
Citotoxinas |
dc.subject.proposal.spa.fl_str_mv |
Pourouma cecropiifolia Análisis no direcionado UPLC-ESI-TOF-MSE Actividad antiproliferativa caracterización química |
dc.subject.proposal.eng.fl_str_mv |
Pourouma cecropiifolia Untargeted analysis UPLC-ESI-TOF-MSE Antiproliferative activity Chemical characterization |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-11-02T19:22:30Z |
dc.date.available.none.fl_str_mv |
2023-11-02T19:22:30Z |
dc.date.issued.none.fl_str_mv |
2023-11-01 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84865 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84865 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
MinCiencias, Propuestas de la Misión Internacional de Sabios, Vicepresidencia de la República de Colombia, Ministerio de Ciencia, Tecnología e Innovación, Bogotá D. C., 2019. Disponible: https://www.minciencias.gov.co/sala_de_prensa/libro-virtual-la-mision-internacional-sabios-disponible-para-todos. Consultado Julio 2023 Y. Beltrán Barreiro, Árboles alimentarios en la Amazonía colombiana, Ministerio de Medioambiente. 19 Mayo 2021. Disponible: https://visionamazonia.minambiente.gov.co/news/arboles-alimentarios-en-la-amazonia-colombiana/. Consultado Julio 2023 B. Giraldo Benavides, G. Vargas Avila, M. Zubieta Vega y M. W. Coy Torres, Construcción participatica de sistemas productivos sostenibles para la Amazonía norte colombiana, Revista Colombia Amazónica, vol. 1, nº 1, pp. 51-70. ISBN 978-958-8317-76-2, 2004 J. Barrios, C. P. Cordero, F. Aristizabal, F. J. Heredia, A. L. Morales y C. Osorio, Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from uva caimarona (Pourouma cecropiifolia Mart.) fruit, J. Agric. Food Chem., vol. 58, Nn° 4, pp. 2100-2110. DOI: 10.1021/jf9041497, 2010 Información de Cáncer en Colombia, 2021. Disponible: https://www.infocancer.co/portal/#!/filtro_mortalidad/. Consultado Julio 2023 L-Sh. Wang y G. D. Stoner, Anthocyanins and their role in cancer prevention, Cancer Lett., vol. 269, n° 2, pp. 281-290. DOI: 10.1016/j.canlet.2008.05.020, 2008 Cancillería de Colombia, Siete países suscriben el Pacto de Leticia por la Amazonía, Leticia, Amazonas, 2019. Disponible: https://www.cancilleria.gov.co/siete-paises-suscriben-pacto-leticia-amazonia. Consultado Julio 2023 C. Berg y M. Celis, Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015. Disponible: http://catalogoplantasdecolombia.unal.edu.co/en/resultados/especie/Pourouma%20cecropiifolia/. Consultado Julio 2023 C. Escobar, J. Zuluaga, D. Criollo y L. Montealegre, Uva Caimarona (Pourouma cecropiifolia) Fruta exótica de la Amazonía, de Árboles de Uso Múltiple, Caquetá, Gráficas Florencia, 2001, pp. 1-5 T. K. Lim, Pourouma cecropiifolia, Edible Medicinal and Non-Medicinal Plants, vol. 6, pp. 446-449. DOI: 10.1007/978-94-007-5628-1, 2013 D. Lopes-Lutz, J. Dettmann, C. Nimalaratne y A. Schieber, Characterization and quantification of polyphenols in Amazon grape (Pourouma cecropiifolia Martius), Molecules, vol. 15, no 12, pp. 8543-8552. DOI: 10.3390/molecules15128543, 2010 J. M. Velasco-España, Evaluación de algunos parámetros mitocondriales en astrocitos T-98G frente al estímulo con extractos ricos en antocianinas derivados de Pourouma cecropiifolia (uva caimarona) y Bactris guineensis (Corozo), Tesis de pregrado en Nutrición, Bogotá D. C.: Pontificia Universidad Javeriana, 2017 J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor y F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer., vol 149, no 4, pp 778-789. DOI: 10.1002/ijc.33588, 2021 WHO, Global Health Estimates: Life expectancy and leading causes of death and disability, Global Health Observatory, 2020. Disponible: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates. Consultado Julio 2023 Z. Bakouny, J. E. Hawley, T. K. Choueiri, S. Peters, B. I. Rini, J. L. Warner y C. A. Painter, COVID-19 and Cancer: Current Challenges and Perspectives, Cancer Cell., vol. 38, nº 5, pp. 629-646. DOI: 10.1016/j.ccell.2020.09.018, 2020 L. Allahqoli, A. Mazidimoradi, H. Salehiniya y I. Alkatout, Impact of COVID-19 on cancer screening: a global perspective, Curr. Opin. Support Palliat. Care, vol. 16, nº 3, p. 102–109. DOI: 10.1097/SPC.0000000000000602, 2022 T. Malagón, J. H. E. Yong, P. Tope, W. H. Miller-Jr y E. L. Franco, Predicted long-term impact of COVID-19 pandemic-related care delays on cancer mortality in Canada, Int. J. Cancer, vol. 150, nº 8, pp. 1244-1254. DOI: 10.1002/ijc.33884, 2020 T. P. Hanna, W. D. King, S. Thibodeau, M. Jalink, G. A. Paulin, E. Harvey-Jones, D. E. O'Sullivan, C. M. Booth, R. Sullivan y A. Aggarwal, Mortality due to cancer treatment delay: systematic review and meta-analysis, BMJ, vol. 371, pp m4087. DOI: 10.1136/bmj.m4087, 2020 MinSalud, Incidencia del cáncer se redujo en los últimos 3 años, 4 Febrero 2021. Disponible en: https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx. Consultado Julio 2023 World Health Organization, Estimated number of new cases in 2021, Colombia, both sexes, all ages, International Agency for Research on Cancer. Disponible en: https:// gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets. Consultado Julio 2023 World Health Organization, GLOBOCAN 2020, Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Disponible en: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10& Consultado Julio 2023 PanAmerican Health Organization y Institutional Repository fro Information Sharing. Américas, Informe de la evaluación rápida de la prestación de servicios para enfermedades no transmisibles durante la pandemia de COVID-19 en las Américas, 2020. Disponible en: https://iris.paho.org/handle/10665.2/52283. Consultado Julio 2023 F. Naja y R. Hamadeh, Nutrition amid the COVID-19 pandemic: a multi-level framework for action, Eur. J. Clin. Nutr., Vol. 74, pp 1117-1121. DOI: 10.1038/s41430-020-0634-3, 2020 M. Narici, G. De Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, B. Grassi, G. Baldassarre, L. Zuccarelli, G. Biolo, F. G. Di Girolamo, N. Fiotti, F. Dela, P. Greenhaff y C. Maganaris, Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, Eur. J. Sport Sci., vol. 21, n. 4, pp 614-635. DOI: 10.1080/17461391.2020.1761076, pp. 1-22, 2020 M. Demasi, COVID-19 and metabolic syndrome: could diet be the key?, BMJ Evid. Based Med., Vol. 26, n 1, pp 1-2. DOI: 10.1136/bmjebm-2020-111451, 2020. http://dx.doi.org/10.1136/bmjebm-2020-111451 Ch. Sforza, COVID-19 Lockdown, sedentarism, metabolic alterations, obesity: Can we reverse the domino effect in children? Children, vol. 9, nº 6, p. 851. DOI: 10.3390/children9060851, 2022 T. Stocks, M. Van Hemelrijck, J. Manjer, T. Bjorge, H. Ulmer, G. Hallmans, B. Lindkvist, R. Selmer, G. Nagel, S. Tretli, H. Concin, A. Engeland, H. Jonsson y P. Stattin, Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project, Hypertension, vol. 59, nº 4, pp. 802-810. DOI: 10.1161/HYPERTENSIONAHA.111.189258, 2012 A. Russo, M. Autelitano y L. Bisanti, Metabolic syndrome and cancer risk, Eur. J. Cancer, vol. 44, nº 2, pp. 293-297. DOI: 10.1016/j.ejca.2007.11.005, 2008 S. Braun, K. Bitton-Worms y D. LeRoith, The link between the metabolic syndrome and cancer, Int. J. Biol. Sci., vol. 7, nº 7, pp. 1003–1015. DOI: 10.7150/ijbs.7.1003, 2011 M. F. Gregor y G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol., Vol. 29, pp. 415-445. DOI: 10.1146/annurev-immunol-031210-101322, 2011 Z. M. Diaconeasa, A. D. Frond, I. Stirbu, D. Ruginda y C. Socaciu, Anthocyanins-smart molecules for cancer prevention, Br. J. Pharmacol., vol. 174, n° 11, pp. 75-94. DOI: 10.1111/bph.13627, 2017 J. N. Lu, R. Panchanathan, W. S. Lee, H. J. Kim, D. H. Kim, Y. H. Choi, G. S. Kim, S. C. Shin y S. C. Hong, Anthocyanins from the fruit of Vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in A549 cells, Asian Pac. J. Cancer Prev., Vol. 18, n° 11, pp. 2919-2923. DOI: 10.22034/APJCP.2017.18.11.2919, 2017 A. Farrukh, J. Jeyaprakash, K. Hina, M. Radha, S. Inderpal, y G. Ramesh. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res., vol. 6, n° 2, pp.105–114. DOI: 10.3233/JBR-160120, 2016 P-N. Chen, S-Ch. Chu, H-L. Chiou, W-H. Kuo, Ch-L. Chiang, y Y-Sh. Hsieh. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett., vol. 235, n° 2, pp. 248–259. DOI: 10.1016/j.canlet.2005.04.033, 2006 H. Kausar, J. Jeyabalan, F. Aqil, D. Chabba, J. Sidana, I. P. Singh, y R. C. Gupta. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., vol. 325, n° 1, pp. 54–62. DOI:10.1016/j.canlet.2012.05.029, 2012 L. G. Maciel, M. A. V. do Carmo, L. Azevedo, H. Daguer, L. Molognoni, M. M. de Almeida, D. Granato y N. D. Rosso. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., vol. 113, n° 113, pp. 187–197. DOI: 10.1016/j.fct.2018.01.053, 2018 B. Gauliard, D. Grieve, R. Wilson, A. Crozier, C. Jenkins, W. D. Mullen, y M. Lean. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J. Med. Food, vol. 11, n° 2, pp. 382–384. DOI:10.1089/jmf.2007.593, 2008 H. Eguchi, H. Matsunaga, S. Onuma, Y. Yoshino, T. Matsunaga, y A. Ikari. Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma A549 cells. Int. J. Mol. Sci., vol. 22, n° 2, pp. 499-514. DOI:10.3390/ijms22020499, 2021 D. K. Sun, L. Wang, y P. Zhang. Antitumor effects of chrysanthemin in pc-3 human prostate cancer cells are mediated via apoptosis induction, caspase signalling pathway and loss of mitochondrial membrane potential. Afr. J. Tradit. Complement. Altern. Med., vol. 14, n° 4, pp. 54–61. DOI: 10.21010/ajtcam.v14i4.7, 2017 K. Jongsomchai, V. Leardkamolkarn, y S. Mahatheeranont. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol., vol. 53, n° 4, pp. 481-492. DOI: 10.5115/acb.20.085, 2020 W. Yi, J. Fischer, y C. C. Akoh. Study of anticancer activities of Muscadine grape phenolics in vitro. J. Agric. Food Chem., vol. 53, n° 22, pp. 8804–8812. DOI: 10.1021/jf0515328, 2005 J. W. Yun, W. S. Lee, M. J. Kim, J. N. Lu, M. H. Kang, H. G. Kim, D. C. Kim, E. J. Choi, J. Y. Choi, H. G. Kim, Y. K. Lee, C. H. Ryu, G. S. Kim, Y. H. Choi, O. J. Park, y S. C. Shin. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., vol. 48, n° 3, pp. 903–909. DOI:10.1016/j.fct.2009.12.031, 2010 A. Akim, L. C. Ling, A. Rahmat, y Z. A. Zakaria. Antioxidant and anti-proliferative activities of Roselle juice on Caov-3, MCF-7, MDA-MB-231 and HeLa cancer cell lines. Afr. J. Pharm. Pharmacol., vol. 5, n° 7, pp. 957-965. DOI: 10.5897/AJPP11.207, 2011 L. Li, L. S. Adams, S. Chen, C. Killian, A. Ahmed, y N. P. Seeram. Eugenia jambolana Lam. Berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., vol. 57, n° 3, pp. 826–831. DOI:10.1021/jf803407q, 2009 J. M. Aswathy, L. Bosco, G. S. Manoj, y K. Murugan. Anti-proliferative potentiality of purified anthocyanin from in vitro culture of Clerodendron infortunatum L. against human cervical cancer cells (HeLa). Asian J. Pharm. Health Sci., vol. 8, n°1, pp. 1812-1819. 2018 Ch-P. Hsu, Y-H. Lin, Sh-P. Zhou, Y-Ch. Chung, C. C. Lin, y S. C. Wang. Longan flower extract inhibits the growth of colorectal carcinoma. Nutr. Cancer, vol. 62, n° 2, pp. 229–236. DOI: 10.1080/01635580903305367, 2010 C. Neto, C. G. Krueger, T. L. Lamoureaux, M. Kondo, A. J. Vaisberg, R. A. R. Hurta, S. Curtis, M. D. Matchett, H. Yeung, M. Sweeney y J. D. Reed. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro. J. Sci. Food Agric., vol. 86, n° 1, pp. 18–25. DOI: 10.1002/jsfa.2347, 2005 S. F. Huang, Ch-T. Horng, Y-S. Hsieh, Y-H. Hsieh, S-C. Chu, P-N. Chen. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem. Toxicol., vol. 94, pp. 1–10. DOI: 10.1016/j.fct.2016.05.009, 2016 S. Akhtar, S. M. Meeran, N. Katiyar, y S. K. Katiyar. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin. Cancer Res., vol. 15, n° 3, pp. 821–831. DOI: 10.1158/1078-0432.ccr-08-1901, 2009 V. Kaplum, A. C. Ramos, M. E. L. Consolaro, M. A. Fernández, T. Ueda-Nakamura, B. P. Dias-Filho, S. de Oliveira Silva, J. C. P. De Mello y C. V. Nakamura. Proanthocyanidin polymer-rich fraction of Stryphnodendron adstringens promotes in vitro and in vivo cancer cell death via oxidative stress. Front. Pharmacol, vol. 9, pp. 694-712. DOI: 10.3389/fphar.2018.00694, 2018 X. X. Chen, G. P-H. Leung, Z-J. Zhang, J-B. Xiao, L-X. Lao, F. Feng, J. Ch-W. Mak, Y. Wang, S. Cho-W. Sze y K. Y. B. Zhang. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol., vol. 107, Pt. A., pp. 248–260. DOI: 10.1016/j.fct.2017.07.012, 2017 X. Shen, Y. Wang, y F. Wang. Characterisation and biological activities of proanthocyanidins from the barks of Pinus massonian and Acacia mearnsii. Nat. Prod. Res., vol. 24, n° 6, pp. 590–598. DOI:10.1080/14786410903194472, 2010 Y. Q. Tang, I. B. Jaganath, y S. D. Sekaran. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS ONE, vol. 5, n° 9, pp. e12644. DOI: 10.1371/journal.pone.0012644, 2010 S-I. Kawahara, C. Ishihara, K. Matsumoto, S. Senga, K. Kawaguchi, A. Yamamoto, J. Suwannachot, Y. Hamauzu, H. Makabe, y H. Fujii. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, vol. 5, n° 10, pp. e02610. DOI: 10.1016/j.heliyon.2019.e02610, 2019 D. Marko, N. Puppel, Z. Tjaden, S. Jakobs y G. Pahlke, The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation, Mol. Nutr. Food Res., vol. 48, n° 4, pp. 318-325. DOI: 10.1002/mnfr.200400034, 2004 P. Jing, J. A. Bomser, S. J. Schwartz, J. He, B. A. Magnunson y M. M. Giusti, Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth, J. Agric. Food Chem., vol. 56, n° 20, pp. 9391-9398. DOI: 10.1021/jf8005917, 2008 G. D. Stoner, L-S. Wang y T. Chen, Chemoprevention of esophageal squamous cell carcinoma, Toxicol. Appl. Pharmacol., vol. 224, n° 3, pp. 337-349. DOI: 10.1016/j.taap.2007.01.030, 2007 S. Rajendran, S. Marappan, P. Suganyadevi, M. Rajalakshmi y M. F. Poffe, Antiproliferative properties of anthocyanin from Indian cassava (Manihot Esculenta, Crantz) on Hep-2 And Mcf-7 cell lines, Am. J. Pharm. Tech. Res., vol. 5, n° 3, pp. 467-479, 2015 W. Liu, J. Xu, Y. Liu, X. Yu, X. Tang, Z. Wang y X. Li, Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo, Mol. Med. Rep., vol. 10, n° 4, pp. 1921-1926. DOI: 10.3892/mmr.2014.2414, 2014 A. Bunea, D. Rugina, Z. Sconta, R. M. Pop, A. Pintea, C. Socaciu, F. Tabaran, Ch. Grootaert, K. Struijs, y J. VanCamp, Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells, Phytochemistry, vol. 95, pp. 436-444. DOI: 10.1016/j.phytochem.2013.06.018, 2013 P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon y D. Vistica, New colorimetric cytotoxicity assay for anticancer-drug screening, J Natl Cancer Inst, vol. 82, nº 13, pp. 1107-1112. DOI: 10.1093/jnci/82.13.1107, 1990 Instituto Colombiano de Normas Técnicas, NTC 440:2015. Productos alimenticios. Métodos de ensayo,» 19 Octubre 2022. Disponible en: https://tienda.icontec.org/gp-productos-alimenticios-metodos-de-ensayo-ntc440-2015.html. Consultada Julio 2023 J. H. Isaza, H. Ito y T. Yoshida, Oligomeric hidrolizable tannins from Monochaetum multiflorum, Phytochemistry, vol. 65, nº 3, pp.359-367. DOI: 10.1016/j.phytochem.2003.11.017, 2004 T. Mosmann, Rapid colorimetric assay for cellular growth and survival - Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol 65, nº 1-2, pp. 55-63. DOI: 10.1016/0022-1759(83)90303-4, 1983 D. Caro, D. Rivera, Y. Ocampo, K. Müller y F. L. A., A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing, Open Chem., vol. 18, nº 1, pp. 1242–1255. DOI: 10.1515/chem-2020-0170, 2020 J. Manosroi, M. Sainakham, W. Manosroi y A. Manosroi, Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database, J. Ethnopharmacol., vol. 141, nº 1, pp. 451-459. DOI: 10.1016/j.jep.2012.03.010, 2012 J. López Montoya, Determinación de los requerimientos nutricionales de la Piña variedad MD-2 en suelos ácidos del municipio de Santander de Quilichao, Tesis Magister en Ciencias Agrarias, Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Sede Palmira, 2016 E. L. Acero Duarte, Principales plantas útiles de la Amazonía Colombiana. Unidad Forestal del Proyecto Radargravimétrico del Amazonas, 1979. IDEAM. Disponible: http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4653476&shelfbrowse_itemnumber=6058961#shelfbrowse. Consultado Julio 2023 ISO. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Ed. 3, 2009, pp. 1-34. Disponible: https://www.iso.org/standard/36406.html. Consultado Julio 2022 A. Martínez M., Metabolitos Scundarios Aromáticos. Flavonoides, en: Química de Productos Naturales, Medellín, Universidad de Antioquia, pp. 116-118, 2020 J. James y I. Dubery, Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) urban by densitometric TLC, JPC-J. Planar Chromat., vol. 24, nº 1, pp. 82-87, 2011 J.-R. Du, F.