Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa

ilustraciones, diagramas

Autores:
Peña Sterling, Daniel Esteban
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86168
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86168
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química::661 - Tecnología de químicos industriales
Degradación térmica
Biocarburante
reactor químico
thermal degradation
biofuels
chemical reactor
Pirólisis rápida
Biomasa
Reactor auger
Modelo de flujo pistón
Fast pyrolysis
Biomass
Auger reactor
Plug flow model
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e5c8de2a9119be2c0d2a756047fafa48
oai_identifier_str oai:repositorio.unal.edu.co:unal/86168
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
dc.title.translated.eng.fl_str_mv Technical evaluation of an auger reactor for the fast biomass pyrolysis process
title Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
spellingShingle Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
660 - Ingeniería química::661 - Tecnología de químicos industriales
Degradación térmica
Biocarburante
reactor químico
thermal degradation
biofuels
chemical reactor
Pirólisis rápida
Biomasa
Reactor auger
Modelo de flujo pistón
Fast pyrolysis
Biomass
Auger reactor
Plug flow model
title_short Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
title_full Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
title_fullStr Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
title_full_unstemmed Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
title_sort Evaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasa
dc.creator.fl_str_mv Peña Sterling, Daniel Esteban
dc.contributor.advisor.spa.fl_str_mv Chejne Janna, Farid
dc.contributor.author.spa.fl_str_mv Peña Sterling, Daniel Esteban
dc.contributor.researchgroup.spa.fl_str_mv Termodinámica Aplicada y Energías Alternativas
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química::661 - Tecnología de químicos industriales
topic 660 - Ingeniería química::661 - Tecnología de químicos industriales
Degradación térmica
Biocarburante
reactor químico
thermal degradation
biofuels
chemical reactor
Pirólisis rápida
Biomasa
Reactor auger
Modelo de flujo pistón
Fast pyrolysis
Biomass
Auger reactor
Plug flow model
dc.subject.agrovoc.spa.fl_str_mv Degradación térmica
Biocarburante
reactor químico
dc.subject.agrovoc.eng.fl_str_mv thermal degradation
biofuels
chemical reactor
dc.subject.proposal.spa.fl_str_mv Pirólisis rápida
Biomasa
Reactor auger
Modelo de flujo pistón
dc.subject.proposal.eng.fl_str_mv Fast pyrolysis
Biomass
Auger reactor
Plug flow model
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-27T21:43:09Z
dc.date.available.none.fl_str_mv 2024-05-27T21:43:09Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86168
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86168
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Afanasjeva, N., Castillo, L. C., & Sinisterra, J. C. (2018). Review Biomasa lignocelulósica . Parte II : Tendencias en la pirólisis de biomasa. Journal of Science with Technological Applications, 5(2018), 4–22. https://doi.org/10.34294/j.jsta.18.5.31 %7C
Andrés Obando, G. (2015). Condiciones de diseño de un Reactor de Pirolisis a escala de laboratorio para la obtención de Biocarbón a partir de Residuos Orgánicos Sólidos ( ROS ). Repositorio RIDUM, 1, 83. https://ridum.umanizales.edu.co/jspui/bitstream/20.500.12746/2590/1/informe final trabajo investigacion Gabriel_Obando_2016.pdf
Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015
Aramideh, S., Xiong, Q., Kong, S. C., & Brown, R. C. (2015). Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel, 156, 234–242. https://doi.org/10.1016/j.fuel.2015.04.038
Aschjem, C. W. S. (2019). Modeling and optimization of pyrolysis reactors. Norwegian University of Life Science, 20. http://hdl.handle.net/11250/2608647
Aylón, E., Fernández-Colino, A., Navarro, M. V., Murillor, R., García, T., & Mastral, A. M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Industrial and Engineering Chemistry Research, 47(12), 4029–4033. https://doi.org/10.1021/ie071573o
