Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación
Ilustraciones
- Autores:
-
Giraldo Muñoz, Maria Alejandra
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86422
- Palabra clave:
- 540 - Química y ciencias afines
660 - Ingeniería química
620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas
Reología
Nanotecnología
Industria del petróleo
Dinámica de fluidos
Nanopartículas
Nanofluido
Fluido de fractura
Comportamiento reológico
Daño de formación
Nanofluid
Fracture fluid
Rheological behavior
Formation damage
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_e6181fe4e5c1175d46d579bd5a0bc2a1 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86422 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
dc.title.translated.eng.fl_str_mv |
Development and evaluation from laboratory to field trial of a dual-purpose fracturing nanofluid: Inhibition of associated formation damage and increasing heavy crude oil mobility |
title |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
spellingShingle |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación 540 - Química y ciencias afines 660 - Ingeniería química 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas Reología Nanotecnología Industria del petróleo Dinámica de fluidos Nanopartículas Nanofluido Fluido de fractura Comportamiento reológico Daño de formación Nanofluid Fracture fluid Rheological behavior Formation damage |
title_short |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
title_full |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
title_fullStr |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
title_full_unstemmed |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
title_sort |
Desarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formación |
dc.creator.fl_str_mv |
Giraldo Muñoz, Maria Alejandra |
dc.contributor.advisor.none.fl_str_mv |
Cortés Correa, Farid B. |
dc.contributor.author.none.fl_str_mv |
Giraldo Muñoz, Maria Alejandra |
dc.contributor.researchgroup.spa.fl_str_mv |
Fenómenos de superficie - Michael Polanyi |
dc.subject.ddc.spa.fl_str_mv |
540 - Química y ciencias afines 660 - Ingeniería química 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas |
topic |
540 - Química y ciencias afines 660 - Ingeniería química 620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadas Reología Nanotecnología Industria del petróleo Dinámica de fluidos Nanopartículas Nanofluido Fluido de fractura Comportamiento reológico Daño de formación Nanofluid Fracture fluid Rheological behavior Formation damage |
dc.subject.lemb.none.fl_str_mv |
Reología Nanotecnología Industria del petróleo Dinámica de fluidos Nanopartículas |
dc.subject.proposal.spa.fl_str_mv |
Nanofluido Fluido de fractura Comportamiento reológico Daño de formación |
dc.subject.proposal.eng.fl_str_mv |
Nanofluid Fracture fluid Rheological behavior Formation damage |
description |
Ilustraciones |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-09T19:45:38Z |
dc.date.available.none.fl_str_mv |
2024-07-09T19:45:38Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86422 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86422 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Shafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy policy, 2009. 37(1): p. 181-189. Hirsch, R.L., R. Bezdek, and R. Wendling, Peaking of World Oil Production and Its Mitigation. Driving Climate Change: Cutting Carbon from Transportation, 2010: p. 9. Williams, B., Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil & Gas Journal, 2003. 101(29): p. 20-27. Chew, K.J., The future of oil: unconventional fossil fuels. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2006): p. 20120324. Hinkle, A., et al., Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel, 2008. 87(13): p. 3065-3070. Meyer, R.F. and E.D. Attanasi, Heavy oil and natural bitumen-strategic petroleum resources. World, 2003. 434: p. 650-7. Jaspers, H.F., et al. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. in SPE Enhanced Oil Recovery Conference. 2013. Society of Petroleum Engineers. Rana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231. Savage, P.E., M.T. Klein, and S.G. Kukes, Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 1169-1174. Maity, S., J. Ancheyta, and G. Marroquín, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review. Energy & Fuels, 2010. 24(5): p. 2809-2816. Das, S.K., Vapex: An efficient process for the recovery of heavy oil and bitumen. SPE journal, 1998. 3(03): p. 232-237. Cook, E.L. and A.W. Talash, In situ combustion process. 1969, Google Patents. Gateau, P., et al., Heavy oil dilution. Oil & gas science and technology, 2004. 59(5): p. 503-509. Pebdani, F.N. and W.R. Shu, Heavy oil recovery process using cyclic carbon dioxide steam stimulation. 1986, Google Patents. Cyr, T., R. Coates, and M. Polikar, Steam-assisted gravity drainage heavy oil recovery process. 2001, Google Patents. Italo Bahamon, J., et al. Successful Implementation of Hydraulic Fracturing Techniques in High Permeability Heavy Oil Wells in the Llanos Basin-Colombia. in SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. Society of Petroleum Engineers. Zabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. in SPE Improved Oil Recovery Conference. 2016. Society of Petroleum Engineers. Franco, C.A., et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy & Fuels, 2013. 27(12): p. 7336-7347. Le, D.H., et al., Removal of fracturing gel: A laboratory and modeling investigation accounting for viscous fingering channels. Journal of Petroleum Science and Engineering, 2012. 88: p. 145-155. Uren, L.C., Petroleum production engineering. 1934: McGraw-Hill Book Company. Weaver, J.D., N.C. Schultheiss, and F. Liang. Fracturing Fluid Conductivity Damage and Recovery Efficiency. in SPE European Formation Damage Conference & Exhibition. 2013. Society of Petroleum Engineers. Quintero, L., et al. Cases history studies of production enhancement in cased hole wells using microemulsion fluids. in 8th European Formation Damage Conference. 2009. Society of Petroleum Engineers. Zelenev, A.S., et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers. Penny, G.S., T.A. Dobkins, and J.T. Pursley. Field study of completion fluids to enhance gas production in the Barnett Shale. in SPE Gas Technology Symposium. 2006. Society of Petroleum Engineers. Chen, Z., et al. Formation damage induced by fracture fluids in coalbed methane reservoirs. in SPE Asia Pacific Oil & Gas Conference and Exhibition. 2006. Society of Petroleum Engineers. Huang, T., J.B. Crews, and G. Agrawal. Nanoparticle pseudocrosslinked micellar fluids: Optimal solution for fluid-loss control with internal breaking. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers. Hawkins, G. Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure. in SPE Annual Technical Conference and Exhibition. 1988. Society of Petroleum Engineers. Bostrom, N., et al. The time-dependent permeability damage caused by fracture fluid. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers. Huang, T. and J.B. Crews, Nanotechnology applications in viscoelastic surfactant stimulation fluids. SPE Production & Operations, 2008. 