-Y. Long y C. Chen, Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer, Enzymes, vol. 36, pp. 95-30. Doi: 10.1016/B978-0-12-802215-3.00006-9, 2014 J. A. Gomes de Brito, L. da Silva Pinto, C. F. Chaves, A. J. R. da Silva, M. F. das Gracas Fernandes da Silva y F. Cotinguiba, Chemophenetic ssignificance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools, Molecules, vol. 26, nº 4, pp. 925-947. https://doi.org/10.3390/molecules26040925, 2021 K. F. Amaral, M. M. Rogero, R. A. Fock, P. Borelli y G. Gavini, Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture, Int. Endod. J., vol. 40, nº 5, pp. 338-343. DOI: 10.1111/j.1365-2591.2007.01220.x, 2007 J. Soares-Roter, L. Moura-Sassone, S. Rivera-Fidel y D. Araki-Ribeiro, In vitro genotoxicity and cytotoxicity in murine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid, Braz. Dent. J, vol. 23, nº 5, pp. 527-533. DOI: 10.1590/s0103-64402012000500010, 2012 L. Luciano Giardino, L. Generali, P. Savadori, M. Cesar Barros, L. Lobo de Melo Sima, J. Pytko-Polonczyk, W. Wilkonsk, V. Ballal y F. Bombarda de Andrade, Can the concentration of citric acid affect its cytotoxicity and antimicrobial activity?, Dent. J. (Basel), vol. 10, nº 148, pp. 1-13. DOI: 10.3390/dj10080148, 2022. S. C. Forester y A. L. Waterhouse, Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells, J. Agric. Food Chem., vol. 58, nº 9, pp. 5320-5327. DOI: 10.1021/jf9040172, 2010 K. W. Lee, H. J. Hur, H. J. Lee y C. Y. Lee, Antiproliferative effects of dietary phenolic substances and hydrogen peroxide,» J. Agric. Food Chem., vol. 53, p. 1990−1995. DOI: 10.1021/jf0486040, 2005 C. L. Hsu, S. L. Huang y G. C. Yen, Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity, J. Agric. Food Chem., vol. 54, p. 4191−4197. DOI: 10.1021/jf0609882, 2006 S. Klenow y M. Glei, New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters, Toxicol. In Vitro, vol. 23, nº 6 p. 1055–1061. DOI: 10.1016/j.tiv.2009.06.006, 2009 Fadilah, A. Yanuar, A. Arsianti, R. Andrajati y R. I. Paramita, In silico study, synthesis, and cytotoxic activity of esterification of eugenol and gallic acidagainst HT-29 cell line, Orient. J. Chem., vol. 33, nº 6, pp. 3009-3014. DOI: http://dx.doi.org/10.13005/ojc/330638, 2017 Z. H. Liu, S. Y. Zhang, Y. Y. Yu y G. Q. Su, (-)-4-O-(4-O-b-D-Glucopyranosylcaffeoyl)quinic acid presents antitumor activity in HT-29 human colon cancer in vitro and in vivo, Mol. Cell Toxicol., vol. 11, pp. 457-463. DOI: 10.1007/s11095-018-2459-5, 2015 M. D. Rush, E. A. Rue, A. Wong, P. Kowalski, J. A. Glinski y R. B. van Breemen, Rapid determination of procyanidins using MALDI-ToF/ToF mass spectrometry, J. Agric. Food Chem., vol. 66, nº 43, pp. 11355-11361. DOI: 10.1021/acs.jafc.8b04258, 2018 D. Desdiani, I. Rengganis, S. Djauzi, A. Setiyono, M. Sadikin, S.-W. A. Jusman, N. C. Siregar, Suradi, P. C. Eyanoer y F. Fadilah, In Vitro assay and study interaction of Uncaria gambir (Hunter) Roxb. as anti-fibrotic activity against A549 cell line, Pharmacogn J., vol. 12, nº 6, pp. 1232-1240. DOI: 10.5530/PJ.2020.12.172, 2020 J. T. Mao, B. Xue, J. Smoake, Q.-Y. Lu, H. Park, S. M. Henning, W. Burns, A. Bernabei, D. Elashoff, K. J. Serio y L. Massie. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J. Nutr. Biochem., vol. 34, p. 118–125. DOI: 10.1016/j.jnutbio.2016.05.003, 2016 M. Orabi, O. Alqahtani, B. Alyami, A. Al Awadh, E.-S. Abdel-Sattar, K. Matsunami, D. Hamdan y M. Abouelela. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti-Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals, vol. 15, pp. 1561-1576. DOI: 10.3390/ph15121561, 2022 I. Hernández-Balmaseda, I. R. Guerra, K. Declerck, J. A. Herrera Isidrón, C. Pérez-Novo, G. Van Camp, O. De Wever, K. González, M. Labrada, A. Carr, G. Dantas-Cassali, D. C. dos Reis, L. Delgado-Roche, R. R. Núñez, Delgado y W. Vanden Berghe. Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar. Drugs, vol. 19, nº 2, p. 52. DOI: 10.3390/md19020052, 2021 A. Faria, C. Calhau, V. de Freitas y N. Mateus. Procyanidins as Antioxidants and Tumor Cell Growth Modulators. J. Agric. Food Chem., vol. 54, nº 6, p. 2392–2397. DOI: 10.1021/jf0526487, 2006 D. Esposito, A. Chen, M. H. Grace, S. Komarnytsky y M. A. Lila. Inhibitory Effects of Wild Blueberry Anthocyanins and Other Flavonoids on Biomarkers of Acute and Chronic Inflammation in Vitro. J. Agric. Food Chem., vol. 62, nº 29, pp. 7022-7028. DOI: 10.1021/jf4051599, 2014 S. Wei, Y. Sun, L. Wang, ZhangT., W. Hu, W. Bao, L. Mao, J. Chen, H. Li, Y. Wen y Z. Chen. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann. Transl. Med., vol. 9, nº 15, p. 1233. DOI: 10.21037/atm-21-2980, 2021 T. Fu, L. Wang, X. Jin, H. Sui, Z. Liu y Y. Jin. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin., vol. 37, p. 505–518. DOI: 10.1038/aps.2015.148, 2016 Y. Yang, J. Tantai, Y. Sun, C. Zhong y Z. Li. Effect of hyperoside on the apoptosis of A549 human non small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep., vol. 16, nº 5, pp. 6483-6488. DOI: 10.3892/mmr.2017.7453, 2017 S. Puangpraphant, M. A. Berhow y E. de Mejía. Yerba Mate (Ilex Paraguariensis St. Hilaire) Saponins Inhibit Human Colon Cancer Cell Proliferation. de Hispanic Foods: Chemistry and Bioactive Compounds, Washington, American Chemical Society, pp. 307-321. DOI:10.1021/bk-2012-1109.ch018, 2012 P. Ferreira-Santos, H. Badim, Â. Salvador, A. Silvestre, S. Santos, S. Rocha, A. Sousa, M. Pereira, C. Wilson, C. Rocha, J. A. Teixeira y C. M. Botelho. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules, vol. 11, n°8, pp. 1222-1244. DOI: 10.3390/biom1108122, 2021 H.-J. Kim, S.-K. Kim, B.-S. Kim, S.-H. Lee, Y.-S. Park, B.-K. Park, S.-J. Kim, J. Kim, C. Choi, J.-S. Kim, S.-D. Cho, J.-W. Jung, K.-H. Roh, K.-S. Kang y J.-Y. Jung. Apoptotic Effect of Quercetin on HT-29 Colon Cancer Cells via the AMPK Signaling Pathway. J. Agric. Food Chem., vol. 58, nº 15, p. 8643–8650. DOI: 10.1021/jf101510z, 2010 S. Lin, J. Heb, F. Wu, H. Wang, D. Wu, J. Sun, D. Zhang, H. Qu y B. Yang.Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with Aspergillus awamori and their antioxidant activities. J. Funct. Foods, vol. 7, pp. 278-286. DOI:10.1016/j.jff.2014.02.001, 2014 Y. Zhou, H. Chen, B. Wang, H. Liang, Y. Zhao y Q. Zhang, Sesquiterpenoid and phenolic glucoside gallates from Lagerstroemia balansae. Planta Med., vol. 77, nº 17, pp. 1944-1946. DOI: 10.1055/s-0031-1280093, 2017 H. J. Kim, C. B. Jin, M. J. Son, Y. S. Lee, C. S. Yook y J. Y. Lee. Aster Glehni extracts, fractions or compounds isolated therefrom for the treatment or prevention of hyperuricemia or gout. United States Patente US 2015/0337001 A1, 20 Mayo 2015 I. Jae-Kyung, K. Jin-Kyu, O. Joa-Sub y S. Dong-Wan. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int. J. Oncol., vol. 48, pp. 1907-1912. DOI: 10.3892/ijo.2016.3436¸ 2016 K. L. Ooi, T. S. T. Muhammad, M. L. Tan y S. F. Sulaiman.Cytotoxic, apoptotic and anti--glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol., vol. 135, nº 3, p. 685–695. DOI: 10.1016/j.jep.2011.04.001, 2011 A. Trendafilova, V. Ivanova, M. Rangelov, M. Todorova, O. G. S. Yur, T. Ozek, Aneva¸I., R. Veleva, V. Moskova-Doumanova, J. Doumanov y T. Topouzova-Hristova. Caffeoylquinic Acids, Cytotoxic, Antioxidant, Acetylcholinesterase and Tyrosinase Enzyme Inhibitory Activities of Six Inula Species from Bulgaria. Chem. Biodiversity, vol. 17, 1-12, e200051. DOI: 10.1002/cbdv.202000051, 2020 Y. J. Yang, X. Liu, H. R. Wu, X. F. He, Y. R. Bi, Y. Zhu y Z. L. Liu. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem., vol. 138, nº 2, pp. 2057-2063. DOI: 10.1016/j.foodchem.2012.10.122, 2013 H. Villota, M. Moreno-Ceballos, G. A. Santa-González, D. Uribe, I. C. Henao Castañeda, L. M. Preciado y J. Pedroza-Díaz. Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals, vol. 14, nº 8, p. 761. DOI: 10.3390/ph14080761, 2021 M. Bunse, P. Lorenz, F. C. Stintzing y D. R. Kammerer. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants, vol. 10, pp. 1219-1236. DOI: 10.3390/plants10061219, 2021 T. Akiyama, O. Takana y S. Shibata. Chemical Studies on the Oriental Plant Drugs. Sapogenins of the Roots of Platycodon grandiflorum A. de Candolle. Structure of Platycodigenin. Chem. Pharm. Bull., vol. 20, nº 9, pp. 1952-1956. DOI: 10.1248/cpb.14.1150, 1972 Q. Wei, B. Zhang, P. Li, X. Wen y J. Yang. Maslinic acid inhibits colon tumorigenesis by AMPK-mTOR signaling pathway. J. Agric. Food Chem., vol. 67, pp. 4259-4272. DOI: 10.1021/acs.jafc.9b00170, 2019 A. Parra, S. Martin-Fonseca, F. Rivas, F. J. Reyes-Zurita, M. Medina-O’Donnell, E. E. Rufino-Palomares, A. Martínez, A. García-Granados, J. A. Lupiañez y F. Albericio. Solid-Phase Library Synthesis of Bi-Functional Derivatives of Oleanolic and Maslinic Acids and Their Cytotoxicity on Three Cancer Cell Lines. ACS Comb. Sci., vol. 16, nº 8, pp. 428-447. DOI: 10.1021/co500051z, 2014 S. Zhang, D. Ding, X. Zhang, L. Shan y Z. Liu, Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell. Biochem., vol. 392, nº 1, p. 281–287. DOI: 10.1007/s11010-014-2038-y, 2014 X. Bai, Y. Zhang, H. Jiang, P. Yang, H. Li, Y. Zhang y P. He. Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol. Med. Rep., vol. 13, nº 1, pp. 117-122. DOI: 10.3892/mmr.2015.4552, 2016 P. K. K. A. H. Bunpo, H. Nakayama, T. Kuwahara, U. Vinitketkumnuen y Y. Ohnishi. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Invest., vol. 52, nº 1, pp. 65-73. DOI: 10.2152/jmi.52.65, 2005 T. Wua, J. Geng, W. Guo y J. Z. Z. Gao. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B., vol. 7, nº 1, pp. 65-72. DOI: 10.1016/j.apsb.2016.04.003, 2017 C. W. Cho, D. S. Choi, M. H. Cardone, C. W. Kim, A. J. Sinskey y C. Rha, Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., vol. 22, pp. 393-408. DOI: 10.1007/s10565-006-0104-2, 2006 X. Tian, S. Guo, S. Zhang, P. Li, T. Wang, C. Ho, M. H. Pna y N. Bai. Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC‐MS analysis of seed oil. J. Food Biochem., vol. 44, n°1, e13088. DOI: 10.1111/jfbc.13088, 2019 Z. Chen, K.-Y. Huang, Y. Ling, M. Goto, H.-Q. Duan, X.-H. Tong, Y.-L. Liu, Y.-Y. Cheng, S. Morris-Natschke, P.-C. Yang, S.-L. Yang y K.-H. Lee. Discovery of an Oleanolic Acid/Hederagenin–Nitric Oxide Donor Hybrid as an EGFR Tyrosine Kinase Inhibitor for Non-Small-Cell Lung Cancer. J. Nat. Prod., vol. 82, nº 11, p. 3065–3073. DOI: 10.1021/acs.jnatprod.9b00659, 2019 C. Gauthier, J. Legault, K. Girard-Lalancette, V. Mshvildadze y A. Pichette. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg. Med. Chem., vol. 17, nº 5, p. 2002–2008. DOI: 10.1016/j.bmc.2009.01.022, 2009 W. Cong, E. Tello, C. T. Simons y D. G. Peterson. Identification of Non-Volatile Compounds That Impact Flavor Disliking of Whole Wheat Bread Made with Aged Flours. Molecules, vol. 27, pp. 1331-1346. DOI: 10.3390/molecules27041331, 2022 M. Yuce, C. Gumuskaptan, A. H. Con y F. Yazici. Conjugated linoleic acid strengthens the apoptotic effect of cisplatin in A549 cells. Prostaglandins Other Lipid Mediat., vol. 166, p. 106731. DOI: 10.1016/j.prostaglandins.2023.106731, 2023 H. Li, Q. Yao, L. Min, S. Huang, H. Wu, H. Yang, L. Fan, J. Wang y N. Zheng. The combination of two bioactive constituents, lactoferrin and linolenic acid, inhibits mouse xenograft esophageal tumor growth by downregulating lithocholyltaurine and inhibiting the JAK2/STAT3-related pathway. ACS Omega, vol. 5, nº 33, pp. 20755-20764. DOI: 10.1021/acsomega.0c01132, 2020 M. B. Bahadori, S. Vandghanooni, L. Dinparast, M. Eskandani, S. A. Ayatollahi, A. Ata y H. Nazemiyeh. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoter., vol. 134, pp. 493-500. DOI: 10.1016/j.fitote.2019.03.013, 2019 K. H. Yoo, J.-H. Park, D. Y. Lee, J. Hwang-Bo, N. I. Baek y I. S. Chung. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects onIn Vitro Endothelial Cells and on anIn Vivo CT-26 Colon Carcinoma Animal Model. Phytother. Res., vol. 29, nº 5, pp. 714-723. DOI: 10.1002/ptr.5306, 2015 K. Okuno, R. Garg, Y.-C. Yuan, M. Tokunaga, Y. Kinugasa y A. Goel. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front. Oncol., vol. 12, nº DOI: 10.3389/fonc.2022.952180, p. PMC9278059. DOI: 10.3389/fonc.2022.952180, 2022 Z.-H. Shao, T.-L. Vanden Hoek, C. Q. Li, P. T. Schumacker, L. B. Becker, K. C. Chan, Y. Qin, J. J. Yin y C. S. Yuan. Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. Am. J. Chinese Med., vol. 32, nº 1, pp. 89-95. DOI: 10.3389/fonc.2022.952180, 2004 J. Wang, W. Zhang, C. Tang, J. Xiao, B. Xie y Z. Sun. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods, vol. 48, pp. 134-143. DOI: 10.1016/j.jff.2018.07.015, 2018 A. T. C. C. ATCC,. HTB-38. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/htb-38#detailed-product-information. Consultado Junio 2023 A. T. C. C. ATCC, CRL-2577. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/crl-2577#detailed-product-information. Consultado Junio 2023 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
126 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84865/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84865/2/Tesis%20Maestri%cc%81a%20en%20Qui%cc%81mica%20Camilo%20Andr%c3%a9s%20Correa%20Lozano.pdf https://repositorio.unal.edu.co/bitstream/unal/84865/3/Tesis%20Maestri%cc%81a%20en%20Qui%cc%81mica%20Camilo%20Andr%c3%a9s%20Correa%20Lozano.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 4a418ab9fff97279277c700a0f7710aa da7cb1c2cd830b99e197a0554c76b3df |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090202247856128 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Roa, Coralia502cafdbd9cf75b1d51ce5b7133722a1Franco Ospina, Luis Albertoea9dbc0b738c09ff499967efdf3205aaCorrea Lozano, Camilo Andrésc0fb1915875c9c99f785af9093122f05Especies Vegetales como Fuente de Aroma, Pigmentos y Compuestos Bioactivos0009-0008-1226-48352023-11-02T19:22:30Z2023-11-02T19:22:30Z2023-11-01https://repositorio.unal.edu.co/handle/unal/84865Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasSe analizó el fruto de uva caimarona (Pourouma cecropiifolia) con miras a identificar los compuestos con actividad citotóxica frente a diferentes líneas células tumorales humanas. Para tal fin, se analizaron por separado el epicarpio, mesocarpio y semillas de la fruta, las cuales se liofilizaron y los residuos correspondientes se extrajeron con una mezcla de acetona-agua (7:3, v/v). Los extractos de cada parte de la fruta se sometieron partición con solventes de polaridad creciente: pentano, diclorometano, acetato de etilo, butanol y agua, para obtener cinco subfracciones en cada caso. En un ensayo preliminar empleado el método MTT (modificado) sobre la línea A549, se identificó que las fracciones de acetato de etilo del epicarpio (AcOEtEpi), acetato de etilo del mesocarpio (AcOEtPulp), aceto de etilo de la semilla (AcOEtCot) y butanol de la pulpa (ButPulp), como las fracciones con mayor reducción de la población celular. Por lo que, se decidió caracterizar la composición química de estas fracciones mediante análisis no direccionado utilizando la técnica UPLC-ESI/MS, identificando los compuestos principales en base a sus principales fragmentos y comparación con estándares. De esta manera, se identificaron varios flavonoides, proantocianidinas y triterpenos pentacíclicos, entre otros compuestos. A partir de dicha caracterización, se evaluó la actividad citotóxica de estas fracciones y ocho compuestos puros frente a las líneas de carcinomas colorrectales, HT-29 y RKO y carcinoma de pulmón A549, obteniendo una leve actividad de AcOEtEpi sobre HT-29 (IC50: 96.43±4.18 µg/ml) y una moderada de AcOEtCot frente a RKO (IC50: 43,10±2,79 µg/ml). Por otra parte, se identificó citotoxicidad moderada (IC50: 155-50 µM) de tres triterpenoides identificados en AcOEtEpi contra en HT-29, RKO y A549. Se destaca que las dos fracciones activas, expusieron selectividad sistémica contra fibroblastos de pulmón humano (MRC-5) y riñón de hámster (BHK-21), mientras que los triterpenoides mostraron baja selectividad (o negativa) sistémica al reducir en mayor proporción la viabilidad celular de dichos fibroblastos que la de las células cancerosas probadas. Los resultados acá presentados, muestran que la semilla del fruto de uva caimarona (Pourouma cecropiifolia Mart), subproducto de la comercialización de esta fruta, es una fuente promisoria de compuestos con actividad citotóxica frente a líneas celulares de tumores humanos. (Texto tomado de la fuente)Polar extracts of epicarp, mesocarp and cotyledon of Pourouma cecropiifolia fruit were obtained in an acetone:water (7:3, v/v) and fractionated with solvents of increasing polarity (pentane, dichloromethane, ethyl acetate and butanol), in order to identify compounds with cytotoxic activity against carcinoma cells. Extracts from each part of the fruit were partitioned with solvents of increasing polarity: pentane, dichloromethane, ethyl acetate, butanol and water; to obtain five different fractions. In a preliminary test using the MTT method (modified) on line A549, the fractions of ethyl acetate from the epicarp (EtOACEpi), ethyl acetate from the mesocarp (EtOAcPulp), ethyl acetate from the seed (EtOAcCot) and butanol from the pulp (ButPulp) were identified as the fractions with the greatest reduction in cell population. Therefore, the chemical composition of these fractions