Bohn, M. S., & Benham, C. B. (1984). Biomass Pyrolysis with an Entrained Flow Reactor. Industrial and Engineering Chemistry Process Design and Development, 23(2), 355–363. https://doi.org/10.1021/i200025a030
Brassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020
Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 1479–1493. https://doi.org/10.1016/j.jinorgbio.2016.11.027
Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048
British Petroleum. (2022). BP Statistical Review of World Energy 2022,( 71st edition). Https://Www.Bp.Com/Content/Dam/Bp/Business-Sites/En/Global/Corporate/Pdfs/Energy-Economics/Statistical-Review/Bp-Stats-Review-2022-Full-Report.Pdf, 1–60. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
Calonaci, M., Grana, R., Barker Hemings, E., Bozzano, G., Dente, M., & Ranzi, E. (2010). Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy and Fuels, 24(10), 5727–5734. https://doi.org/10.1021/ef1008902
Campuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102(December 2018), 372–409. https://doi.org/10.1016/j.rser.2018.12.014
Chan, W. C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513. https://doi.org/10.1016/0016-2361(85)90364-3
Codignole Luz, F., Cordiner, S., Manni, A., Mulone, V., & Rocco, V. (2017). Pyrolysis in screw reactors: A 1-D numerical tool. Energy Procedia, 126, 683–689. https://doi.org/10.1016/j.egypro.2017.08.297
Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140. https://doi.org/10.1016/j.pecs.2008.08.001
Funke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130(May), 67–75. https://doi.org/10.1016/j.cep.2018.05.023
Garcia-Nunez, J. A., Pelaez-Samaniego, M. R., Garcia-Perez, M. E., Fonts, I., Abrego, J., Westerhof, R. J. M., & Garcia-Perez, M. (2017). Historical Developments of Pyrolysis Reactors: A Review. In Energy and Fuels (Vol. 31, Issue 6). https://doi.org/10.1021/acs.energyfuels.7b00641
Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/en5124952
Jalalifar, S., Abbassi, R., Garaniya, V., Salehi, F., Papari, S., Hawboldt, K., & Strezov, V. (2020). CFD analysis of fast pyrolysis process in a pilot-scale auger reactor. Fuel, 273(March), 117782. https://doi.org/10.1016/j.fuel.2020.117782
Lathouwers, D., & Bellan, J. (2001). Modeling of Biomass Pyrolysis for Hydrogen Production: The Fluidized Bed Reactor. Proceedings of the 2001 DOE Hydrogen Program Review, 1–35.
Liang, P., Wang, Z., & Bi, J. (2008). Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer. Fuel, 87(4–5), 435–442. https://doi.org/10.1016/j.fuel.2007.06.022
Liu, S., Xing, Y., Chen, H., Tang, P., Jiang, J., Tang, S., & Liang, B. (2017). Sustainable Reactors for Biomass Conversion Using Pyrolysis and Fermentation. In Encyclopedia of Sustainable Technologies (Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10245-3
Miller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126(1–6), 97–137. https://doi.org/10.1080/00102209708935670
Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320. https://doi.org/10.1016/j.jaap.2016.04.019
Morf, P., Hasler, P., & Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81(7), 843–853. https://doi.org/10.1016/S0016-2361(01)00216-2
Nachenius, R. W., Van De Wardt, T. A., Ronsse, F., & Prins, W. (2015). Residence time distributions of coarse biomass particles in a screw conveyor reactor. Fuel Processing Technology, 130(C), 87–95. https://doi.org/10.1016/j.fuproc.2014.09.039
Papari, S., & Hawboldt, K. (2017). Development and Validation of a Process Model to Describe Pyrolysis of Forestry Residues in an Auger Reactor. Energy and Fuels, 31(10), 10833–10841. https://doi.org/10.1021/acs.energyfuels.7b01263
Peacocke, G. V. C., & Bridgwater, A. V. (1994). Ablative plate pyrolysis of biomass for liquids. Biomass and Bioenergy, 7(1–6), 147–154. https://doi.org/10.1016/0961-9534(94)00054-W
Pérez-Rodríguez, C. P., Ríos, L. A., Duarte González, C. S., Montaña, A., & García-Marroquín, C. (2023). Aprovechamiento de la biomasa residual como fuente de energía renovable en Colombia: escenario de gasificación potencial. Palmas, 44(1), 65–82.