23(04): p. 512-517. Worlow, D. and S. Holditch. Rheologic Measurements of a Crosslinked Fracture Fluid Under Conditions Expected During a Fracture Treatment. in Low Permeability Reservoirs Symposium. 1989. Society of Petroleum Engineers. Husein, M., et al. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers. Christian, C.F., et al. Production Enhancement of Cased-Hole Wells Using Mesophase Fluids. in SPE Saudia Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers. Montgomery, C., Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing. InTech Publishing. Available at: http://www. intechopen. com/books/effective-and-sustainablehydraulic-fracturing (Accessed February 2014), 2013: p. 25-45. Paktinat, J., et al., Field case studies: Damage preventions through leakoff control of fracturing fluids in marginal/low-pressure gas reservoirs. SPE Production & Operations, 2007. 22(03): p. 357-367. Dos Santos, J.A.C., R.C.B. De Melo, and G.F. Di Lullo, Case-History Evaluation of RPMs on Conformance Fracturing Applications. Society of Petroleum Engineers. Diaz, G., et al., Fracture Conformance Treatments Using RPM: Efficiency and Durability Evaluation. Society of Petroleum Engineers. Castano, R., et al., Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America. Society of Petroleum Engineers. Leal, J.A., et al., Unconventional RPM Applications in Hydraulic Fracturing. Society of Petroleum Engineers. Bennetzen, M.V. and K. Mogensen. Novel applications of nanoparticles for future enhanced oil recovery. in International petroleum technology conference. 2014. International Petroleum Technology Conference. Martín-Palma, R.J. and A. Lakhtakia. Nanotechnology: A Crash Course. 2010. SPIE Bellingham, WA. Taborda, E.A., et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016. 184: p. 222-232. Al-Maamari, R.S. and J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 2003. 6(04): p. 210-214. Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665. Franco, C.A., et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 2013. 27(6): p. 2899-2907. Betancur, S., et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6122-6132. Zhang, H., A. Nikolov, and D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy & Fuels, 2014. 28(5): p. 3002-3009. Lafitte, V., et al. Nanomaterials in fracturing applications. in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012. Society of Petroleum Engineers. Liang, F., et al., Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers. Society of Petroleum Engineers. Guzmán, J.D., et al., Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017. 40: p. 347-355. Al-Muntasheri, G.A. A critical review of hydraulic fracturing fluids over the last decade. in SPE Western North American and Rocky Mountain Joint Meeting. 2014. Society of Petroleum Engineers. Harris, P.C., Fracturing-fluid additives. Journal of petroleum technology, 1988. 40(10): p. 1,277-1,279. Barnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier. Barnes, H.A., A handbook of elementary rheology. 2000. Montgomery, C. Fracturing fluids. in ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. 2013. International Society for Rock Mechanics and Rock Engineering. Kirkwood, J.G., F.P. Buff, and M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. The Journal of Chemical Physics, 1949. 17(10): p. 988-994. Ewell, R.H. and H. Eyring, Theory of the Viscosity of Liquids as a Function of Temperature and Pressure. The Journal of Chemical Physics, 1937. 5(9): p. 726-736. Fox, T., et al., Rheology, Vol. 1. Academic Press, New York, 1956: p. 431-523. Rha, C., Theories and principles of viscosity, in Theory, determination and control of physical properties of food materials. 1975, Springer. p. 7-24. Sorbie, K., P. Clifford, and E. Jones, The rheology of pseudoplastic fluids in porous media using network modeling. Journal of Colloid and Interface Science, 1989. 130(2): p. 508-534. Api, R., Recommended Practice on Measuring the Viscous Properties of a Crosslinked Water-based Fracturing Fluid”. 1998, May. Kuhlbusch, T.A., et al., Nanoparticle exposure at nanotechnology workplaces: a review. Particle and fibre toxicology, 2011. 8(1): p. 22. Poole Jr, C.P. and F.J. Owens, Introduction to nanotechnology. 2003: John Wiley & Sons. Sanchez, F. and K. Sobolev, Nanotechnology in concrete–a review. Construction and building materials, 2010. 24(11): p. 2060-2071. Amanullah, M. and A.M. Al-Tahini. Nano-technology-its significance in smart fluid development for oil and gas field application. in SPE Saudi Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers. Nabhani, N., M. Emami, and A.T. Moghadam. Application of nanotechnology and nanomaterials in oil and gas industry. in AIP Conference Proceedings. 2011. American Institute of Physics. Esmaeili, A. Applications of nanotechnology in oil and gas industry. in AIP conference proceedings. 2011. American Institute of Physics. Peng, B., et al., Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering, 2018. 96(1): p. 91-100. Hirasaki, G., Wettability: fundamentals and surface forces. SPE Formation Evaluation, 1991. 6(02): p. 217-226. Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665. Castro, S., Análisis petrofísicos básicos y especiales. 2009: Universidad Nacional de Colombia Sede Medellín. Abdallah, W., et al., Fundamentals of wettability. Technology, 1986. 38(1125-1144): p. 268. Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551. Maghzi, A., et al., Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 2012. 40: p. 168-176. Nazari Moghaddam, R., et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015. 29(4): p. 2111-2119. Al-Anssari, S., et al., Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017. 206: p. 34-42. Dehghan Monfared, A., et al., Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A mechanistic study. Energy & Fuels, 2016. 30(5): p. 3947-3961. Cortés, F.B., et al., Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(4): p. 89-106. Li, R., et al., Experimental investigation of silica-based nanofluid enhanced oil recovery: the effect of wettability alteration. Energy & Fuels, 2017. 31(1): p. 188-197. Ghannam, M.T., et al., Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 2012. 81: p. 122-128. Ali, L.H., K.A. Al-Ghannam, and J.M. Al-Rawi, Chemical structure of asphaltenes in heavy crude oils investigated by nmr. Fuel, 1990. 69(4): p. 519-521. Alboudwarej, H., et al., La importancia del petróleo pesado. Oilfield review, 2006. 18(2): p. 38-58. Martínez-Palou, R., et al., Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 2011. 75(3-4): p. 274-282. Schmidt, R., Thermal enhanced oil recovery current status and future needs. Chemical Engineering Progress;(USA), 1990. 86(1). Hong, K., Recent advances in steamflood technology. 1989. Hart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336. Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing. Caudle, B. and A. Dyes, Improving miscible displacement by gas-water injection. 1958. Sheng, J., Enhanced oil recovery field case studies. 