was characterized by untargeted analysis using the UPLC ESI/MS technique, identifying the present compounds based on their main fragments and by comparison with standards. Pointing out that these fractions are mainly composed of several flavonoids, proanthocyanidins and pentacyclic triterpenes, among other compounds. Based on the previous, the cytotoxic activity of these compounds, and some pure compounds present on them, was evaluated on colorectal carcinoma lines, HT-29 and RKO and lung carcinoma A549, obtaining a slight activity of EtOAcEpi on HT-29 (IC50: 96.43±4.18 µg/ml) and a moderate activity of EtOAcCot against RKO (IC50: 43.10±2.79 µg/ml). On the other hand, moderate cytotoxicity (IC50: 155-50 µM) of three triterpenoids present in EtOAcEpi against HT-29, RKO and A549 was identified. The two active fractions exhibited systemic selectivity over human lung (MRC-5) and hamster kidney (BHK-21) fibroblasts, while the triterpenoids showed low systemic (or negative) selectivity by reducing the cell viability of these fibroblasts to a greater extent than that of the cancer cells tested. The results reported show that the seed of uva caimarona (Pourouma cecropiifolia Mart), as a subproduct of the commercialization of this fruit, is a promising source of compounds with cytotoxic activity against human tumor cell lines.El Centro Universitario de Baviera para América Latina (BAYLAT) es una organización del Ministerio de Ciencias y Artes del Estado Libre de Baviera (StMWK), que fomenta la relación entre Instituciones de Enseñanza Superior de Baviera y América Latina, promociona a Baviera como centro de tecnología e innovación productiva en los países latinoamericanos y promueve la cooperación científica con América Latina. BAYLAT tiene su sede en la Universidad Friedrich-Alexander de Erlangen-Nürnberg (FAU). BAYLAT es responsable de los siguientes países: Argentina, Bolivia, Brasil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Puerto Rico, República Dominicana, Uruguay y Venezuela. Los objetivos de BAYLAT están directamente vinculados con la estrategia de internacionalización universitaria del Estado Libre de Baviera. A fin de cumplir con dichos objetivos, BAYLAT planifica y lleva a cabo sus actividades en el marco del concepto de la diplomacia científica, académica y de cooperación.MaestríaMagíster en Ciencias - QuímicaSe obtuvo un extracto de epicarpio, mesocarpio y semilla de uva caimarona (Pourouma cecropiifolia) en acetona:agua (7:3), el cual se fraccionó mediante partición con solventes de polaridad creciente: Pentano, Diclorometano, Acetato de Etilo, Butanol y Agua; los cuales se ensayaron sobre la línea de carcinoma de pulmón humano (A549) en el ensayo antiproliferativo MTT. Las fracciones con actividad citotóxica promisoria se caracterizaron mediante análisis no direccionado mediante cromatografía UPLC, con fuente de ionización por electrospray (ESI), con analizador de tiempo de vuelo (TOF), acoplado a espectrometría de masas elevada (MSE). Posteriormente, a estas fracciones y compuestos puros presentes en estas se les determinó su concentración inhibitoria 50 (IC50) sobre las líneas de carcinoma A549, HT29 y RKO; además, se estableció su índice de selectividad (SI) sobre las líneas de fibroblastos MRC-5 y BHK-21.Productos Naturales126 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::547 - Química orgánica540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales540 - Química y ciencias afines::543 - Química analíticaUvaGrapesCytotoxinsNeoplasmsNeoplasiasCitotoxinasPourouma cecropiifoliaAnálisis no direcionadoUPLC-ESI-TOF-MSEActividad antiproliferativacaracterización químicaPourouma cecropiifoliaUntargeted analysisUPLC-ESI-TOF-MSEAntiproliferative activityChemical characterizationEstudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia)Chemical study of compounds with cytotoxic activity in uva caimarona (Pourouma cecropiifolia)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMMinCiencias, Propuestas de la Misión Internacional de Sabios, Vicepresidencia de la República de Colombia, Ministerio de Ciencia, Tecnología e Innovación, Bogotá D. C., 2019. Disponible: https://www.minciencias.gov.co/sala_de_prensa/libro-virtual-la-mision-internacional-sabios-disponible-para-todos. Consultado Julio 2023Y. Beltrán Barreiro, Árboles alimentarios en la Amazonía colombiana, Ministerio de Medioambiente. 19 Mayo 2021. Disponible: https://visionamazonia.minambiente.gov.co/news/arboles-alimentarios-en-la-amazonia-colombiana/. Consultado Julio 2023B. Giraldo Benavides, G. Vargas Avila, M. Zubieta Vega y M. W. Coy Torres, Construcción participatica de sistemas productivos sostenibles para la Amazonía norte colombiana, Revista Colombia Amazónica, vol. 1, nº 1, pp. 51-70. ISBN 978-958-8317-76-2, 2004J. Barrios, C. P. Cordero, F. Aristizabal, F. J. Heredia, A. L. Morales y C. Osorio, Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from uva caimarona (Pourouma cecropiifolia Mart.) fruit, J. Agric. Food Chem., vol. 58, Nn° 4, pp. 2100-2110. DOI: 10.1021/jf9041497, 2010Información de Cáncer en Colombia, 2021. Disponible: https://www.infocancer.co/portal/#!/filtro_mortalidad/. Consultado Julio 2023L-Sh. Wang y G. D. Stoner, Anthocyanins and their role in cancer prevention, Cancer Lett., vol. 269, n° 2, pp. 281-290. DOI: 10.1016/j.canlet.2008.05.020, 2008Cancillería de Colombia, Siete países suscriben el Pacto de Leticia por la Amazonía, Leticia, Amazonas, 2019. Disponible: https://www.cancilleria.gov.co/siete-paises-suscriben-pacto-leticia-amazonia. Consultado Julio 2023C. Berg y M. Celis, Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015. Disponible: http://catalogoplantasdecolombia.unal.edu.co/en/resultados/especie/Pourouma%20cecropiifolia/. Consultado Julio 2023C. Escobar, J. Zuluaga, D. Criollo y L. Montealegre, Uva Caimarona (Pourouma cecropiifolia) Fruta exótica de la Amazonía, de Árboles de Uso Múltiple, Caquetá, Gráficas Florencia, 2001, pp. 1-5T. K. Lim, Pourouma cecropiifolia, Edible Medicinal and Non-Medicinal Plants, vol. 6, pp. 446-449. DOI: 10.1007/978-94-007-5628-1, 2013D. Lopes-Lutz, J. Dettmann, C. Nimalaratne y A. Schieber, Characterization and quantification of polyphenols in Amazon grape (Pourouma cecropiifolia Martius), Molecules, vol. 15, no 12, pp. 8543-8552. DOI: 10.3390/molecules15128543, 2010J. M. Velasco-España, Evaluación de algunos parámetros mitocondriales en astrocitos T-98G frente al estímulo con extractos ricos en antocianinas derivados de Pourouma cecropiifolia (uva caimarona) y Bactris guineensis (Corozo), Tesis de pregrado en Nutrición, Bogotá D. C.: Pontificia Universidad Javeriana, 2017J. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor y F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer., vol 149, no 4, pp 778-789. DOI: 10.1002/ijc.33588, 2021WHO, Global Health Estimates: Life expectancy and leading causes of death and disability, Global Health Observatory, 2020. Disponible: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates. Consultado Julio 2023Z. Bakouny, J. E. Hawley, T. K. Choueiri, S. Peters, B. I. Rini, J. L. Warner y C. A. Painter, COVID-19 and Cancer: Current Challenges and Perspectives, Cancer Cell., vol. 38, nº 5, pp. 629-646. DOI: 10.1016/j.ccell.2020.09.018, 2020L. Allahqoli, A. Mazidimoradi, H. Salehiniya y I. Alkatout, Impact of COVID-19 on cancer screening: a global perspective, Curr. Opin. Support Palliat. Care, vol. 16, nº 3, p. 102–109. DOI: 10.1097/SPC.0000000000000602, 2022T. Malagón, J. H. E. Yong, P. Tope, W. H. Miller-Jr y E. L. Franco, Predicted long-term impact of COVID-19 pandemic-related care delays on cancer mortality in Canada, Int. J. Cancer, vol. 150, nº 8, pp. 1244-1254. DOI: 10.1002/ijc.33884, 2020T. P. Hanna, W. D. King, S. Thibodeau, M. Jalink, G. A. Paulin, E. Harvey-Jones, D. E. O'Sullivan, C. M. Booth, R. Sullivan y A. Aggarwal, Mortality due to cancer treatment delay: systematic review and meta-analysis, BMJ, vol. 371, pp m4087. DOI: 10.1136/bmj.m4087, 2020MinSalud, Incidencia del cáncer se redujo en los últimos 3 años, 4 Febrero 2021. Disponible en: https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx. Consultado Julio 2023World Health Organization, Estimated number of new cases in 2021, Colombia, both sexes, all ages, International Agency for Research on Cancer. Disponible en: https:// gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets. Consultado Julio 2023World