Puente, F. (2012). Cogasificación De Combustibles Fósiles Sólidos Y Orujillo Hasta El 10% En Peso, En La Central De Gasificación Integrada En Ciclo Combinado (Gicc) De Elcogas. 261. https://pdfs.semanticscholar.org/72ce/c66da2d0c2412d7c7ad0ce723f74380858f4.pdf
Qi, F., & Wright, M. M. (2020). A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and Mass Transfer, 150. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119308
Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(March), 59–69. https://doi.org/10.1016/j.rser.2017.03.136
Shi, X., Ronsse, F., Nachenius, R., & Pieters, J. G. (2019). 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production. Renewable Energy, 143, 1477–1487. https://doi.org/10.1016/j.renene.2019.05.088
Sun, S., Tian, H., Zhao, Y., Sun, R., & Zhou, H. (2010). Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource Technology, 101(10), 3678–3684. https://doi.org/10.1016/j.biortech.2009.12.092
Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019
Wagenaar, B. M., Prins, W., & van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109–5126. https://doi.org/10.1016/0009-2509(94)00392-0
Zhang, T., Zhou, Y., Li, L., Zhao, Y., De Felici, M., Reiter, R. J., & Shen, W. (2018). Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. Journal of Pineal Research, 65(2), 67–77. https://doi.org/10.1111/jpi.12497
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 57 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86168/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86168/2/1084899154.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
568120d8bd7badada44f3e82efde1f44
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886158663155712
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Chejne Janna, Faride4e077b1965b5e48b729e0a9d8c1cbc0600Peña Sterling, Daniel Estebandb9dd440891752ce08faf6561088f922Termodinámica Aplicada y Energías Alternativas2024-05-27T21:43:09Z2024-05-27T21:43:09Z2023https://repositorio.unal.edu.co/handle/unal/86168Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSe demostró a través del modelamiento y simulación que un reactor auger es una alternativa tecnológica viable para obtener biocombustibles con rendimientos de hasta el 65% mediante el proceso de pirólisis rápida de biomasa. Se comparó inicialmente con diferentes reactores usados actualmente en la industria, identificando sus ventajas y desventajas. Posteriormente, se modela la reacción química en el reactor asumiendo el comportamiento de flujo pistón, en estado estacionario y con el uso de balines de acero como elemento transportador de calor. Se soluciona numéricamente el modelo y se usaron datos tomados de literatura para realizar un análisis paramétrico, permitiendo determinar que la temperatura de reacción y el diámetro de partícula de biomasa tienen alta incidencia en el rendimiento de productos alcanzados. Se prueba el modelo usando datos experimentales de la literatura, encontrando buen ajuste para ciertas condiciones de operación, con una desviación media relativa de hasta 7.2 %. (Texto tomado de la fuente).Through modeling and simulation, it was demonstrated that an auger reactor is a viable technological alternative for obtaining biofuels with yields of up to 65% through the fast pyrolysis process of biomass. It was initially compared with different reactors currently used in the industry, identifying their advantages and disadvantages. Subsequently, the chemical reaction in the reactor was modeled assuming piston flow behavior in a steady state and using steel pellets as a heat-carrying element. The model was numerically solved, and literature data were used to conduct a parametric analysis, allowing the determination that the reaction temperature and biomass particle diameter have a high impact on the achieved product yields. The model was tested using experimental data from the literature, showing a good fit for certain operating conditions, with a relative mean deviation of up to 7.2%.MaestríaMagíster en Ingeniería - Ingeniería QuímicaModelamiento y simulación de procesosxvi, 57 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá660 - Ingeniería química::661 - Tecnología de químicos industrialesDegradación térmicaBiocarburantereactor químicothermal degradationbiofuelschemical reactorPirólisis rápidaBiomasaReactor augerModelo de flujo pistónFast pyrolysisBiomassAuger reactorPlug flow modelEvaluación técnica de un reactor auger para el proceso de pirólisis rápida de biomasaTechnical evaluation of an auger reactor for the fast biomass pyrolysis processTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAfanasjeva, N., Castillo, L. C., & Sinisterra, J. C. (2018). Review Biomasa lignocelulósica . Parte II : Tendencias en la pirólisis de biomasa. Journal of Science with Technological Applications, 5(2018), 4–22. https://doi.org/10.34294/j.jsta.18.5.31 %7CAndrés Obando, G. (2015). Condiciones de diseño de un Reactor de Pirolisis a escala de laboratorio para la obtención de Biocarbón a partir de Residuos Orgánicos Sólidos ( ROS ). Repositorio RIDUM, 1, 83. https://ridum.umanizales.edu.co/jspui/bitstream/20.500.12746/2590/1/informe final trabajo investigacion Gabriel_Obando_2016.pdfAnex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., & Dutta, A. (2010). Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways. Fuel, 89(SUPPL. 1), S29–S35. https://doi.org/10.1016/j.fuel.2010.07.015Aramideh, S., Xiong, Q., Kong, S. C., & Brown, R. C. (2015). Numerical simulation of biomass fast pyrolysis in an auger reactor. Fuel, 156, 234–242. https://doi.org/10.1016/j.fuel.2015.04.038Aschjem, C. W. S. (2019). Modeling and optimization of pyrolysis reactors. Norwegian University of Life Science, 20. http://hdl.handle.net/11250/2608647Aylón, E., Fernández-Colino, A., Navarro, M. V., Murillor, R., García, T., & Mastral, A. M. (2008). Waste tire pyrolysis: Comparison between fixed bed reactor and moving bed reactor. Industrial and Engineering Chemistry Research, 47(12), 4029–4033. https://doi.org/10.1021/ie071573oBohn, M. S., & Benham, C. B. (1984). Biomass Pyrolysis with an Entrained Flow Reactor. Industrial and Engineering Chemistry Process Design and Development, 23(2), 355–363. https://doi.org/10.1021/i200025a030Brassard, P., Godbout, S., & Raghavan, V. (2017). Pyrolysis in auger reactors for biochar and bio-oil production: A review. Biosystems Engineering, 161, 80–92. https://doi.org/10.1016/j.biosystemseng.2017.06.020Bridgwater, A. V., Meier, D., & Radlein, D. (1999). An overview of fast pyrolysis of biomass. Organic Geochemistry, 1479–1493. https://doi.org/10.1016/j.jinorgbio.2016.11.027Bridgwater, A. V. (2012). Review of fast pyrolysis of biomass and product upgrading. Biomass and Bioenergy, 38, 68–94. https://doi.org/10.1016/j.biombioe.2011.01.048British Petroleum. (2022). BP Statistical Review of World Energy 2022,( 71st edition). Https://Www.Bp.Com/Content/Dam/Bp/Business-Sites/En/Global/Corporate/Pdfs/Energy-Economics/Statistical-Review/Bp-Stats-Review-2022-Full-Report.Pdf, 1–60. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdfCalonaci, M., Grana, R., Barker Hemings, E., Bozzano, G., Dente, M., & Ranzi, E. (2010). Comprehensive kinetic modeling study of bio-oil formation from fast pyrolysis of biomass. Energy and Fuels, 24(10), 5727–5734. https://doi.org/10.1021/ef1008902Campuzano, F., Brown, R. C., & Martínez, J. D. (2019). Auger reactors for pyrolysis of biomass and wastes. Renewable and Sustainable Energy Reviews, 102(December 2018), 372–409. https://doi.org/10.1016/j.rser.2018.12.014Chan, W. C. R., Kelbon, M., & Krieger, B. B. (1985). Modelling and experimental verification of physical and chemical processes during pyrolysis of a large biomass particle. Fuel, 64(11), 1505–1513. https://doi.org/10.1016/0016-2361(85)90364-3Codignole Luz, F., Cordiner, S., Manni, A., Mulone, V., & Rocco, V. (2017). Pyrolysis in screw reactors: A 1-D numerical tool. Energy Procedia, 126, 683–689. https://doi.org/10.1016/j.egypro.2017.08.297Di Blasi, C. (2009). Combustion and gasification rates of lignocellulosic chars. Progress in Energy and Combustion Science, 35(2), 121–140. https://doi.org/10.1016/j.pecs.2008.08.001Funke, A., Grandl, R., Ernst, M., & Dahmen, N. (2018). Modelling and improvement of heat transfer coefficient in auger type reactors for fast pyrolysis application. Chemical Engineering and Processing - Process Intensification, 130(May), 67–75. https://doi.org/10.1016/j.cep.2018.05.023Garcia-Nunez, J. A., Pelaez-Samaniego, M. R., Garcia-Perez, M. E., Fonts, I., Abrego, J., Westerhof, R. J. M., & Garcia-Perez, M. (2017). Historical Developments of Pyrolysis Reactors: A Review. In Energy and Fuels (Vol. 31, Issue 6). https://doi.org/10.1021/acs.energyfuels.7b00641Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., & Ashwath, N. (2012). Biofuels production through biomass pyrolysis- A technological review. Energies, 5(12), 4952–5001. https://doi.org/10.3390/en5124952Jalalifar, S., Abbassi, R., Garaniya, V., Salehi, F., Papari, S., Hawboldt, K., & Strezov, V. (2020). CFD analysis of fast pyrolysis process in a pilot-scale auger reactor. Fuel, 273(March), 