2013: Gulf Professional Publishing. Schramm, L.L., E.N. Stasiuk, and D.G. Marangoni, 2 Surfactants and their applications. Annual Reports Section" C"(Physical Chemistry), 2003. 99: p. 3-48. Mai, A. and A. Kantzas, Heavy oil waterflooding: effects of flow rate and oil viscosity. Journal of Canadian Petroleum Technology, 2009. 48(03): p. 42-51. Jiang, Q., Recovery of heavy oil and bitumen using vapex process in homogeneous and heterogenous reservoirs. 1997: University of Calgary. Montes, D., et al., Development of nanofluids for perdurability in viscosity reduction of extra-heavy oils. Energies, 2019. 12(6): p. 1068. Montes, D., et al., Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS omega, 2020. 5(10): p. 5085-5097. Taborda, E.A., V. Alvarado, and F.B. Cortés, Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017. 148: p. 30-42. Medina, O.E., et al., Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019. 12(24): p. 4671. Shokrlu, Y.H. and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering, 2014. 119: p. 210-220. Wei, L., J.-H. Zhu, and J.-H. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. Journal of Fuel Chemistry and Technology, 2007. 35(2): p. 176-180. Montes, D., F.B. Cortés, and C.A. Franco, Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. Dyna, 2018. 85(207): p. 153-160. Taborda, E.A., et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017. 31(2): p. 1329-1338. Civan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. 2015: Gulf Professional Publishing. MANUEL, G.E.J., NOMBRE DE TESIS: DAÑO A LA FORMACIÓN EN POZOS PETROLEROS. 2014, Universidad Nacional Autónoma de México. Civan, F., Overview of formation damage. Reservoir Formation Damage, 2016: p. 1-6. Civan, F. Formation damage mechanisms and their phenomenological modeling-an overview. in European formation damage conference. 2007. Society of Petroleum Engineers. Economides, M.J. and K.G. Nolte, Reservoir stimulation. Vol. 2. 1989: Prentice Hall Englewood Cliffs, NJ. Li, L., et al. Vital role of nanotechnology and nanomaterials in the field of oilfield chemistry. in IPTC 2013: International Petroleum Technology Conference. 2013. European Association of Geoscientists & Engineers. Betancur, S., C.A. Franco, and F.B. Cortés, Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. Journal of Magnetohydrodynamics and Plasma Research, 2016. 21(3): p. 289-322. Lopez, D., et al., Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2–Cardanol Interactions. Energy & Fuels, 2020. 34(6): p. 7048-7057. Belcher, C.K., et al. Maximizing production life with the use of nanotechnology to prevent fines migration. in International Oil and Gas Conference and Exhibition in China. 2010. Society of Petroleum Engineers. Mansour, M., et al., Using nanotechnology to prevent fines migration while production. Petroleum, 2020. Mady, M.F. and M.A. Kelland, Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 2020. 3(8): p. 7343-7364. López, D., et al., Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021. 283: p. 118931. Filgueiras, P.R., et al., Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 2014. 116: p. 123-130. Institute, E., IP 469: Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection. 2006, Energy Institute Publications United Kingdom. Austrich, A., E. Buenrostro-Gonzalez, and C. Lira-Galeana, ASTM D-5307 and ASTM D-7169 SIMDIS standards: a comparison and correlation of methods. Petroleum Science and Technology, 2015. 33(6): p. 657-663. Nassar, N.N., A. Hassan, and P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of colloid and interface science, 2011. 360(1): p. 233-238. Hosseinpour, N., et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 2013. 29(46): p. 14135-14146. Xu, R., Particle characterization: light scattering methods. Vol. 13. 2001: Springer Science & Business Media. López, D., et al., Metal oxide nanoparticles supported on macro-mesoporous aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts, 2017. 7(11): p. 319. Waseda, Y., E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. 2011: Springer Science & Business Media. Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. 51: p. 53-64. Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70. Jan, API Recommended Practices for Standard Procedures for Evaluation of Hydraulic Fracturing Fluids , API RP 39, in Dallas. 1983. Roskes, B., SketchUp 2015 Hands-On: LayOut. 2015. Guzmán, J.D., et al., Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy & Fuels, 2016. 30(3): p. 2052-2059. Fink, J., Hydraulic Fracturing Chemicals and Fluids Technology. 2013: Gulf Professional Publishing. Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 1-error analysis. Society of Petroleum Engineers Journal, 1984. 24(02): p. 209-214. Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 2-algorithms. Society of Petroleum Engineers Journal, 1984. 24(02): p. 215-223. Sigmund, P. and F. McCaffery, An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777). Society of petroleum engineers journal, 1979. 19(01): p. 15-28. Mortazavi-Manesh, S. and J.M. Shaw, Thixotropic rheological behavior of Maya crude oil. Energy & fuels, 2014. 28(2): p. 972-979. Nik, W.W., et al., Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 2005. 22(3): p. 249-255. Simanzhenkov, V. and R. Idem, Crude oil chemistry. 2003: Crc Press. Musić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94. Mehlhorn, H., Nanoparticles–Definitions, in Nanoparticles in the Fight Against Parasites. 2016, Springer. p. 1-14. Isernia, L.F., FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Materials Research, 2013. 16(4): p. 792-802. Topsoe, N. and H. Topsoe, FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. Journal of catalysis, 1993. 139(2): p. 641-651. Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons. Salopek, B., D. Krasic, and S. Filipovic, Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 1992. 4(1): p. 147. Sposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819. Ballard, M., R. Buscall, and F. Waite, The theory of shear-thickening polymer solutions. Polymer, 1988. 29(7): p. 1287-1293. Cortés, F.B., et al., Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 2012. 26(3): p. 1725-1730. Adams, J.J., Asphaltene adsorption, a literature review. Energy & Fuels, 2014. 28(5): p. 2831-2856. Moghadam, A.M. and M.B. Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019. 35(4): p. 531-563. Al-Zahrani, S.M., A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997. 17(3): p. 211-215. Song, K.-W., Y.-S. Kim, and G.-S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 2006. 7(2): p. 129-138. Laguna, M.T.R., M.P. Tarazona, and E. Saiz, The use of molecular dynamics for the study of solution properties of guar gum. The Journal of chemical physics, 2003. 119(2): p. 1148-1156. Montoya, T., et al., A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy & Fuels, 2014. 28(8): p. 4963-4975. Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069. Giraldo, L.J., et al., Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019. 174: p. 40-48. Li, S. and O. Torsæter. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. in SPE Middle East Unconventional Resources Conference and Exhibition. 