Health Organization, GLOBOCAN 2020, Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Disponible en: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10& Consultado Julio 2023PanAmerican Health Organization y Institutional Repository fro Information Sharing. Américas, Informe de la evaluación rápida de la prestación de servicios para enfermedades no transmisibles durante la pandemia de COVID-19 en las Américas, 2020. Disponible en: https://iris.paho.org/handle/10665.2/52283. Consultado Julio 2023F. Naja y R. Hamadeh, Nutrition amid the COVID-19 pandemic: a multi-level framework for action, Eur. J. Clin. Nutr., Vol. 74, pp 1117-1121. DOI: 10.1038/s41430-020-0634-3, 2020M. Narici, G. De Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, B. Grassi, G. Baldassarre, L. Zuccarelli, G. Biolo, F. G. Di Girolamo, N. Fiotti, F. Dela, P. Greenhaff y C. Maganaris, Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, Eur. J. Sport Sci., vol. 21, n. 4, pp 614-635. DOI: 10.1080/17461391.2020.1761076, pp. 1-22, 2020M. Demasi, COVID-19 and metabolic syndrome: could diet be the key?, BMJ Evid. Based Med., Vol. 26, n 1, pp 1-2. DOI: 10.1136/bmjebm-2020-111451, 2020. http://dx.doi.org/10.1136/bmjebm-2020-111451Ch. Sforza, COVID-19 Lockdown, sedentarism, metabolic alterations, obesity: Can we reverse the domino effect in children? Children, vol. 9, nº 6, p. 851. DOI: 10.3390/children9060851, 2022T. Stocks, M. Van Hemelrijck, J. Manjer, T. Bjorge, H. Ulmer, G. Hallmans, B. Lindkvist, R. Selmer, G. Nagel, S. Tretli, H. Concin, A. Engeland, H. Jonsson y P. Stattin, Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project, Hypertension, vol. 59, nº 4, pp. 802-810. DOI: 10.1161/HYPERTENSIONAHA.111.189258, 2012A. Russo, M. Autelitano y L. Bisanti, Metabolic syndrome and cancer risk, Eur. J. Cancer, vol. 44, nº 2, pp. 293-297. DOI: 10.1016/j.ejca.2007.11.005, 2008S. Braun, K. Bitton-Worms y D. LeRoith, The link between the metabolic syndrome and cancer, Int. J. Biol. Sci., vol. 7, nº 7, pp. 1003–1015. DOI: 10.7150/ijbs.7.1003, 2011M. F. Gregor y G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol., Vol. 29, pp. 415-445. DOI: 10.1146/annurev-immunol-031210-101322, 2011Z. M. Diaconeasa, A. D. Frond, I. Stirbu, D. Ruginda y C. Socaciu, Anthocyanins-smart molecules for cancer prevention, Br. J. Pharmacol., vol. 174, n° 11, pp. 75-94. DOI: 10.1111/bph.13627, 2017J. N. Lu, R. Panchanathan, W. S. Lee, H. J. Kim, D. H. Kim, Y. H. Choi, G. S. Kim, S. C. Shin y S. C. Hong, Anthocyanins from the fruit of Vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in A549 cells, Asian Pac. J. Cancer Prev., Vol. 18, n° 11, pp. 2919-2923. DOI: 10.22034/APJCP.2017.18.11.2919, 2017A. Farrukh, J. Jeyaprakash, K. Hina, M. Radha, S. Inderpal, y G. Ramesh. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res., vol. 6, n° 2, pp.105–114. DOI: 10.3233/JBR-160120, 2016P-N. Chen, S-Ch. Chu, H-L. Chiou, W-H. Kuo, Ch-L. Chiang, y Y-Sh. Hsieh. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett., vol. 235, n° 2, pp. 248–259. DOI: 10.1016/j.canlet.2005.04.033, 2006H. Kausar, J. Jeyabalan, F. Aqil, D. Chabba, J. Sidana, I. P. Singh, y R. C. Gupta. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., vol. 325, n° 1, pp. 54–62. DOI:10.1016/j.canlet.2012.05.029, 2012L. G. Maciel, M. A. V. do Carmo, L. Azevedo, H. Daguer, L. Molognoni, M. M. de Almeida, D. Granato y N. D. Rosso. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., vol. 113, n° 113, pp. 187–197. DOI: 10.1016/j.fct.2018.01.053, 2018B. Gauliard, D. Grieve, R. Wilson, A. Crozier, C. Jenkins, W. D. Mullen, y M. Lean. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J. Med. Food, vol. 11, n° 2, pp. 382–384. DOI:10.1089/jmf.2007.593, 2008H. Eguchi, H. Matsunaga, S. Onuma, Y. Yoshino, T. Matsunaga, y A. Ikari. Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma A549 cells. Int. J. Mol. Sci., vol. 22, n° 2, pp. 499-514. DOI:10.3390/ijms22020499, 2021D. K. Sun, L. Wang, y P. Zhang. Antitumor effects of chrysanthemin in pc-3 human prostate cancer cells are mediated via apoptosis induction, caspase signalling pathway and loss of mitochondrial membrane potential. Afr. J. Tradit. Complement. Altern. Med., vol. 14, n° 4, pp. 54–61. DOI: 10.21010/ajtcam.v14i4.7, 2017K. Jongsomchai, V. Leardkamolkarn, y S. Mahatheeranont. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol., vol. 53, n° 4, pp. 481-492. DOI: 10.5115/acb.20.085, 2020W. Yi, J. Fischer, y C. C. Akoh. Study of anticancer activities of Muscadine grape phenolics in vitro. J. Agric. Food Chem., vol. 53, n° 22, pp. 8804–8812. DOI: 10.1021/jf0515328, 2005J. W. Yun, W. S. Lee, M. J. Kim, J. N. Lu, M. H. Kang, H. G. Kim, D. C. Kim, E. J. Choi, J. Y. Choi, H. G. Kim, Y. K. Lee, C. H. Ryu, G. S. Kim, Y. H. Choi, O. J. Park, y S. C. Shin. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., vol. 48, n° 3, pp. 903–909. DOI:10.1016/j.fct.2009.12.031, 2010A. Akim, L. C. Ling, A. Rahmat, y Z. A. Zakaria. Antioxidant and anti-proliferative activities of Roselle juice on Caov-3, MCF-7, MDA-MB-231 and HeLa cancer cell lines. Afr. J. Pharm. Pharmacol., vol. 5, n° 7, pp. 957-965. DOI: 10.5897/AJPP11.207, 2011L. Li, L. S. Adams, S. Chen, C. Killian, A. Ahmed, y N. P. Seeram. Eugenia jambolana Lam. Berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., vol. 57, n° 3, pp. 826–831. DOI:10.1021/jf803407q, 2009J. M. Aswathy, L. Bosco, G. S. Manoj, y K. Murugan. Anti-proliferative potentiality of purified anthocyanin from in vitro culture of Clerodendron infortunatum L. against human cervical cancer cells (HeLa). Asian J. Pharm. Health Sci., vol. 8, n°1, pp. 1812-1819. 2018Ch-P. Hsu, Y-H. Lin, Sh-P. Zhou, Y-Ch. Chung, C. C. Lin, y S. C. Wang. Longan flower extract inhibits the growth of colorectal carcinoma. Nutr. Cancer, vol. 62, n° 2, pp. 229–236. DOI: 10.1080/01635580903305367, 2010C. Neto, C. G. Krueger, T. L. Lamoureaux, M. Kondo, A. J. Vaisberg, R. A. R. Hurta, S. Curtis, M. D. Matchett, H. Yeung, M. Sweeney y J. D. Reed. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro. J. Sci. Food Agric., vol. 86, n° 1, pp. 18–25. DOI: 10.1002/jsfa.2347, 2005S. F. Huang, Ch-T. Horng, Y-S. Hsieh, Y-H. Hsieh, S-C. Chu, P-N. Chen. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem. Toxicol., vol. 94, pp. 1–10. DOI: 10.1016/j.fct.2016.05.009, 2016S. Akhtar, S. M. Meeran, N. Katiyar, y S. K. Katiyar. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin. Cancer Res., vol. 15, n° 3, pp. 821–831. DOI: 10.1158/1078-0432.ccr-08-1901, 2009V. Kaplum, A. C. Ramos, M. E. L. Consolaro, M. A. Fernández, T. Ueda-Nakamura, B. P. Dias-Filho, S. de Oliveira Silva, J. C. P. De Mello y C. V. Nakamura. Proanthocyanidin polymer-rich fraction of Stryphnodendron adstringens promotes in vitro and in vivo cancer cell death via oxidative stress. Front. Pharmacol, vol. 9, pp. 694-712. DOI: 10.3389/fphar.2018.00694, 2018X. X. Chen, G. P-H. Leung, Z-J. Zhang, J-B. Xiao, L-X. Lao, F. Feng, J. Ch-W. Mak, Y. Wang, S. Cho-W. Sze y K. Y. B. Zhang. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol., vol. 107, Pt. A., pp. 248–260. DOI: 10.1016/j.fct.2017.07.012, 2017X. Shen, Y. Wang, y F. Wang. Characterisation and biological activities of proanthocyanidins from the barks of Pinus massonian and Acacia mearnsii. Nat. Prod. Res., vol. 24, n° 6, pp. 590–598. DOI:10.1080/14786410903194472, 2010Y. Q. Tang, I. B. Jaganath, y S. D. Sekaran. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS ONE, vol. 5, n° 9, pp. e12644. DOI: 10.1371/journal.pone.0012644, 2010S-I. Kawahara, C. Ishihara, K. Matsumoto, S. Senga, K. Kawaguchi, A. Yamamoto, J. Suwannachot, Y. Hamauzu, H. Makabe, y H. Fujii. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, vol. 5, n° 10, pp. e02610. DOI: 10.1016/j.heliyon.2019.e02610, 2019D. Marko, N. Puppel, Z. Tjaden, S. Jakobs y G. Pahlke, The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation, Mol. Nutr. Food Res., vol. 48, n° 4, pp. 318-325. DOI: 10.1002/mnfr.200400034, 2004P. Jing, J. A. Bomser, S. J. Schwartz, J. He, B. A. Magnunson y M. M. Giusti, Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth, J. Agric. Food Chem., vol. 56, n° 20, pp. 9391-9398. DOI: 10.1021/jf8005917, 2008G. D. Stoner, L-S. Wang y T. Chen, Chemoprevention of esophageal squamous cell carcinoma, Toxicol. Appl. Pharmacol., vol. 224, n° 3, pp. 337-349. DOI: 10.1016/j.taap.2007.01.030, 2007S. Rajendran, S. Marappan, P. Suganyadevi, M. Rajalakshmi y M. F. Poffe, Antiproliferative properties of anthocyanin from Indian cassava (Manihot Esculenta, Crantz) on Hep-2 And Mcf-7 cell lines, Am. J. Pharm. Tech. Res., vol. 5, n° 3, pp. 467-479, 2015W. Liu, J. Xu, Y. Liu, X. Yu, X. Tang, Z. Wang y X. Li, Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo, Mol. Med. Rep., vol. 10, n° 4, pp. 1921-1926. DOI: 10.3892/mmr.2014.2414, 2014A. Bunea, D. Rugina, Z. Sconta, R. M. Pop, A. Pintea, C. Socaciu, F. Tabaran, Ch. Grootaert, K. Struijs, y J. VanCamp, Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells, Phytochemistry, vol. 95, pp. 436-444. DOI: 10.1016/j.phytochem.2013.06.018, 2013P. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon y D. Vistica, New colorimetric cytotoxicity assay for anticancer-drug screening, J Natl Cancer Inst, vol. 82, nº 13, pp. 1107-1112. DOI: 10.1093/jnci/82.13.1107, 1990Instituto Colombiano de Normas Técnicas, NTC 440:2015. Productos alimenticios. Métodos de ensayo,» 19 Octubre 2022. Disponible en: https://tienda.icontec.org/gp-productos-alimenticios-metodos-de-ensayo-ntc440-2015.html. Consultada Julio 2023J. H. Isaza, H. Ito y T. Yoshida, Oligomeric hidrolizable tannins from Monochaetum multiflorum, Phytochemistry, vol. 65, nº 3, pp.359-367. DOI: 10.1016/j.phytochem.2003.11.017, 2004T. Mosmann, Rapid colorimetric assay for cellular growth and survival - Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol 65, nº 1-2, pp. 55-63. DOI: 10.1016/0022-1759(83)90303-4, 1983D. Caro, D. Rivera, Y. Ocampo, K. Müller y F. L. A., A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing, Open Chem., vol. 18, nº 1, pp. 1242–1255. DOI: 10.1515/chem-2020-0170, 2020J. Manosroi, M. Sainakham, W. Manosroi y A. Manosroi, Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database, J. Ethnopharmacol., vol. 141, nº 1, pp. 451-459. DOI: 10.1016/j.jep.2012.03.010, 2012J. López Montoya, Determinación de los requerimientos nutricionales de la Piña variedad MD-2 en suelos ácidos del municipio de Santander de Quilichao, Tesis Magister en Ciencias Agrarias, Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Sede Palmira, 2016E. L. Acero Duarte, Principales plantas útiles de la Amazonía Colombiana. Unidad Forestal del Proyecto Radargravimétrico del Amazonas, 1979. IDEAM. Disponible: http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4653476&shelfbrowse_itemnumber=6058961#shelfbrowse. Consultado Julio 2023ISO. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Ed. 3, 2009, pp. 1-34. Disponible: https://www.iso.org/standard/36406.html. Consultado Julio 2022A. Martínez M., Metabolitos Scundarios Aromáticos. Flavonoides, en: Química de Productos Naturales, Medellín, Universidad de Antioquia, pp. 116-118, 2020J. James y I. Dubery, Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) urban by densitometric TLC, JPC-J. Planar Chromat., vol. 24, nº 1, pp. 82-87, 2011J.-R. Du, F.-Y. Long y C. Chen, Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer, Enzymes, vol. 36, pp. 95-30. Doi: 10.1016/B978-0-12-802215-3.00006-9, 2014J. A. Gomes de Brito, L. da Silva Pinto, C. F. Chaves, A. J. R. da Silva, M. F. das Gracas Fernandes da Silva y F. Cotinguiba, Chemophenetic ssignificance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools, Molecules, vol. 26, nº 4, pp. 925-947. https://doi.org/10.3390/molecules26040925, 2021K. F. Amaral, M. M. Rogero, R. A. Fock, P. Borelli y G. Gavini, Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture, Int. Endod. J., vol. 40, nº 5, pp. 338-343. DOI: 10.1111/j.1365-2591.2007.01220.x, 2007J. Soares-Roter, L. Moura-Sassone, S. Rivera-Fidel y D. Araki-Ribeiro, In vitro genotoxicity and cytotoxicity in murine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid, Braz. Dent. J, vol. 23, nº 5, pp. 527-533. DOI: 10.1590/s0103-64402012000500010, 2012L. Luciano Giardino, L. Generali, P. Savadori, M. Cesar Barros, L. Lobo de Melo Sima, J. Pytko-Polonczyk, W. Wilkonsk, V. Ballal y F. Bombarda de Andrade, Can the concentration of citric acid affect its cytotoxicity and antimicrobial activity?, Dent. J. (Basel), vol. 10, nº 148, pp. 1-13. DOI: 10.3390/dj10080148, 2022.S. C. Forester y A. L. Waterhouse, Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells, J. Agric. Food Chem., vol. 58, nº 9, pp. 5320-5327. DOI: 10.1021/jf9040172, 2010K. W. Lee, H. J. Hur, H. J. Lee y C. Y. Lee, Antiproliferative effects of dietary phenolic substances and hydrogen peroxide,» J. Agric. Food Chem., vol. 53, p. 1990−1995. DOI: 10.1021/jf0486040, 2005C. L. Hsu, S. L. Huang y G. C. Yen, Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity, J. Agric. Food Chem., vol. 54, p. 4191−4197. DOI: 10.1021/jf0609882, 2006S. Klenow y M. Glei, New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters, Toxicol. In Vitro, vol. 23, nº 6 p. 1055–1061. DOI: 10.1016/j.tiv.2009.06.006, 2009Fadilah, A. Yanuar, A. Arsianti, R. Andrajati y R. I. Paramita, In silico study, synthesis, and cytotoxic activity of esterification of eugenol and gallic acidagainst HT-29 cell line, Orient. J. Chem., vol. 33, nº 6, pp. 3009-3014. DOI: http://dx.doi.org/10.13005/ojc/330638, 2017Z. H. Liu, S. Y. Zhang, Y. Y. Yu y G. Q. Su, (-)-4-O-(4-O-b-D-Glucopyranosylcaffeoyl)quinic acid presents antitumor activity in HT-29 human colon cancer in vitro and in vivo, Mol. Cell Toxicol., vol. 11, pp. 457-463. DOI: 10.1007/s11095-018-2459-5, 2015M. D. Rush, E. A. Rue, A. Wong, P. Kowalski, J. A. Glinski y R. B. van Breemen, Rapid determination of procyanidins using MALDI-ToF/ToF mass spectrometry, J. Agric. Food Chem., vol. 66, nº 43, pp. 11355-11361. DOI: 10.1021/acs.jafc.8b04258, 2018D. Desdiani, I. Rengganis, S. Djauzi, A. Setiyono, M. Sadikin, S.-W. A. Jusman, N. C. Siregar, Suradi, P. C. Eyanoer y F. Fadilah, In Vitro assay and study interaction of Uncaria gambir (Hunter) Roxb. as anti-fibrotic activity against A549 cell line, Pharmacogn J., vol. 12, nº 6, pp. 1232-1240. DOI: 10.5530/PJ.2020.12.172, 2020J. T. Mao, B. Xue, J. Smoake, Q.-Y. Lu, H. Park, S. M. Henning, W. Burns, A. Bernabei, D. Elashoff, K. J. Serio y L. Massie. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J. Nutr. Biochem., vol. 34, p. 118–125. DOI: 10.1016/j.jnutbio.2016.05.003, 2016M. Orabi, O. Alqahtani, B. Alyami, A. Al Awadh, E.-S. Abdel-Sattar, K. Matsunami, D. Hamdan y M. Abouelela. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti-Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals, vol. 15, pp. 1561-1576. DOI: 10.3390/ph15121561, 2022I. Hernández-Balmaseda, I. R. Guerra, K. Declerck, J. A. Herrera Isidrón, C. Pérez-Novo, G. Van Camp, O. De Wever, K. González, M. Labrada, A. Carr, G. Dantas-Cassali, D. C. dos Reis, L. Delgado-Roche, R. R. Núñez, Delgado y W. Vanden Berghe. Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar. Drugs, vol. 19, nº 2, p. 52. DOI: 10.3390/md19020052, 2021A. Faria, C. Calhau, V. de Freitas y N. Mateus. Procyanidins as Antioxidants and Tumor Cell Growth Modulators. J. Agric. Food Chem., vol. 54, nº 6, p. 2392–2397. DOI: 10.1021/jf0526487, 2006D. Esposito, A. Chen, M. H. Grace, S. Komarnytsky y M. A. Lila. Inhibitory Effects of Wild Blueberry Anthocyanins and Other Flavonoids on Biomarkers of Acute and Chronic Inflammation in Vitro. J. Agric. Food Chem., vol. 62, nº 29, pp. 7022-7028. DOI: 10.1021/jf4051599, 2014S. Wei, Y. Sun, L. Wang, ZhangT., W. Hu, W. Bao, L. Mao, J. Chen, H. Li, Y. Wen y Z. Chen. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann. Transl. Med., vol. 9, nº 15, p. 1233. DOI: 10.21037/atm-21-2980, 2021T. Fu, L. Wang, X. Jin, H. Sui, Z. Liu y Y. Jin. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin., vol. 37, p. 505–518. DOI: 10.1038/aps.2015.148, 2016Y. Yang, J. Tantai, Y. Sun, C. Zhong y Z. Li. Effect of hyperoside on the apoptosis of A549 human non small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep., vol. 16, nº 5, pp. 6483-6488. DOI: 10.3892/mmr.2017.7453, 2017S. Puangpraphant, M. A. Berhow y E. de Mejía. Yerba Mate (Ilex Paraguariensis St. Hilaire) Saponins Inhibit Human Colon Cancer Cell Proliferation. de Hispanic Foods: Chemistry and Bioactive Compounds, Washington, American Chemical Society, pp. 307-321. DOI:10.1021/bk-2012-1109.ch018, 2012P. Ferreira-Santos, H. Badim, Â. Salvador, A. Silvestre, S. Santos, S. Rocha, A. Sousa, M. Pereira, C. Wilson, C. Rocha, J. A. Teixeira y C. M. Botelho. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules, vol. 11, n°8, pp. 1222-1244. DOI: 10.3390/biom1108122, 2021H.-J. Kim, S.