117782. https://doi.org/10.1016/j.fuel.2020.117782Lathouwers, D., & Bellan, J. (2001). Modeling of Biomass Pyrolysis for Hydrogen Production: The Fluidized Bed Reactor. Proceedings of the 2001 DOE Hydrogen Program Review, 1–35.Liang, P., Wang, Z., & Bi, J. (2008). Simulation of coal pyrolysis by solid heat carrier in a moving-bed pyrolyzer. Fuel, 87(4–5), 435–442. https://doi.org/10.1016/j.fuel.2007.06.022Liu, S., Xing, Y., Chen, H., Tang, P., Jiang, J., Tang, S., & Liang, B. (2017). Sustainable Reactors for Biomass Conversion Using Pyrolysis and Fermentation. In Encyclopedia of Sustainable Technologies (Vol. 3). Elsevier. https://doi.org/10.1016/B978-0-12-409548-9.10245-3Miller, R. S., & Bellan, J. (1997). A generalized biomass pyrolysis model based on superimposed cellulose, hemicellulose and lignin kinetics. Combustion Science and Technology, 126(1–6), 97–137. https://doi.org/10.1080/00102209708935670Mkhize, N. M., van der Gryp, P., Danon, B., & Görgens, J. F. (2016). Effect of temperature and heating rate on limonene production from waste tyre pyrolysis. Journal of Analytical and Applied Pyrolysis, 120, 314–320. https://doi.org/10.1016/j.jaap.2016.04.019Morf, P., Hasler, P., & Nussbaumer, T. (2002). Mechanisms and kinetics of homogeneous secondary reactions of tar from continuous pyrolysis of wood chips. Fuel, 81(7), 843–853. https://doi.org/10.1016/S0016-2361(01)00216-2Nachenius, R. W., Van De Wardt, T. A., Ronsse, F., & Prins, W. (2015). Residence time distributions of coarse biomass particles in a screw conveyor reactor. Fuel Processing Technology, 130(C), 87–95. https://doi.org/10.1016/j.fuproc.2014.09.039Papari, S., & Hawboldt, K. (2017). Development and Validation of a Process Model to Describe Pyrolysis of Forestry Residues in an Auger Reactor. Energy and Fuels, 31(10), 10833–10841. https://doi.org/10.1021/acs.energyfuels.7b01263Peacocke, G. V. C., & Bridgwater, A. V. (1994). Ablative plate pyrolysis of biomass for liquids. Biomass and Bioenergy, 7(1–6), 147–154. https://doi.org/10.1016/0961-9534(94)00054-WPérez-Rodríguez, C. P., Ríos, L. A., Duarte González, C. S., Montaña, A., & García-Marroquín, C. (2023). Aprovechamiento de la biomasa residual como fuente de energía renovable en Colombia: escenario de gasificación potencial. Palmas, 44(1), 65–82.Puente, F. (2012). Cogasificación De Combustibles Fósiles Sólidos Y Orujillo Hasta El 10% En Peso, En La Central De Gasificación Integrada En Ciclo Combinado (Gicc) De Elcogas. 261. https://pdfs.semanticscholar.org/72ce/c66da2d0c2412d7c7ad0ce723f74380858f4.pdfQi, F., & Wright, M. M. (2020). A DEM modeling of biomass fast pyrolysis in a double auger reactor. International Journal of Heat and Mass Transfer, 150. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119308Roy, P., & Dias, G. (2017). Prospects for pyrolysis technologies in the bioenergy sector: A review. Renewable and Sustainable Energy Reviews, 77(March), 59–69. https://doi.org/10.1016/j.rser.2017.03.136Shi, X., Ronsse, F., Nachenius, R., & Pieters, J. G. (2019). 3D Eulerian-Eulerian modeling of a screw reactor for biomass thermochemical conversion. Part 2: Slow pyrolysis for char production. Renewable Energy, 143, 1477–1487. https://doi.org/10.1016/j.renene.2019.05.088Sun, S., Tian, H., Zhao, Y., Sun, R., & Zhou, H. (2010). Experimental and numerical study of biomass flash pyrolysis in an entrained flow reactor. Bioresource Technology, 101(10), 3678–3684. https://doi.org/10.1016/j.biortech.2009.12.092Van de Velden, M., Baeyens, J., Brems, A., Janssens, B., & Dewil, R. (2010). Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renewable Energy, 35(1), 232–242. https://doi.org/10.1016/j.renene.2009.04.019Wagenaar, B. M., Prins, W., & van Swaaij, W. P. M. (1994). Pyrolysis of biomass in the rotating cone reactor: modelling and experimental justification. Chemical Engineering Science, 49(24), 5109–5126. https://doi.org/10.1016/0009-2509(94)00392-0Zhang, T., Zhou, Y., Li, L., Zhao, Y., De Felici, M., Reiter, R. J., & Shen, W. (2018). Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. Journal of Pineal Research, 65(2), 67–77. https://doi.org/10.1111/jpi.12497InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86168/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1084899154.2023.pdf1084899154.2023.pdfTesis de Maestría en Ingeniería - Ingeniería Químicaapplication/pdf2616376https://repositorio.unal.edu.co/bitstream/unal/86168/2/1084899154.2023.pdf568120d8bd7badada44f3e82efde1f44MD52unal/86168oai:repositorio.unal.edu.co:unal/861682024-05-27 16:45:31.045Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=