2015. OnePetro. Almubarak, T., et al., Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 2020. 12(11): p. 2722. Al-Hajri, S., et al., Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS omega, 2022. 7(9): p. 7431-7443. Zheng, X., et al., Effect of proppant distribution pattern on fracture conductivity and permeability in channel fracturing. Journal of Petroleum Science and Engineering, 2017. 149: p. 98-106. Byrne, M.T. and C.A. Mcphee. The extinction of skin. in SPE International Conference and Exhibition on Formation Damage Control. 2012. SPE. Yudin, I.K. and M.A. Anisimov, Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions, in Asphaltenes, Heavy Oils, and Petroleomics. 2007, Springer. p. 439-468. Nassar, N.N., et al., Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Industrial & Engineering Chemistry Research, 2015. 54(33): p. 8201-8211. Canh, S.T., et al., Organic and inorganic formation damage and remediation. Petrovietnam Journal, 2017. 6: p. 39-44. Budd, N., et al. The Remediation of Oilfield Asphaltenic Deposits: Near-Well-Bore Application. in SPE International Conference and Exhibition on Formation Damage Control. 2018. SPE. Mehana, M. and M.O. Bashir, Diagnostic fracture injection test (DFIT). Petroleum Today, 2015. 11: p. 26. Earlougher Jr, R.C., R. Kersch, and H. Ramey Jr, Wellbore effects in injection well testing. Journal of Petroleum Technology, 1973. 25(11): p. 1244-1250. Gringarten, A., H. Ramey Jr, and R. Raghavan, Applied pressure analysis for fractured wells. Journal of Petroleum Technology, 1975. 27(07): p. 887-892. Yew, C.H. and X. Weng, Mechanics of hydraulic fracturing. 2014: Gulf Professional Publishing. Cleary, J.M., Hydraulic fracture theory. Vol. 251. 1958: Division of the Illinois State Geological Survey. Barree, R.D., V.L. Barree, and D. Craig. Holistic fracture diagnostics. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 2007. SPE. Cheremisinoff, N.P. and A. Davletshin, Hydraulic fracturing operations: handbook of environmental management practices. 2015: John Wiley & Sons. Martinez, A., C. Wright, and T. Wright. Field Application of Real-Time Hydraulic Fracturing Analysis. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1993. SPE. Montgomery, C.T. and M.B. Smith, Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 2010. 62(12): p. 26-40. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Ingeniería Química |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86422/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86422/2/1017211010.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86422/3/1017211010.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a b7cc7d4c8194ed9d286ee1050c5cf583 8cde66f729cc6d024c58512a62d31ffe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089920503873536 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Cortés Correa, Farid B.d528af65971fbc53bd87738e23b4c686Giraldo Muñoz, Maria Alejandra1a2e36b3d4ad124e2e93a525d2d9f5bbFenómenos de superficie - Michael Polanyi2024-07-09T19:45:38Z2024-07-09T19:45:38Z2024https://repositorio.unal.edu.co/handle/unal/86422Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEn la actualidad, el uso de la nanotecnología aplicada a diferentes ramas de la industria global ha sido de gran efectividad, esto incluye a la industria del petróleo y gas que cada día enfrenta retos mayores para suplir la demanda energética mundial, volcando sus esfuerzos a la recuperación de crudo pesado y extrapesado, principalmente en países como Colombia en donde esta condición es característica de los fluidos producidos. El presente estudio tiene como objetivo desarrollar y evaluar nanofluidos de fractura con doble propósito: aumento en la movilidad de crudos pesados y reducción del daño de formación. Se realizaron diferentes pruebas estáticas y dinámicas en condiciones de laboratorio, empleando un crudo de 11,6 grados API, caracterizando y modificando superficialmente dos nanopartículas de sílice fumárica de diferentes tamaños y nanopartículas de alúmina, y utilizando un fluido de fractura comercial. Se evaluaron las interacciones entre las nanopartículas y el crudo pesado y la superficie de núcleos sintéticos humectables al agua y al aceite; además de su comportamiento en presencia de aditivos críticos del fluido de fractura. La nanopartícula con mejor desempeño fue la sílice fumárica neutra de 7 nm a 1000 mg/L, la cual fue empleada para preparar un nanofluido de fractura a partir del fluido de fractura comercial y garantizar condiciones idénticas de comportamiento reológico, así como: cambio en la humectabilidad de medios porosos hacia el agua, mejoramiento de permeabilidades relativas, disminución de daño de formación y reducción de viscosidad del crudo pesado. Con base en estos resultados, el nanofluido de fractura fue seleccionado y utilizado en la primera aplicación de campo a nivel mundial de fracturamiento hidráulico y nanotecnología, obteniendo excelentes resultados de incremental de aceite, disminución de % BSW y reducción de viscosidad de crudos pesados, que han permitido llevar a cabo operaciones exitosas implementando la tecnología en campo. (Tomado de la fuente)The utilization of nanotechnology across various global industry sectors has proven remarkably efficacious. Notably, nanotechnology has emerged as a pivotal solution in the oil and gas industry, where the imperative to meet escalating global energy demands poses ever-greater challenges. This is particularly pronounced in regions such as Colombia, where heavy and extra-heavy crude oil production is characteristic and demands innovative approaches. This study endeavors to advance the development and assessment of fracturing nanofluids with a dual objective: enhancing the mobility of heavy crude oil while mitigating formation damage. Through a series of rigorous laboratory experiments encompassing static and dynamic assessments, employing an 11.6-degree API crude oil, two variants of fumaric silica nanoparticles, alumina nanoparticles, and a commercial fracturing fluid, this study scrutinized the interactions among nanoparticles, heavy crude oil, and synthetic cores exhibiting both water- and oil-wettable characteristics. Furthermore, the performance of these nanoparticle configurations in conjunction with critical fracturing fluid additives was meticulously evaluated. The optimal nanoparticle configuration emerged as the 7 nm neutral fumaric silica at a 1000 mg/L concentration. This nanoparticle was integrated into a fracturing nanofluid derived from the commercial fracturing fluid, ensuring uniform rheological behavior and inducing a shift in porous media wettability towards water. Consequently, notable improvements in relative permeabilities, formation damage reduction, and heavy oil viscosity attenuation were observed. Building upon these findings, nanofluid fracturing was deployed, which marked the inaugural field application of hydraulic fracturing integrated with nanotechnology. The outcomes were exceptional, manifesting in substantial increments in oil production, a significant reduction in BSW%, and viscosity mitigation in heavy crude oils. These