-K. Kim, B.-S. Kim, S.-H. Lee, Y.-S. Park, B.-K. Park, S.-J. Kim, J. Kim, C. Choi, J.-S. Kim, S.-D. Cho, J.-W. Jung, K.-H. Roh, K.-S. Kang y J.-Y. Jung. Apoptotic Effect of Quercetin on HT-29 Colon Cancer Cells via the AMPK Signaling Pathway. J. Agric. Food Chem., vol. 58, nº 15, p. 8643–8650. DOI: 10.1021/jf101510z, 2010S. Lin, J. Heb, F. Wu, H. Wang, D. Wu, J. Sun, D. Zhang, H. Qu y B. Yang.Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with Aspergillus awamori and their antioxidant activities. J. Funct. Foods, vol. 7, pp. 278-286. DOI:10.1016/j.jff.2014.02.001, 2014Y. Zhou, H. Chen, B. Wang, H. Liang, Y. Zhao y Q. Zhang, Sesquiterpenoid and phenolic glucoside gallates from Lagerstroemia balansae. Planta Med., vol. 77, nº 17, pp. 1944-1946. DOI: 10.1055/s-0031-1280093, 2017H. J. Kim, C. B. Jin, M. J. Son, Y. S. Lee, C. S. Yook y J. Y. Lee. Aster Glehni extracts, fractions or compounds isolated therefrom for the treatment or prevention of hyperuricemia or gout. United States Patente US 2015/0337001 A1, 20 Mayo 2015I. Jae-Kyung, K. Jin-Kyu, O. Joa-Sub y S. Dong-Wan. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int. J. Oncol., vol. 48, pp. 1907-1912. DOI: 10.3892/ijo.2016.3436¸ 2016K. L. Ooi, T. S. T. Muhammad, M. L. Tan y S. F. Sulaiman.Cytotoxic, apoptotic and anti--glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol., vol. 135, nº 3, p. 685–695. DOI: 10.1016/j.jep.2011.04.001, 2011A. Trendafilova, V. Ivanova, M. Rangelov, M. Todorova, O. G. S. Yur, T. Ozek, Aneva¸I., R. Veleva, V. Moskova-Doumanova, J. Doumanov y T. Topouzova-Hristova. Caffeoylquinic Acids, Cytotoxic, Antioxidant, Acetylcholinesterase and Tyrosinase Enzyme Inhibitory Activities of Six Inula Species from Bulgaria. Chem. Biodiversity, vol. 17, 1-12, e200051. DOI: 10.1002/cbdv.202000051, 2020Y. J. Yang, X. Liu, H. R. Wu, X. F. He, Y. R. Bi, Y. Zhu y Z. L. Liu. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem., vol. 138, nº 2, pp. 2057-2063. DOI: 10.1016/j.foodchem.2012.10.122, 2013H. Villota, M. Moreno-Ceballos, G. A. Santa-González, D. Uribe, I. C. Henao Castañeda, L. M. Preciado y J. Pedroza-Díaz. Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals, vol. 14, nº 8, p. 761. DOI: 10.3390/ph14080761, 2021M. Bunse, P. Lorenz, F. C. Stintzing y D. R. Kammerer. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants, vol. 10, pp. 1219-1236. DOI: 10.3390/plants10061219, 2021T. Akiyama, O. Takana y S. Shibata. Chemical Studies on the Oriental Plant Drugs. Sapogenins of the Roots of Platycodon grandiflorum A. de Candolle. Structure of Platycodigenin. Chem. Pharm. Bull., vol. 20, nº 9, pp. 1952-1956. DOI: 10.1248/cpb.14.1150, 1972Q. Wei, B. Zhang, P. Li, X. Wen y J. Yang. Maslinic acid inhibits colon tumorigenesis by AMPK-mTOR signaling pathway. J. Agric. Food Chem., vol. 67, pp. 4259-4272. DOI: 10.1021/acs.jafc.9b00170, 2019A. Parra, S. Martin-Fonseca, F. Rivas, F. J. Reyes-Zurita, M. Medina-O’Donnell, E. E. Rufino-Palomares, A. Martínez, A. García-Granados, J. A. Lupiañez y F. Albericio. Solid-Phase Library Synthesis of Bi-Functional Derivatives of Oleanolic and Maslinic Acids and Their Cytotoxicity on Three Cancer Cell Lines. ACS Comb. Sci., vol. 16, nº 8, pp. 428-447. DOI: 10.1021/co500051z, 2014S. Zhang, D. Ding, X. Zhang, L. Shan y Z. Liu, Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell. Biochem., vol. 392, nº 1, p. 281–287. DOI: 10.1007/s11010-014-2038-y, 2014X. Bai, Y. Zhang, H. Jiang, P. Yang, H. Li, Y. Zhang y P. He. Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol. Med. Rep., vol. 13, nº 1, pp. 117-122. DOI: 10.3892/mmr.2015.4552, 2016P. K. K. A. H. Bunpo, H. Nakayama, T. Kuwahara, U. Vinitketkumnuen y Y. Ohnishi. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Invest., vol. 52, nº 1, pp. 65-73. DOI: 10.2152/jmi.52.65, 2005T. Wua, J. Geng, W. Guo y J. Z. Z. Gao. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B., vol. 7, nº 1, pp. 65-72. DOI: 10.1016/j.apsb.2016.04.003, 2017C. W. Cho, D. S. Choi, M. H. Cardone, C. W. Kim, A. J. Sinskey y C. Rha, Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., vol. 22, pp. 393-408. DOI: 10.1007/s10565-006-0104-2, 2006X. Tian, S. Guo, S. Zhang, P. Li, T. Wang, C. Ho, M. H. Pna y N. Bai. Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC‐MS analysis of seed oil. J. Food Biochem., vol. 44, n°1, e13088. DOI: 10.1111/jfbc.13088, 2019Z. Chen, K.-Y. Huang, Y. Ling, M. Goto, H.-Q. Duan, X.-H. Tong, Y.-L. Liu, Y.-Y. Cheng, S. Morris-Natschke, P.-C. Yang, S.-L. Yang y K.-H. Lee. Discovery of an Oleanolic Acid/Hederagenin–Nitric Oxide Donor Hybrid as an EGFR Tyrosine Kinase Inhibitor for Non-Small-Cell Lung Cancer. J. Nat. Prod., vol. 82, nº 11, p. 3065–3073. DOI: 10.1021/acs.jnatprod.9b00659, 2019C. Gauthier, J. Legault, K. Girard-Lalancette, V. Mshvildadze y A. Pichette. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg. Med. Chem., vol. 17, nº 5, p. 2002–2008. DOI: 10.1016/j.bmc.2009.01.022, 2009W. Cong, E. Tello, C. T. Simons y D. G. Peterson. Identification of Non-Volatile Compounds That Impact Flavor Disliking of Whole Wheat Bread Made with Aged Flours. Molecules, vol. 27, pp. 1331-1346. DOI: 10.3390/molecules27041331, 2022M. Yuce, C. Gumuskaptan, A. H. Con y F. Yazici. Conjugated linoleic acid strengthens the apoptotic effect of cisplatin in A549 cells. Prostaglandins Other Lipid Mediat., vol. 166, p. 106731. DOI: 10.1016/j.prostaglandins.2023.106731, 2023H. Li, Q. Yao, L. Min, S. Huang, H. Wu, H. Yang, L. Fan, J. Wang y N. Zheng. The combination of two bioactive constituents, lactoferrin and linolenic acid, inhibits mouse xenograft esophageal tumor growth by downregulating lithocholyltaurine and inhibiting the JAK2/STAT3-related pathway. ACS Omega, vol. 5, nº 33, pp. 20755-20764. DOI: 10.1021/acsomega.0c01132, 2020M. B. Bahadori, S. Vandghanooni, L. Dinparast, M. Eskandani, S. A. Ayatollahi, A. Ata y H. Nazemiyeh. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoter., vol. 134, pp. 493-500. DOI: 10.1016/j.fitote.2019.03.013, 2019K. H. Yoo, J.-H. Park, D. Y. Lee, J. Hwang-Bo, N. I. Baek y I. S. Chung. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects onIn Vitro Endothelial Cells and on anIn Vivo CT-26 Colon Carcinoma Animal Model. Phytother. Res., vol. 29, nº 5, pp. 714-723. DOI: 10.1002/ptr.5306, 2015K. Okuno, R. Garg, Y.-C. Yuan, M. Tokunaga, Y. Kinugasa y A. Goel. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front. Oncol., vol. 12, nº DOI: 10.3389/fonc.2022.952180, p. PMC9278059. DOI: 10.3389/fonc.2022.952180, 2022Z.-H. Shao, T.-L. Vanden Hoek, C. Q. Li, P. T. Schumacker, L. B. Becker, K. C. Chan, Y. Qin, J. J. Yin y C. S. Yuan. Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. Am. J. Chinese Med., vol. 32, nº 1, pp. 89-95. DOI: 10.3389/fonc.2022.952180, 2004J. Wang, W. Zhang, C. Tang, J. Xiao, B. Xie y Z. Sun. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods, vol. 48, pp. 134-143. DOI: 10.1016/j.jff.2018.07.015, 2018A. T. C. C. ATCC,. HTB-38. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/htb-38#detailed-product-information. Consultado Junio 2023A. T. C. C. ATCC, CRL-2577. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/crl-2577#detailed-product-information. Consultado Junio 2023BAYLAT - Becas destinadas a estudiantes de universidades latinoamericanas para realizar una estadía de investigación en una universidad asociada en Baviera (Para el semestre de invierno de 2022/2023 o para el semestre de verano de 2023)Centro Universitario de Baviera para América LatinaBibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84865/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis Maestría en Química Camilo Andrés Correa Lozano.pdfTesis Maestría en Química Camilo Andrés Correa Lozano.pdfTesis de Maestría en Ciencias - Químicaapplication/pdf4628066https://repositorio.unal.edu.co/bitstream/unal/84865/2/Tesis%20Maestri%cc%81a%20en%20Qui%cc%81mica%20Camilo%20Andr%c3%a9s%20Correa%20Lozano.pdf4a418ab9fff97279277c700a0f7710aaMD52THUMBNAILTesis Maestría en Química Camilo Andrés Correa Lozano.pdf.jpgTesis Maestría en Química Camilo Andrés Correa Lozano.pdf.jpgGenerated Thumbnailimage/jpeg5404https://repositorio.unal.edu.co/bitstream/unal/84865/3/Tesis%20Maestri%cc%81a%20en%20Qui%cc%81mica%20Camilo%20Andr%c3%a9s%20Correa%20Lozano.pdf.jpgda7cb1c2cd830b99e197a0554c76b3dfMD53unal/84865oai:repositorio.unal.edu.co:unal/848652024-08-19 23:10:44.822Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |