Automatic classification of structural mri for diagnosis of neurodegenerative diseases

This paper presents an automatic approach which classifies structural Magnetic Resonance images into pathological or healthy controls. A classification model was trained to find the boundaries that allow to separate the study groups. The method uses the deformation values from a set of regions, auto...

Full description

Autores:
Diaz, Gloria
Romero, Eduardo
Hernández-Tamames, Juan Antonio
Molina, Vicente
Malpica, Norberto
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/30471
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/30471
http://bdigital.unal.edu.co/20547/
http://bdigital.unal.edu.co/20547/2/
Palabra clave:
Neurodegenerative disease
structural MRI
pattern classification
SPM
VBM
DARTEL
support vector machines.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e530ca7a705f25d563822f9e0a31bc79
oai_identifier_str oai:repositorio.unal.edu.co:unal/30471
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Diaz, Gloriae1e748be-0f3a-419a-8121-84665f3eed3c300Romero, Eduardo079fa6be-cbb2-4acb-8bf3-0d24c13406d8300Hernández-Tamames, Juan Antonio20cc3aeb-3207-4b8e-b3d5-d8c57681dc8b300Molina, Vicente7490a18f-0684-4b7d-8269-c868dbfa3fbf300Malpica, Norbertoe31de962-bfc3-40ec-9f87-b30b271a273e3002019-06-26T14:07:31Z2019-06-26T14:07:31Z2010https://repositorio.unal.edu.co/handle/unal/30471http://bdigital.unal.edu.co/20547/http://bdigital.unal.edu.co/20547/2/This paper presents an automatic approach which classifies structural Magnetic Resonance images into pathological or healthy controls. A classification model was trained to find the boundaries that allow to separate the study groups. The method uses the deformation values from a set of regions, automatically identified as relevant, in a process that selects the statistically significant regions of a t-test under the restriction that this significance must be spatially coherent within a neighborhood of 5 voxels. The proposed method was assessed to distinguish healthy controls from schizophrenia patients. Classification results showed accuracy between 74% and 89%, depending on the stage of the disease and number of training samples.application/pdfspaUniversidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biologíahttp://revistas.unal.edu.co/index.php/actabiol/article/view/16701Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica ColombianaActa Biológica ColombianaActa Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 1900-1649 0120-548XDiaz, Gloria and Romero, Eduardo and Hernández-Tamames, Juan Antonio and Molina, Vicente and Malpica, Norberto (2010) Automatic classification of structural mri for diagnosis of neurodegenerative diseases. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 1900-1649 0120-548X .Automatic classification of structural mri for diagnosis of neurodegenerative diseasesArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTNeurodegenerative diseasestructural MRIpattern classificationSPMVBMDARTELsupport vector machines.ORIGINAL16701-52284-1-SP.pdfapplication/pdf51381https://repositorio.unal.edu.co/bitstream/unal/30471/1/16701-52284-1-SP.pdfa799b9528a843a3ce281354bbf70407eMD5116701-71643-1-PB.pdfapplication/pdf7340461https://repositorio.unal.edu.co/bitstream/unal/30471/2/16701-71643-1-PB.pdf775ab4b4560c9085bb695d55bd0ed5feMD52THUMBNAIL16701-52284-1-SP.pdf.jpg16701-52284-1-SP.pdf.jpgGenerated Thumbnailimage/jpeg4224https://repositorio.unal.edu.co/bitstream/unal/30471/3/16701-52284-1-SP.pdf.jpg6f6615578d6f364be96b8383def75be1MD5316701-71643-1-PB.pdf.jpg16701-71643-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5656https://repositorio.unal.edu.co/bitstream/unal/30471/4/16701-71643-1-PB.pdf.jpg19754243fce6e4b7803bd14d86d90dedMD54unal/30471oai:repositorio.unal.edu.co:unal/304712022-11-26 23:03:17.93Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Automatic classification of structural mri for diagnosis of neurodegenerative diseases
title Automatic classification of structural mri for diagnosis of neurodegenerative diseases
spellingShingle Automatic classification of structural mri for diagnosis of neurodegenerative diseases
Neurodegenerative disease
structural MRI
pattern classification
SPM
VBM
DARTEL
support vector machines.
title_short Automatic classification of structural mri for diagnosis of neurodegenerative diseases
title_full Automatic classification of structural mri for diagnosis of neurodegenerative diseases
title_fullStr Automatic classification of structural mri for diagnosis of neurodegenerative diseases
title_full_unstemmed Automatic classification of structural mri for diagnosis of neurodegenerative diseases
title_sort Automatic classification of structural mri for diagnosis of neurodegenerative diseases
dc.creator.fl_str_mv Diaz, Gloria
Romero, Eduardo
Hernández-Tamames, Juan Antonio
Molina, Vicente
Malpica, Norberto
dc.contributor.author.spa.fl_str_mv Diaz, Gloria
Romero, Eduardo
Hernández-Tamames, Juan Antonio
Molina, Vicente
Malpica, Norberto
dc.subject.proposal.spa.fl_str_mv Neurodegenerative disease
structural MRI
pattern classification
SPM
VBM
DARTEL
support vector machines.
topic Neurodegenerative disease
structural MRI
pattern classification
SPM
VBM
DARTEL
support vector machines.
description This paper presents an automatic approach which classifies structural Magnetic Resonance images into pathological or healthy controls. A classification model was trained to find the boundaries that allow to separate the study groups. The method uses the deformation values from a set of regions, automatically identified as relevant, in a process that selects the statistically significant regions of a t-test under the restriction that this significance must be spatially coherent within a neighborhood of 5 voxels. The proposed method was assessed to distinguish healthy controls from schizophrenia patients. Classification results showed accuracy between 74% and 89%, depending on the stage of the disease and number of training samples.
publishDate 2010
dc.date.issued.spa.fl_str_mv 2010
dc.date.accessioned.spa.fl_str_mv 2019-06-26T14:07:31Z
dc.date.available.spa.fl_str_mv 2019-06-26T14:07:31Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/30471
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/20547/
http://bdigital.unal.edu.co/20547/2/
url https://repositorio.unal.edu.co/handle/unal/30471
http://bdigital.unal.edu.co/20547/
http://bdigital.unal.edu.co/20547/2/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/actabiol/article/view/16701
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica Colombiana
Acta Biológica Colombiana
dc.relation.ispartofseries.none.fl_str_mv Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 1900-1649 0120-548X
dc.relation.references.spa.fl_str_mv Diaz, Gloria and Romero, Eduardo and Hernández-Tamames, Juan Antonio and Molina, Vicente and Malpica, Norberto (2010) Automatic classification of structural mri for diagnosis of neurodegenerative diseases. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 165-180 1900-1649 0120-548X .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/30471/1/16701-52284-1-SP.pdf
https://repositorio.unal.edu.co/bitstream/unal/30471/2/16701-71643-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/30471/3/16701-52284-1-SP.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/30471/4/16701-71643-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv a799b9528a843a3ce281354bbf70407e
775ab4b4560c9085bb695d55bd0ed5fe
6f6615578d6f364be96b8383def75be1
19754243fce6e4b7803bd14d86d90ded
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089222999506944