successes catalyzed several subsequent operations worldwide, firmly establishing the efficacy of this technology in practical field applications.El desarrollo de la investigación consta de dos capítulos, el primero acerca de la evaluación estática y dinámica del nanofluido de fractura y el segundo que contiene la aplicación de la tecnología desarrollada en campos colombianos de crudo pesado, las respectivas conclusiones y recomendaciones para posibles trabajos futuros.MaestríaMagíster en Ingeniería - Ingeniería QuímicaExperimentos y pruebas realizadas para desarrollar un nanofluido de fractura que mejore la movilidad del crudo dentro de los medios porosos. A través del flujo de trabajo experimental comenzando con pruebas estáticas, dinámicas y concluyendo con evaluación en campo.Evaluación el efecto de nanopartículas de diferentes naturalezas químicas en los fluidos de fractura, buscando aumentar la movilidad del crudo pesado en el medio poroso mediante dos mecanismos: la reducción de la viscosidad del crudo y el cambio de humectabilidad en la superficie de la roca, todo esto de la mano de una reducción del daño de formaciónIngeniería Química E Ingeniería De Petróleos.Sede Medellín103 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín540 - Química y ciencias afines660 - Ingeniería química620 - Ingeniería y operaciones afines::622 - Minería y operaciones relacionadasReologíaNanotecnologíaIndustria del petróleoDinámica de fluidosNanopartículasNanofluidoFluido de fracturaComportamiento reológicoDaño de formaciónNanofluidFracture fluidRheological behaviorFormation damageDesarrollo de un nanofluido de fractura con doble propósito : aumento en la movilidad de crudos pesados y reducción del daño de formaciónDevelopment and evaluation from laboratory to field trial of a dual-purpose fracturing nanofluid: Inhibition of associated formation damage and increasing heavy crude oil mobilityTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaShafiee, S. and E. Topal, When will fossil fuel reserves be diminished? Energy policy, 2009. 37(1): p. 181-189.Hirsch, R.L., R. Bezdek, and R. Wendling, Peaking of World Oil Production and Its Mitigation. Driving Climate Change: Cutting Carbon from Transportation, 2010: p. 9.Williams, B., Heavy hydrocarbons playing key role in peak-oil debate, future energy supply. Oil & Gas Journal, 2003. 101(29): p. 20-27.Chew, K.J., The future of oil: unconventional fossil fuels. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 2014. 372(2006): p. 20120324.Hinkle, A., et al., Correlating the chemical and physical properties of a set of heavy oils from around the world. Fuel, 2008. 87(13): p. 3065-3070.Meyer, R.F. and E.D. Attanasi, Heavy oil and natural bitumen-strategic petroleum resources. World, 2003. 434: p. 650-7.Jaspers, H.F., et al. Performance Review of Polymer Flooding in a Major Brown Oil Field of Sultanate of Oman. in SPE Enhanced Oil Recovery Conference. 2013. Society of Petroleum Engineers.Rana, M.S., et al., A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 2007. 86(9): p. 1216-1231.Savage, P.E., M.T. Klein, and S.G. Kukes, Asphaltene reaction pathways. 1. Thermolysis. Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 1169-1174.Maity, S., J. Ancheyta, and G. Marroquín, Catalytic aquathermolysis used for viscosity reduction of heavy crude oils: a review. Energy & Fuels, 2010. 24(5): p. 2809-2816.Das, S.K., Vapex: An efficient process for the recovery of heavy oil and bitumen. SPE journal, 1998. 3(03): p. 232-237.Cook, E.L. and A.W. Talash, In situ combustion process. 1969, Google Patents.Gateau, P., et al., Heavy oil dilution. Oil & gas science and technology, 2004. 59(5): p. 503-509.Pebdani, F.N. and W.R. Shu, Heavy oil recovery process using cyclic carbon dioxide steam stimulation. 1986, Google Patents.Cyr, T., R. Coates, and M. Polikar, Steam-assisted gravity drainage heavy oil recovery process. 2001, Google Patents.Italo Bahamon, J., et al. Successful Implementation of Hydraulic Fracturing Techniques in High Permeability Heavy Oil Wells in the Llanos Basin-Colombia. in SPE Latin American and Caribbean Petroleum Engineering Conference. 2015. Society of Petroleum Engineers.Zabala, R., C. Franco, and F. Cortés. Application of nanofluids for improving oil mobility in heavy oil and extra-heavy oil: a field test. in SPE Improved Oil Recovery Conference. 2016. Society of Petroleum Engineers.Franco, C.A., et al., Adsorption and subsequent oxidation of colombian asphaltenes onto nickel and/or palladium oxide supported on fumed silica nanoparticles. Energy & Fuels, 2013. 27(12): p. 7336-7347.Le, D.H., et al., Removal of fracturing gel: A laboratory and modeling investigation accounting for viscous fingering channels. Journal of Petroleum Science and Engineering, 2012. 88: p. 145-155.Uren, L.C., Petroleum production engineering. 1934: McGraw-Hill Book Company.Weaver, J.D., N.C. Schultheiss, and F. Liang. Fracturing Fluid Conductivity Damage and Recovery Efficiency. in SPE European Formation Damage Conference & Exhibition. 2013. Society of Petroleum Engineers.Quintero, L., et al. Cases history studies of production enhancement in cased hole wells using microemulsion fluids. in 8th European Formation Damage Conference. 2009. Society of Petroleum Engineers.Zelenev, A.S., et al. Microemulsion-assisted fluid recovery and improved permeability to gas in shale formations. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.Penny, G.S., T.A. Dobkins, and J.T. Pursley. Field study of completion fluids to enhance gas production in the Barnett Shale. in SPE Gas Technology Symposium. 2006. Society of Petroleum Engineers.Chen, Z., et al. Formation damage induced by fracture fluids in coalbed methane reservoirs. in SPE Asia Pacific Oil & Gas Conference and Exhibition. 2006. Society of Petroleum Engineers.Huang, T., J.B. Crews, and G. Agrawal. Nanoparticle pseudocrosslinked micellar fluids: Optimal solution for fluid-loss control with internal breaking. in SPE International Symposium and Exhibiton on Formation Damage Control. 2010. Society of Petroleum Engineers.Hawkins, G. Laboratory Study of Proppant-Pack Permeability Reduction Caused by Fracturing Fluids Concentrated During Closure. in SPE Annual Technical Conference and Exhibition. 1988. Society of Petroleum Engineers.Bostrom, N., et al. The time-dependent permeability damage caused by fracture fluid. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.Huang, T. and J.B. Crews, Nanotechnology applications in viscoelastic surfactant stimulation fluids. SPE Production & Operations, 2008. 23(04): p. 512-517.Worlow, D. and S. Holditch. Rheologic Measurements of a Crosslinked Fracture Fluid Under Conditions Expected During a Fracture Treatment. in Low Permeability Reservoirs Symposium. 1989. Society of Petroleum Engineers.Husein, M., et al. Application of In-House Prepared Nanoparticles as Filtration Control Additive to Reduce Formation Damage. in SPE International Symposium and Exhibition on Formation Damage Control. 2014. Society of Petroleum Engineers.Christian, C.F., et al. Production Enhancement of Cased-Hole Wells Using Mesophase Fluids. in SPE Saudia Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.Montgomery, C., Fracturing fluid components. Effective and Sustainable Hydraulic Fracturing. InTech Publishing. Available at: http://www. intechopen. com/books/effective-and-sustainablehydraulic-fracturing (Accessed February 2014), 2013: p. 25-45.Paktinat, J., et al., Field case studies: Damage preventions through leakoff control of fracturing fluids in marginal/low-pressure gas reservoirs. SPE Production & Operations, 2007. 22(03): p. 357-367.Dos Santos, J.A.C., R.C.B. De Melo, and G.F. Di Lullo, Case-History Evaluation of RPMs on Conformance Fracturing Applications. Society of Petroleum Engineers.Diaz, G., et al., Fracture Conformance Treatments Using RPM: Efficiency and Durability Evaluation. Society of Petroleum Engineers.Castano, R., et al., Relative Permeability Modifier and Scale Inhibitor Combination in Fracturing Process at San Francisco Field in Colombia, South America. Society of Petroleum Engineers.Leal, J.A., et al., Unconventional RPM Applications in Hydraulic Fracturing. Society of Petroleum Engineers.Bennetzen, M.V. and K. Mogensen. Novel applications of nanoparticles for future enhanced oil recovery. in International petroleum technology conference. 2014. International Petroleum Technology Conference.Martín-Palma, R.J. and A. Lakhtakia. Nanotechnology: A Crash Course. 2010. SPIE Bellingham, WA.Taborda, E.A., et al., Effect of nanoparticles/nanofluids on the rheology of heavy crude oil and its mobility on porous media at reservoir conditions. Fuel, 2016. 184: p. 222-232.Al-Maamari, R.S. and J.S. Buckley, Asphaltene precipitation and alteration of wetting: the potential for wettability changes during oil production. SPE Reservoir Evaluation & Engineering, 2003. 6(04): p. 210-214.Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.Franco, C.A., et al., Nanoparticles for inhibition of asphaltenes damage: adsorption study and displacement test on porous media. Energy & Fuels, 2013. 27(6): p. 2899-2907.Betancur, S., et al., Role of particle size and surface acidity of silica gel nanoparticles in inhibition of formation damage by asphaltene in oil reservoirs. Industrial & Engineering Chemistry Research, 2016. 55(21): p. 6122-6132.Zhang, H., A. Nikolov, and D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions: Underlying mechanism and imbibition experiments. Energy & Fuels, 2014. 28(5): p. 3002-3009.Lafitte, V., et al. Nanomaterials in fracturing applications. in SPE International Oilfield Nanotechnology Conference and Exhibition. 2012. Society of Petroleum Engineers.Liang, F., et al., Reduced Polymer Loading, High Temperature Fracturing Fluids using Nano-crosslinkers. Society of Petroleum Engineers.Guzmán, J.D., et al., Effect of nanoparticle inclusion in fracturing fluids applied to tight gas-condensate reservoirs: Reduction of Methanol loading and the associated formation damage. Journal of Natural Gas Science and Engineering, 2017. 40: p. 347-355.Al-Muntasheri, G.A. A critical review of hydraulic fracturing fluids over the last decade. in SPE Western North American and Rocky Mountain Joint Meeting. 2014. Society of Petroleum Engineers.Harris, P.C., Fracturing-fluid additives. Journal of petroleum technology, 1988. 40(10): p. 1,277-1,279.Barnes, H.A., J.F. Hutton, and K. Walters, An introduction to rheology. Vol. 3. 1989: Elsevier.Barnes, H.A., A handbook of elementary rheology. 2000.Montgomery, C. Fracturing fluids. in ISRM International Conference for Effective and Sustainable Hydraulic Fracturing. 2013. International Society for Rock Mechanics and Rock Engineering.Kirkwood, J.G., F.P. Buff, and M.S. Green, The statistical mechanical theory of transport processes. III. The coefficients of shear and bulk viscosity of liquids. The Journal of Chemical Physics, 1949. 17(10): p. 988-994.Ewell, R.H. and H. Eyring, Theory of the Viscosity of Liquids as a Function of Temperature and Pressure. The Journal of Chemical Physics, 1937. 5(9): p. 726-736.Fox, T., et al., Rheology, Vol. 1. Academic Press, New York, 1956: p. 431-523.Rha, C., Theories and principles of viscosity, in Theory, determination and control of physical properties of food materials. 1975, Springer. p. 7-24.Sorbie, K., P. Clifford, and E. Jones, The rheology of pseudoplastic fluids in porous media using network modeling. Journal of Colloid and Interface Science, 1989. 130(2): p. 508-534.Api, R., Recommended Practice on Measuring the Viscous Properties of a Crosslinked Water-based Fracturing Fluid”. 1998, May.Kuhlbusch, T.A., et al., Nanoparticle exposure at nanotechnology workplaces: a review. Particle and fibre toxicology, 2011. 8(1): p. 22.Poole Jr, C.P. and F.J. Owens, Introduction to nanotechnology. 2003: John Wiley & Sons.Sanchez, F. and K. Sobolev, Nanotechnology in concrete–a review. Construction and building materials, 2010. 24(11): p. 2060-2071.Amanullah, M. and A.M. Al-Tahini. Nano-technology-its significance in smart fluid development for oil and gas field application. in SPE Saudi Arabia Section Technical Symposium. 2009. Society of Petroleum Engineers.Nabhani, N., M. Emami, and A.T. Moghadam. Application of nanotechnology and nanomaterials in oil and gas industry. in AIP Conference Proceedings. 2011. American Institute of Physics.Esmaeili, A. Applications of nanotechnology in oil and gas industry. in AIP conference proceedings. 2011. American Institute of Physics.Peng, B., et al., Applications of nanotechnology in oil and gas industry: Progress and perspective. The Canadian Journal of Chemical Engineering, 2018. 96(1): p. 91-100.Hirasaki, G., Wettability: fundamentals and surface forces. SPE Formation Evaluation, 1991. 6(02): p. 217-226.Giraldo, J., et al., Wettability alteration of sandstone cores by alumina-based nanofluids. Energy & Fuels, 2013. 27(7): p. 3659-3665.Castro, S., Análisis petrofísicos básicos y especiales. 2009: Universidad Nacional de Colombia Sede Medellín.Abdallah, W., et al., Fundamentals of wettability. Technology, 1986. 38(1125-1144): p. 268.Cassie, A. and S. Baxter, Wettability of porous surfaces. Transactions of the Faraday society, 1944. 40: p. 546-551.Maghzi, A., et al., Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation. Experimental Thermal and Fluid Science, 2012. 40: p. 168-176.Nazari Moghaddam, R., et al., Comparative study of using nanoparticles for enhanced oil recovery: wettability alteration of carbonate rocks. Energy & Fuels, 2015. 29(4): p. 2111-2119.Al-Anssari, S., et al., Effect of temperature and SiO2 nanoparticle size on wettability alteration of oil-wet calcite. Fuel, 2017. 206: p. 34-42.Dehghan Monfared, A., et al., Potential application of silica nanoparticles for wettability alteration of oil–wet calcite: A mechanistic study. Energy & Fuels, 2016. 30(5): p. 3947-3961.Cortés, F.B., et al., Adsorption-desorption of nc 7 asphaltenes over micro-and nanoparticles of silica and its impact on wettability alteration. CT&F-Ciencia, Tecnología y Futuro, 2016. 6(4): p. 89-106.Li, R., et al., Experimental investigation of silica-based nanofluid enhanced oil recovery: the effect of wettability alteration. Energy & Fuels, 2017. 31(1): p. 188-197.Ghannam, M.T., et al., Rheological properties of heavy & light crude oil mixtures for improving flowability. Journal of Petroleum Science and Engineering, 2012. 81: p. 122-128.Ali, L.H., K.A. Al-Ghannam, and J.M. Al-Rawi, Chemical structure of asphaltenes in heavy crude oils investigated by nmr. Fuel, 1990. 69(4): p. 519-521.Alboudwarej, H., et al., La importancia del petróleo pesado. Oilfield review, 2006. 18(2): p. 38-58.Martínez-Palou, R., et al., Transportation of heavy and extra-heavy crude oil by pipeline: A review. Journal of petroleum science and engineering, 2011. 75(3-4): p. 274-282.Schmidt, R., Thermal enhanced oil recovery current status and future needs. Chemical Engineering Progress;(USA), 1990. 86(1).Hong, K., Recent advances in steamflood technology. 1989.Hart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336.Sheng, J., Modern chemical enhanced oil recovery: theory and practice. 2010: Gulf Professional Publishing.Caudle, B. and A. Dyes, Improving miscible displacement by gas-water injection. 1958.Sheng, J., Enhanced oil recovery field case studies. 2013: Gulf Professional Publishing.Schramm, L.L., E.N. Stasiuk, and D.G. Marangoni, 2 Surfactants and their applications. Annual Reports Section" C"(Physical Chemistry), 2003. 99: p. 3-48.Mai, A. and A. Kantzas, Heavy oil waterflooding: effects of flow rate and oil viscosity. Journal of Canadian Petroleum Technology, 2009. 48(03): p. 42-51.Jiang, Q., Recovery of heavy oil and bitumen using vapex process in homogeneous and heterogenous reservoirs. 1997: University of Calgary.Montes, D., et al., Development of nanofluids for perdurability in viscosity reduction of extra-heavy oils. Energies, 2019. 12(6): p. 1068.Montes, D., et al., Effect of Textural Properties and Surface Chemical Nature of Silica Nanoparticles from Different Silicon Sources on the Viscosity Reduction of Heavy Crude Oil. ACS omega, 2020. 5(10): p. 5085-5097.Taborda, E.A., V. Alvarado, and F.B. Cortés, Effect of SiO2-based nanofluids in the reduction of naphtha consumption for heavy and extra-heavy oils transport: Economic impacts on the Colombian market. Energy Conversion and Management, 2017. 148: p. 30-42.Medina, O.E., et al., Nanotechnology Applied to Thermal Enhanced Oil Recovery Processes: A Review. Energies, 2019. 12(24): p. 4671.Shokrlu, Y.H. and T. Babadagli, Viscosity reduction of heavy oil/bitumen using micro-and nano-metal particles during aqueous and non-aqueous thermal applications. Journal of Petroleum Science and Engineering, 2014. 119: p. 210-220.Wei, L., J.-H. Zhu, and J.-H. Qi, Application of nano-nickel catalyst in the viscosity reduction of Liaohe extra-heavy oil by aqua-thermolysis. Journal of Fuel Chemistry and Technology, 2007. 35(2): p. 176-180.Montes, D., F.B. Cortés, and C.A. Franco, Reduction of heavy oil viscosity through ultrasound cavitation assisted by NiO nanocrystals-functionalized SiO2 nanoparticles. Dyna, 2018. 85(207): p. 153-160.Taborda, E.A., et al., Experimental and theoretical study of viscosity reduction in heavy crude oils by addition of nanoparticles. Energy & Fuels, 2017. 31(2): p. 1329-1338.Civan, F., Reservoir formation damage: fundamentals, modeling, assessment, and mitigation. 2015: Gulf Professional Publishing.MANUEL, G.E.J., NOMBRE DE TESIS: DAÑO A LA FORMACIÓN EN POZOS PETROLEROS. 2014, Universidad Nacional Autónoma de México.Civan, F., Overview of formation damage. Reservoir Formation Damage, 2016: p. 1-6.Civan, F. Formation damage mechanisms and their phenomenological modeling-an overview. in European formation damage conference. 2007. Society of Petroleum Engineers.Economides, M.J. and K.G. Nolte, Reservoir stimulation. Vol. 2. 1989: Prentice Hall Englewood Cliffs, NJ.Li, L., et al. Vital role of nanotechnology and nanomaterials in the field of oilfield chemistry. in IPTC 2013: International Petroleum Technology Conference. 2013. European Association of Geoscientists & Engineers.Betancur, S., C.A. Franco, and F.B. Cortés, Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. Journal of Magnetohydrodynamics and Plasma Research, 2016. 21(3): p. 289-322.Lopez, D., et al., Cardanol/SiO2 Nanocomposites for Inhibition of Formation Damage by Asphaltene Precipitation/Deposition in Light Crude Oil Reservoirs. Part I: Novel Nanocomposite Design Based on SiO2–Cardanol Interactions. Energy & Fuels, 2020. 34(6): p. 7048-7057.Belcher, C.K., et al. Maximizing production life with the use of nanotechnology to prevent fines migration. in International Oil and Gas Conference and Exhibition in China. 2010. Society of Petroleum Engineers.Mansour, M., et al., Using nanotechnology to prevent fines migration while production. Petroleum, 2020.Mady, M.F. and M.A. Kelland, Review of nanotechnology impacts on oilfield scale management. ACS Applied Nano Materials, 2020. 3(8): p. 7343-7364.López, D., et al., Well injectivity loss during chemical gas stimulation process in gas-condensate tight reservoirs. Fuel, 2021. 283: p. 118931.Filgueiras, P.R., et al., Determination of API gravity, kinematic viscosity and water content in petroleum by ATR-FTIR spectroscopy and multivariate calibration. Fuel, 2014. 116: p. 123-130.Institute, E., IP 469: Determination of Saturated, Aromatic and Polar Compounds in Petroleum Products by Thin Layer Chromatography and Flame Ionization Detection. 2006, Energy Institute Publications United Kingdom.Austrich, A., E. Buenrostro-Gonzalez, and C. Lira-Galeana, ASTM D-5307 and ASTM D-7169 SIMDIS standards: a comparison and correlation of methods. Petroleum Science and Technology, 2015. 33(6): p. 657-663.Nassar, N.N., A. Hassan, and P. Pereira-Almao, Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of colloid and interface science, 2011. 360(1): p. 233-238.Hosseinpour, N., et al., Asphaltene adsorption onto acidic/basic metal oxide nanoparticles toward in situ upgrading of reservoir oils by nanotechnology. Langmuir, 2013. 29(46): p. 14135-14146.Xu, R., Particle characterization: light scattering methods. Vol. 13. 2001: Springer Science & Business Media.López, D., et al., Metal oxide nanoparticles supported on macro-mesoporous aluminosilicates for catalytic steam gasification of heavy oil fractions for on-site upgrading. Catalysts, 2017. 7(11): p. 319.Waseda, Y., E. Matsubara, and K. Shinoda, X-ray diffraction crystallography: introduction, examples and solved problems. 2011: Springer Science & Business Media.Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018. 51: p. 53-64.Clogston, J.D. and A.K. Patri, Zeta potential measurement, in Characterization of nanoparticles intended for drug delivery. 2011, Springer. p. 63-70.Jan, API Recommended Practices for Standard Procedures for Evaluation of Hydraulic Fracturing Fluids , API RP 39, in Dallas. 1983.Roskes, B., SketchUp 2015 Hands-On: LayOut. 2015.Guzmán, J.D., et al., Importance of the adsorption method used for obtaining the nanoparticle dosage for asphaltene-related treatments. Energy & Fuels, 2016. 30(3): p. 2052-2059.Fink, J., Hydraulic Fracturing Chemicals and Fluids Technology. 2013: Gulf Professional Publishing.Franco-Aguirre, M., et al., Interaction of anionic surfactant-nanoparticles for gas-Wettability alteration of sandstone in tight gas-condensate reservoirs. Journal of Natural Gas Science and Engineering, 2018.Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 1-error analysis. Society of Petroleum Engineers Journal, 1984. 24(02): p. 209-214.Tao, T. and A. Watson, Accuracy of JBN estimates of relative permeability: part 2-algorithms. Society of Petroleum Engineers Journal, 1984. 24(02): p. 215-223.Sigmund, P. and F. McCaffery, An improved unsteady-state procedure for determining the relative-permeability characteristics of heterogeneous porous media (includes associated papers 8028 and 8777). Society of petroleum engineers journal, 1979. 19(01): p. 15-28.Mortazavi-Manesh, S. and J.M. Shaw, Thixotropic rheological behavior of Maya crude oil. Energy & fuels, 2014. 28(2): p. 972-979.Nik, W.W., et al., Rheology of bio-edible oils according to several rheological models and its potential as hydraulic fluid. Industrial Crops and Products, 2005. 22(3): p. 249-255.Simanzhenkov, V. and R. Idem, Crude oil chemistry. 2003: Crc Press.Musić, S., N. Filipović-Vinceković, and L. Sekovanić, Precipitation of amorphous SiO2 particles and their properties. Brazilian journal of chemical engineering, 2011. 28(1): p. 89-94.Mehlhorn, H., Nanoparticles–Definitions, in Nanoparticles in the Fight Against Parasites. 2016, Springer. p. 1-14.Isernia, L.F., FTIR study of the relation, between extra-framework aluminum species and the adsorbed molecular water, and its effect on the acidity in ZSM-5 steamed zeolite. Materials Research, 2013. 16(4): p. 792-802.Topsoe, N. and H. Topsoe, FTIR studies of Mo/Al2O3-based catalysts: II. Evidence for the presence of SH groups and their role in acidity and activity. Journal of catalysis, 1993. 139(2): p. 641-651.Socrates, G., Infrared and Raman characteristic group frequencies: tables and charts. 2004: John Wiley & Sons.Salopek, B., D. Krasic, and S. Filipovic, Measurement and application of zeta-potential. Rudarsko-geolosko-naftni zbornik, 1992. 4(1): p. 147.Sposito, G., On points of zero charge. Environmental science & technology, 1998. 32(19): p. 2815-2819.Ballard, M., R. Buscall, and F. Waite, The theory of shear-thickening polymer solutions. Polymer, 1988. 29(7): p. 1287-1293.Cortés, F.B., et al., Sorption of asphaltenes onto nanoparticles of nickel oxide supported on nanoparticulated silica gel. Energy & Fuels, 2012. 26(3): p. 1725-1730.Adams, J.J., Asphaltene adsorption, a literature review. Energy & Fuels, 2014. 28(5): p. 2831-2856.Moghadam, A.M. and M.B. Salehi, Enhancing hydrocarbon productivity via wettability alteration: a review on the application of nanoparticles. Reviews in Chemical Engineering, 2019. 35(4): p. 531-563.Al-Zahrani, S.M., A generalized rheological model for shear thinning fluids. Journal of Petroleum Science and Engineering, 1997. 17(3): p. 211-215.Song, K.-W., Y.-S. Kim, and G.-S. Chang, Rheology of concentrated xanthan gum solutions: Steady shear flow behavior. Fibers and Polymers, 2006. 7(2): p. 129-138.Laguna, M.T.R., M.P. Tarazona, and E. Saiz, The use of molecular dynamics for the study of solution properties of guar gum. The Journal of chemical physics, 2003. 119(2): p. 1148-1156.Montoya, T., et al., A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy & Fuels, 2014. 28(8): p. 4963-4975.Thommes, M., et al., Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 2015. 87(9-10): p. 1051-1069.Giraldo, L.J., et al., Enhanced waterflooding with NiO/SiO2 0-D Janus nanoparticles at low concentration. Journal of Petroleum Science and Engineering, 2019. 174: p. 40-48.Li, S. and O. Torsæter. The impact of nanoparticles adsorption and transport on wettability alteration of intermediate wet berea sandstone. in SPE Middle East Unconventional Resources Conference and Exhibition. 2015. OnePetro.Almubarak, T., et al., Insights on potential formation damage mechanisms associated with the use of gel breakers in hydraulic fracturing. Polymers, 2020. 12(11): p. 2722.Al-Hajri, S., et al., Perspective Review of Polymers as Additives in Water-Based Fracturing Fluids. ACS omega, 2022. 7(9): p. 7431-7443.Zheng, X., et al., Effect of proppant distribution pattern on fracture conductivity and permeability in channel fracturing. Journal of Petroleum Science and Engineering, 2017. 149: p. 98-106.Byrne, M.T. and C.A. Mcphee. The extinction of skin. in SPE International Conference and Exhibition on Formation Damage Control. 2012. SPE.Yudin, I.K. and M.A. Anisimov, Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions, in Asphaltenes, Heavy Oils, and Petroleomics. 2007, Springer. p. 439-468.Nassar, N.N., et al., Development of a population balance model to describe the influence of shear and nanoparticles on the aggregation and fragmentation of asphaltene aggregates. Industrial & Engineering Chemistry Research, 2015. 54(33): p. 8201-8211.Canh, S.T., et al., Organic and inorganic formation damage and remediation. Petrovietnam Journal, 2017. 6: p. 39-44.Budd, N., et al. The Remediation of Oilfield Asphaltenic Deposits: Near-Well-Bore Application. in SPE International Conference and Exhibition on Formation Damage Control. 2018. SPE.Mehana, M. and M.O. Bashir, Diagnostic fracture injection test (DFIT). Petroleum Today, 2015. 11: p. 26.Earlougher Jr, R.C., R. Kersch, and H. Ramey Jr, Wellbore effects in injection well testing. Journal of Petroleum Technology, 1973. 25(11): p. 1244-1250.Gringarten, A., H. Ramey Jr, and R. Raghavan, Applied pressure analysis for fractured wells. Journal of Petroleum Technology, 1975. 27(07): p. 887-892.Yew, C.H. and X. Weng, Mechanics of hydraulic fracturing. 2014: Gulf Professional Publishing.Cleary, J.M., Hydraulic fracture theory. Vol. 251. 1958: Division of the Illinois State Geological Survey.Barree, R.D., V.L. Barree, and D. Craig. Holistic fracture diagnostics. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 2007. SPE.Cheremisinoff, N.P. and A. Davletshin, Hydraulic fracturing operations: handbook of environmental management practices. 2015: John Wiley & Sons.Martinez, A., C. Wright, and T. Wright. Field Application of Real-Time Hydraulic Fracturing Analysis. in SPE Rocky Mountain Petroleum Technology Conference/Low-Permeability Reservoirs Symposium. 1993. SPE.Montgomery, C.T. and M.B. Smith, Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, 2010. 62(12): p. 26-40.Desarrollo de un nanofluido de fractura con doble propósito: Aumento en la movilidad de crudos pesados y reducción del daño de formaciónInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86422/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1017211010.2024.pdf1017211010.2024.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf1778979https://repositorio.unal.edu.co/bitstream/unal/86422/2/1017211010.2024.pdfb7cc7d4c8194ed9d286ee1050c5cf583MD52THUMBNAIL1017211010.2024.pdf.jpg1017211010.2024.pdf.jpgGenerated Thumbnailimage/jpeg5089https://repositorio.unal.edu.co/bitstream/unal/86422/3/1017211010.2024.pdf.jpg8cde66f729cc6d024c58512a62d31ffeMD53unal/86422oai:repositorio.unal.edu.co:unal/864222024-07-09 23:12:17.49Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |