Optimización de la producción de celulasa a partir de Fusarium sp.

Ilustraciones

Autores:
Bonilla Ospina, Nataly
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81428
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81428
https://repositorio.unal.edu.co/
Palabra clave:
660 - Ingeniería química
Celulosa
Cellulose
Fusarium sp
Enzimas
Celulasas
Endoglucanasa
Metodología superficie de respuesta
Enzymes
Cellulase
Endoglucanases
Response Surface Methodology
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e4e66110a283398fbc8d49129fa493a3
oai_identifier_str oai:repositorio.unal.edu.co:unal/81428
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Optimización de la producción de celulasa a partir de Fusarium sp.
dc.title.translated.none.fl_str_mv Optimization of cellulase production by Fusarium sp.
title Optimización de la producción de celulasa a partir de Fusarium sp.
spellingShingle Optimización de la producción de celulasa a partir de Fusarium sp.
660 - Ingeniería química
Celulosa
Cellulose
Fusarium sp
Enzimas
Celulasas
Endoglucanasa
Metodología superficie de respuesta
Enzymes
Cellulase
Endoglucanases
Response Surface Methodology
title_short Optimización de la producción de celulasa a partir de Fusarium sp.
title_full Optimización de la producción de celulasa a partir de Fusarium sp.
title_fullStr Optimización de la producción de celulasa a partir de Fusarium sp.
title_full_unstemmed Optimización de la producción de celulasa a partir de Fusarium sp.
title_sort Optimización de la producción de celulasa a partir de Fusarium sp.
dc.creator.fl_str_mv Bonilla Ospina, Nataly
dc.contributor.advisor.none.fl_str_mv Ruiz-Colorado, Angela Adriana
dc.contributor.author.none.fl_str_mv Bonilla Ospina, Nataly
dc.contributor.researchgroup.spa.fl_str_mv Bioprocesos y Flujos Reactivos
dc.subject.ddc.spa.fl_str_mv 660 - Ingeniería química
topic 660 - Ingeniería química
Celulosa
Cellulose
Fusarium sp
Enzimas
Celulasas
Endoglucanasa
Metodología superficie de respuesta
Enzymes
Cellulase
Endoglucanases
Response Surface Methodology
dc.subject.lemb.none.fl_str_mv Celulosa
Cellulose
dc.subject.proposal.spa.fl_str_mv Fusarium sp
Enzimas
Celulasas
Endoglucanasa
Metodología superficie de respuesta
dc.subject.proposal.eng.fl_str_mv Enzymes
Cellulase
Endoglucanases
Response Surface Methodology
description Ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020-12-03
dc.date.accessioned.none.fl_str_mv 2022-03-31T19:44:02Z
dc.date.available.none.fl_str_mv 2022-03-31T19:44:02Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81428
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81428
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Ahamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), 399–407. https://doi.org/10.1016/j.bej.2007.11.030
Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
Chambergo, F. S., & Valencia, E. Y. (2016). Fungal biodiversity to biotechnology. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-016-7305-2
Chellapandi, P., & Jani, A. A. (2009). Enhanced endoglucanase production by soil isolates of Fusarium sp. and Aspergillus sp. through submerged fermentation process. Turkish Journal of Biochemistry, 34(4), 209–214.
Da, P., Delabona, S., Donizete, R., Buzon Pirota, P., Codima, C. A., Tremacoldi, R., … Sanchez Farinas, C. (2013). Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Industrial Crops and Products, 42, 236–242. https://doi.org/10.1016/j.indcrop.2012.05.035
De Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. P. O., & de Rezende, S. T. (2011). Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis. Applied Biochemistry and Biotechnology, 165(2), 594–610. https://doi.org/10.1007/s12010-011- 9278-z
De Almeida, M. N., Guimarães, V. M., Falkoski, D. L., Paes, G. B. T., Ribeiro, J. I., Visser, E. M., de Rezende, S. T. (2014). Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Applied Biochemistry and Biotechnology, 172(3), 1332–1346. https://doi.org/10.1007/s12010-013-0572-9
de Cassia Pereira, J., Paganini Marques, N., Rodrigues, A., Brito de Oliveira, T., Boscolo, M., da Silva, R., … Bocchini Martins, D. A. (2015). Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology, 118(4), 928–939. https://doi.org/10.1111/jam.12757
Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102(10), 6065–6072. https://doi.org/10.1016/j.biortech.2011.03.032
Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, 35(11), 1531–1538. https://doi.org/10.1007/s10295-008-0454-2
Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331– 339. https://doi.org/10.1007/s11274-008-9897-x
Fang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. Journal of Bioscience and Bioengineering, 106(2), 115–120. https://doi.org/10.1263/jbb.106.115
Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología. https://doi.org/10.1016/j.riam.2013.10.009
Hamidi-Esfahani, Z., Shojaosadati, S. A., & Rinzema, A. (2004). Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochemical Engineering Journal, 21(3), 265–272. https://doi.org/10.1016/j.bej.2004.07.007
Jha, K., Khare, S. K., & Gandhi, A. P. (1995). Solid-state fermentation of soyhull for the production of cellulase. Bioresource Technology, 54(3), 321–322. https://doi.org/10.1016/0960-8524(95)00154-9
Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203. Retrieved from https://www- sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S1364032114000999
Kachlishvili, E., Penninckx, M. J., Tsiklauri, N., & Elisashvili, V. (2006). Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology, 22(4), 391–397. https://doi.org/10.1007/s11274-005-9046-8
Khan, M. M. H., Ali, S., Fakhru’l-Razi, A., & Alam, M. Z. (2007). Use of fungi for the bioconversion of rice straw into cellulase enzyme. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 42(4), 381–386. https://doi.org/10.1080/03601230701312647
Kilikian, B. V, Afonso, L. C., Souza, T. F. C., Ferreira, R. G., & Pinheiro, I. R. (n.d.). Filamentous fungi and media for cellulase production in solid state cultures. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059312/pdf/bjm-45-279.pdf
King, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnology and Bioengineering, 102(4), 1033–1044. https://doi.org/10.1002/bit.22151
Kobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001
Kumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003
Kumaran, S., Sastry, C. A., & Vikineswary, S. (1997). Laccase, cellulase and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World Journal of Microbiology and Biotechnology, 13(1), 43–49. https://doi.org/10.1007/BF02770806
Kobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001
Kumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003
Li, Y., Liu, C., Bai, F., & Zhao, X. (2016). Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresource Technology, 216, 503–510. https://doi.org/10.1016/j.biortech.2016.05.108
Lee, C. K., Darah, I., & Ibrahim, C. O. (2011). Production and Optimization of Cellulase Enzyme Using Aspergillus niger USM AI 1 and Comparison with Trichoderma reesei via Solid State Fermentation System. Biotechnology Research International, 2011, 1–6. https://doi.org/10.4061/2011/658493
Liu, X., & Kokare, C. (2017). Chapter 11 – Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes (pp. 267–298). https://doi.org/10.1016/B978-0-12-803725-6.00011-X
Marín, M., Anchez, A. S., & Artola, A. (2019). Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. https://doi.org/10.1016/j.jclepro.2018.10.264
Marques, N. P., De Cassia Pereira, J., Gomes, E., Da Silva, R., Araújo, A. R., Ferreira, H., … Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse T to the production of cellulases and xylanases and their enzymatic extracts have potential for application in pre-treated sugarcane bagasse saccharification processes. https://doi.org/10.1016/j.indcrop.2018.05.022
Nazir, A., Soni, R., Saini, H. S., Kaur, A., & Chadha, B. S. (2010). Profiling differential expression of cellulases and metabolite footprints in aspergillus terreus. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-009-8775-9
Obruca, S., Marova, I., Matouskova, P., Haronikova, A., & Lichnova, A. (2012). Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica, 57(3), 221–227. https://doi.org/10.1007/s12223-012-0098-5
Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. https://doi.org/10.1016/S0926- 6690(03)00018-9
Patel, A. K., Singhania, R. R., & Pandey, A. (2017). Chapter 2 – Production, Purification, and Application of Microbial Enzymes. In Biotechnology of Microbial Enzymes (pp. 13–41). https://doi.org/10.1016/B978-0-12-803725-6.00002-9 mictec.2010.03.010
Ray, R. C., & Behera, S. S. (2016). Chapter 3. Solid State Fermentation for Production of Microbial Cellulases. Biotechnology of Microbial Enzymes, 43–80. https://doi.org/10.1016/B978-0-12- 803725-6.00003-0
Ray, R. C., & Behera, S. S. (2017). Chapter 3 – Solid State Fermentation for Production of Microbial Cellulases. In Biotechnology of Microbial Enzymes (pp. 43–79). https://doi.org/10.1016/B978-0-12-803725-6.00003-0
Rastegari, A. A. (2018). Molecular Mechanism of Cellulase Production Systems in Penicillium. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 153– 166). https://doi.org/10.1016/b978-0-444-63501-3.00008-9
Ries, L. N. A., Beattie, S. R., Espeso, E. A., Cramer, R. A., & Goldman, G. H. (2016). Diverse regulation of the CreA carbon catabolite repressor in aspergillus nidulans. Genetics, 203(1), 335–352. https://doi.org/10.1534/genetics.116.187872
Sánchez, C. (2009, March 1). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, Vol. 27, pp. 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
Shahriarinour, M., Noor, M., Wahab, A., Mohamad, R., Mustafa, S., & Ariff, A. B. (2011). Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. African Journal of Biotechnology, 10(38), 7459–7467. https://doi.org/10.5897/AJB11.199
Singh nee’ Nigam, P., & Pandey, A. (2009). Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues. In Biotechnology for Agro-Industrial Residues Utilisation (pp. 197–221). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-9942-7_10
Singhania, R. R., Kumar Patel, A., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid- state fermentation. Biochemical Engineering Journal, 44, 13–18. https://doi.org/10.1016/j.bej.2008.10.019
Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549. https://doi.org/10.1016/j.enz
Siqueira, J. G. W., Rodrigues, C., Vandenberghe, L. P. de S., Woiciechowski, A. L., & Soccol, C. R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2019.105419
Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013 Trivedi, L. S., & Rao, K. K. (1981). Production of cellulolytic enzymes by Fusarium species. Biotechnology Letters, 3(6), 281–284. https://doi.org/10.1007/BF00127395
Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
Velázquez-Cedeño, M. A., Mata, G., & Savoie, J. M. (2002). Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: Changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology, 18(3), 201–207. https://doi.org/10.1023/A:1014999616381
Wan Yoon, L., Nam Ang, T., Cheng Ngoh, G., & Seak May Chua, A. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. https://doi.org/10.1016/j.biombioe.2014.05.01Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090
Yoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67, 319–338. https://doi.org/10.1016/J.BIOMBIOE.2014.05.013
Zeng, G., Yu, M., Chen, Y., Huang, D., Zhang, J., Huang, H., … Yu, Z. (2010). Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresource Technology, 101(1), 222–227. https://doi.org/10.1016/j.biortech.2009.08.013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 62 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.department.spa.fl_str_mv Departamento de Procesos y Energía
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81428/5/1107036049.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/81428/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81428/6/1107036049.2020.pdf.jpg
bitstream.checksum.fl_str_mv 85ac985cd8ac01fab4d8fe9113e823d4
8153f7789df02f0a4c9e079953658ab2
1d05b7183e80327dbb877cde1929a5d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089695458492416
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ruiz-Colorado, Angela Adriana7cd7a63c83a2319d2d956ac8a78e5cd2600Bonilla Ospina, Natalyd1799e62d4dc17a59283eeecfc3bb8cdBioprocesos y Flujos Reactivos2022-03-31T19:44:02Z2022-03-31T19:44:02Z2020-12-03https://repositorio.unal.edu.co/handle/unal/81428Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEl uso de enzimas en diferentes sectores industriales es una alternativa a los procesos químicos convencionales. Las enzimas son atractivas, debido a ventajas técnico-económicas en el proceso, como bajas temperaturas (30ºC - 50ºC), pH (4,0 -5,5) y concentraciones de solventes orgánicos, entre otros. Las enzimas, ofrecen alta especificidad al sustrato, condiciones de proceso moderadas a suaves comparadas con procesos industriales convencionales, baja toxicidad y pureza del producto. En consecuencia, reducción de impactos ambientales negativos. Las celulasas, son el segundo tipo de enzimas predominantes en la industria biotecnológica ya que tiene numerosas aplicaciones en diferentes campos, incluyendo la industria textil, pulpa y papel, alimentos, producción de biocombustibles, farmacéutica, entre otras. Su biosíntesis es controlada por mecanismos como la inducción y la regulación nutricional (regulación de las fuentes de carbono o nitrógeno), principalmente. Diferentes microorganismos son capaces de producir el complejo enzimático celulasas, sin embargo, hongos como Fusarium sp. son ampliamente estudiados, por su buen rendimiento en la producción enzimas y su habilidad de secretar el complejo extracelularmente. En este estudio, Carboximetilcelulosa fue usado como única fuente de carbón para la producción de enzimas celulolíticas (celulasas y endoglucanasas), por Fusarium sp. bajo fermentación en estado sólido (FES). Los efectos de la humedad (65% -80%), la temperatura (28-35ºC), el pH (4,5 – 6,0 Unidades) y el tiempo de fermentación (2-6 días) sobre la producción enzimática, fueron determinados siguiendo la metodología de superficie de respuesta. La condición ideal para la producción para Fusarium sp., tanto de celulasas como endoglucanasas fueron 10 días de fermentación, 71,74% de humedad, pH 5,02 y temperatura 28,8 ºC. La síntesis de celulasa fue reprimida en presencia de xilosa y fructosa, mientras que, fue inducida en presencia de lactosa y soforosa. Finalmente, se caracterizó el extracto enzimático a diferentes temperaturas y pH, lo que permitió determinar que la actividad relativa para endoglucanasa se presenta a 50ºC y pH 5,0, mientras que para actividad celulasa, se presenta a 60ºC y pH 6,0. (Texto tomado de la fuente)The use of enzymes in different industrial sectors is a conventional alternative to chemical processes, it is attractive due to technical and economic advantages in the process, such as low temperatures (30ºC - 50ºC), pH (4,0 -5,5) and concentrations of organic solvents, among others. Enzymes provide high substrate specificity, moderate to mild process conditions, low toxicity and product purity, thus reducing negative environmental impacts. Cellulases, the second type of enzymes predominant in the industry, are mainly controlled by mechanisms such as induction and nutritional regulation (regulation of carbon or nitrogen sources). Different microorganisms can produce complex cellulase enzymes; however, fungi like Fusarium sp. are widely studied for their good yield in the production of enzymes and their ability to secrete the complex extracellularly. Carboxymethylcellulose was used as the sole source of carbon to produce cellulolytic enzymes, by Fusarium sp. under solid state fermentation (FES, by its acronym in Spanish). The effects of moisture (65-80%), temperature (28-35ºC), pH (4.5 - 6.0 Units) and fermentation time (2-6 days) on enzymatic production were determined following the surface response methodology. The ideal condition for endoglucanase production was 4 days of fermentation 70% humidity, pH 4.5 and temperature 30 ° C, these factors being of significant influence on Fusarium sp. The cellulase synthesis was repressed in the presence of xylose and fructose, while it was induced in the presence of lactose and sophorose. Finally, the enzyme extract was characterized at different temperatures and pH, which determined the highest relative activity for endoglucanase is presented at 50 °C and pH 5.0, while for cellulase activity, it is presented at 60 °C and pH 6.0.MaestríaMagíster en Ingeniería - Ingeniería QuímicaBioprocesosÁrea curricular de Ingeniería Química e Ingeniería de Petróleos62 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaDepartamento de Procesos y EnergíaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín660 - Ingeniería químicaCelulosaCelluloseFusarium spEnzimasCelulasasEndoglucanasaMetodología superficie de respuestaEnzymesCellulaseEndoglucanasesResponse Surface MethodologyOptimización de la producción de celulasa a partir de Fusarium sp.Optimization of cellulase production by Fusarium sp.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAhamed, A., & Vermette, P. (2008). Culture-based strategies to enhance cellulase enzyme production from Trichoderma reesei RUT-C30 in bioreactor culture conditions. Biochemical Engineering Journal, 40(3), 399–407. https://doi.org/10.1016/j.bej.2007.11.030Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090Chambergo, F. S., & Valencia, E. Y. (2016). Fungal biodiversity to biotechnology. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-016-7305-2Chellapandi, P., & Jani, A. A. (2009). Enhanced endoglucanase production by soil isolates of Fusarium sp. and Aspergillus sp. through submerged fermentation process. Turkish Journal of Biochemistry, 34(4), 209–214.Da, P., Delabona, S., Donizete, R., Buzon Pirota, P., Codima, C. A., Tremacoldi, R., … Sanchez Farinas, C. (2013). Effect of initial moisture content on two Amazon rainforest Aspergillus strains cultivated on agro-industrial residues: Biomass-degrading enzymes production and characterization. Industrial Crops and Products, 42, 236–242. https://doi.org/10.1016/j.indcrop.2012.05.035De Almeida, M. N., Guimarães, V. M., Bischoff, K. M., Falkoski, D. L., Pereira, O. L., Gonçalves, D. S. P. O., & de Rezende, S. T. (2011). Cellulases and hemicellulases from endophytic acremonium species and its application on sugarcane bagasse hydrolysis. Applied Biochemistry and Biotechnology, 165(2), 594–610. https://doi.org/10.1007/s12010-011- 9278-zDe Almeida, M. N., Guimarães, V. M., Falkoski, D. L., Paes, G. B. T., Ribeiro, J. I., Visser, E. M., de Rezende, S. T. (2014). Optimization of endoglucanase and xylanase activities from Fusarium verticillioides for simultaneous saccharification and fermentation of sugarcane bagasse. Applied Biochemistry and Biotechnology, 172(3), 1332–1346. https://doi.org/10.1007/s12010-013-0572-9de Cassia Pereira, J., Paganini Marques, N., Rodrigues, A., Brito de Oliveira, T., Boscolo, M., da Silva, R., … Bocchini Martins, D. A. (2015). Thermophilic fungi as new sources for production of cellulases and xylanases with potential use in sugarcane bagasse saccharification. Journal of Applied Microbiology, 118(4), 928–939. https://doi.org/10.1111/jam.12757Deswal, D., Khasa, Y. P., & Kuhad, R. C. (2011). Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresource Technology, 102(10), 6065–6072. https://doi.org/10.1016/j.biortech.2011.03.032Elisashvili, V., Kachlishvili, E., & Penninckx, M. (2008). Effect of growth substrate, method of fermentation, and nitrogen source on lignocellulose-degrading enzymes production by white-rot basidiomycetes. Journal of Industrial Microbiology and Biotechnology, 35(11), 1531–1538. https://doi.org/10.1007/s10295-008-0454-2Elisashvili, V., Kachlishvili, E., Tsiklauri, N., Metreveli, E., Khardziani, T., & Agathos, S. N. (2009). Lignocellulose-degrading enzyme production by white-rot Basidiomycetes isolated from the forests of Georgia. World Journal of Microbiology and Biotechnology, 25(2), 331– 339. https://doi.org/10.1007/s11274-008-9897-xFang, X., Yano, S., Inoue, H., & Sawayama, S. (2008). Lactose enhances cellulase production by the filamentous fungus Acremonium cellulolyticus. Journal of Bioscience and Bioengineering, 106(2), 115–120. https://doi.org/10.1263/jbb.106.115Gutiérrez-Rojas, I., Moreno-Sarmiento, N., & Montoya, D. (2015). Mecanismos y regulación de la hidrólisis enzimática de celulosa en hongos filamentosos: casos clásicos y nuevos modelos. Revista Iberoamericana de Micología. https://doi.org/10.1016/j.riam.2013.10.009Hamidi-Esfahani, Z., Shojaosadati, S. A., & Rinzema, A. (2004). Modelling of simultaneous effect of moisture and temperature on A. niger growth in solid-state fermentation. Biochemical Engineering Journal, 21(3), 265–272. https://doi.org/10.1016/j.bej.2004.07.007Jha, K., Khare, S. K., & Gandhi, A. P. (1995). Solid-state fermentation of soyhull for the production of cellulase. Bioresource Technology, 54(3), 321–322. https://doi.org/10.1016/0960-8524(95)00154-9Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33, 188–203. Retrieved from https://www- sciencedirect-com.ezproxy.unal.edu.co/science/article/pii/S1364032114000999Kachlishvili, E., Penninckx, M. J., Tsiklauri, N., & Elisashvili, V. (2006). Effect of nitrogen source on lignocellulolytic enzyme production by white-rot basidiomycetes under solid-state cultivation. World Journal of Microbiology and Biotechnology, 22(4), 391–397. https://doi.org/10.1007/s11274-005-9046-8Khan, M. M. H., Ali, S., Fakhru’l-Razi, A., & Alam, M. Z. (2007). Use of fungi for the bioconversion of rice straw into cellulase enzyme. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 42(4), 381–386. https://doi.org/10.1080/03601230701312647Kilikian, B. V, Afonso, L. C., Souza, T. F. C., Ferreira, R. G., & Pinheiro, I. R. (n.d.). Filamentous fungi and media for cellulase production in solid state cultures. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4059312/pdf/bjm-45-279.pdfKing, B. C., Donnelly, M. K., Bergstrom, G. C., Walker, L. P., & Gibson, D. M. (2009). An optimized microplate assay system for quantitative evaluation of plant cell wall-degrading enzyme activity of fungal culture extracts. Biotechnology and Bioengineering, 102(4), 1033–1044. https://doi.org/10.1002/bit.22151Kobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001Kumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003Kumaran, S., Sastry, C. A., & Vikineswary, S. (1997). Laccase, cellulase and xylanase activities during growth of Pleurotus sajor-caju on sago hampas. World Journal of Microbiology and Biotechnology, 13(1), 43–49. https://doi.org/10.1007/BF02770806Kobakhidze, A., Asatiani, M., Kachlishvili, E., & Elisashvili, V. (2016). Induction and catabolite repression of cellulase and xylanase synthesis in the selected white-rot basidiomycetes. Annals of Agrarian Science. https://doi.org/10.1016/j.aasci.2016.07.001Kumar Bharti, A., Kumar, A., Kumar, A., & Dutt, D. (2018). Exploitation of Parthenium hysterophorous biomass as low-cost substrate for cellulase and xylanase production under solid-state fermentation using Talaromyces stipitatus MTCC 12687. https://doi.org/10.1016/j.jrras.2018.01.003Li, Y., Liu, C., Bai, F., & Zhao, X. (2016). Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresource Technology, 216, 503–510. https://doi.org/10.1016/j.biortech.2016.05.108Lee, C. K., Darah, I., & Ibrahim, C. O. (2011). Production and Optimization of Cellulase Enzyme Using Aspergillus niger USM AI 1 and Comparison with Trichoderma reesei via Solid State Fermentation System. Biotechnology Research International, 2011, 1–6. https://doi.org/10.4061/2011/658493Liu, X., & Kokare, C. (2017). Chapter 11 – Microbial Enzymes of Use in Industry. In Biotechnology of Microbial Enzymes (pp. 267–298). https://doi.org/10.1016/B978-0-12-803725-6.00011-XMarín, M., Anchez, A. S., & Artola, A. (2019). Production and recovery of cellulases through solid-state fermentation of selected lignocellulosic wastes. https://doi.org/10.1016/j.jclepro.2018.10.264Marques, N. P., De Cassia Pereira, J., Gomes, E., Da Silva, R., Araújo, A. R., Ferreira, H., … Bocchini, D. A. (2018). Cellulases and xylanases production by endophytic fungi by solid state fermentation using lignocellulosic substrates and enzymatic saccharification of pretreated sugarcane bagasse T to the production of cellulases and xylanases and their enzymatic extracts have potential for application in pre-treated sugarcane bagasse saccharification processes. https://doi.org/10.1016/j.indcrop.2018.05.022Nazir, A., Soni, R., Saini, H. S., Kaur, A., & Chadha, B. S. (2010). Profiling differential expression of cellulases and metabolite footprints in aspergillus terreus. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-009-8775-9Obruca, S., Marova, I., Matouskova, P., Haronikova, A., & Lichnova, A. (2012). Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiologica, 57(3), 221–227. https://doi.org/10.1007/s12223-012-0098-5Panagiotou, G., Kekos, D., Macris, B. J., & Christakopoulos, P. (2003). Production of cellulolytic and xylanolytic enzymes by Fusarium oxysporum grown on corn stover in solid state fermentation. Industrial Crops and Products, 18(1), 37–45. https://doi.org/10.1016/S0926- 6690(03)00018-9Patel, A. K., Singhania, R. R., & Pandey, A. (2017). Chapter 2 – Production, Purification, and Application of Microbial Enzymes. In Biotechnology of Microbial Enzymes (pp. 13–41). https://doi.org/10.1016/B978-0-12-803725-6.00002-9 mictec.2010.03.010Ray, R. C., & Behera, S. S. (2016). Chapter 3. Solid State Fermentation for Production of Microbial Cellulases. Biotechnology of Microbial Enzymes, 43–80. https://doi.org/10.1016/B978-0-12- 803725-6.00003-0Ray, R. C., & Behera, S. S. (2017). Chapter 3 – Solid State Fermentation for Production of Microbial Cellulases. In Biotechnology of Microbial Enzymes (pp. 43–79). https://doi.org/10.1016/B978-0-12-803725-6.00003-0Rastegari, A. A. (2018). Molecular Mechanism of Cellulase Production Systems in Penicillium. In New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 153– 166). https://doi.org/10.1016/b978-0-444-63501-3.00008-9Ries, L. N. A., Beattie, S. R., Espeso, E. A., Cramer, R. A., & Goldman, G. H. (2016). Diverse regulation of the CreA carbon catabolite repressor in aspergillus nidulans. Genetics, 203(1), 335–352. https://doi.org/10.1534/genetics.116.187872Sánchez, C. (2009, March 1). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, Vol. 27, pp. 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001Shahriarinour, M., Noor, M., Wahab, A., Mohamad, R., Mustafa, S., & Ariff, A. B. (2011). Effect of medium composition and cultural condition on cellulase production by Aspergillus terreus. African Journal of Biotechnology, 10(38), 7459–7467. https://doi.org/10.5897/AJB11.199Singh nee’ Nigam, P., & Pandey, A. (2009). Solid-State Fermentation Technology for Bioconversion of Biomass and Agricultural Residues. In Biotechnology for Agro-Industrial Residues Utilisation (pp. 197–221). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-1-4020-9942-7_10Singhania, R. R., Kumar Patel, A., Soccol, C. R., & Pandey, A. (2009). Recent advances in solid- state fermentation. Biochemical Engineering Journal, 44, 13–18. https://doi.org/10.1016/j.bej.2008.10.019Singhania, R. R., Sukumaran, R. K., Patel, A. K., Larroche, C., & Pandey, A. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology, 46, 541–549. https://doi.org/10.1016/j.enzSiqueira, J. G. W., Rodrigues, C., Vandenberghe, L. P. de S., Woiciechowski, A. L., & Soccol, C. R. (2020). Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2019.105419Thomas, L., Larroche, C., & Pandey, A. (2013). Current developments in solid-state fermentation. Biochemical Engineering Journal, 81, 146–161. https://doi.org/10.1016/j.bej.2013.10.013 Trivedi, L. S., & Rao, K. K. (1981). Production of cellulolytic enzymes by Fusarium species. Biotechnology Letters, 3(6), 281–284. https://doi.org/10.1007/BF00127395Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes--factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002Velázquez-Cedeño, M. A., Mata, G., & Savoie, J. M. (2002). Waste-reducing cultivation of Pleurotus ostreatus and Pleurotus pulmonarius on coffee pulp: Changes in the production of some lignocellulolytic enzymes. World Journal of Microbiology and Biotechnology, 18(3), 201–207. https://doi.org/10.1023/A:1014999616381Wan Yoon, L., Nam Ang, T., Cheng Ngoh, G., & Seak May Chua, A. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. https://doi.org/10.1016/j.biombioe.2014.05.01Behera, S. S., & Ray, R. C. (2016). Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. International Journal of Biological Macromolecules, 86, 656–669. https://doi.org/10.1016/j.ijbiomac.2015.10.090Yoon, L. W., Ang, T. N., Ngoh, G. C., & Chua, A. S. M. (2014). Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass and Bioenergy, 67, 319–338. https://doi.org/10.1016/J.BIOMBIOE.2014.05.013Zeng, G., Yu, M., Chen, Y., Huang, D., Zhang, J., Huang, H., … Yu, Z. (2010). Effects of inoculation with Phanerochaete chrysosporium at various time points on enzyme activities during agricultural waste composting. Bioresource Technology, 101(1), 222–227. https://doi.org/10.1016/j.biortech.2009.08.013.InvestigadoresORIGINAL1107036049.2020.pdf1107036049.2020.pdfTesis Maestría en Ingeniería Químicaapplication/pdf1681803https://repositorio.unal.edu.co/bitstream/unal/81428/5/1107036049.2020.pdf85ac985cd8ac01fab4d8fe9113e823d4MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81428/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1107036049.2020.pdf.jpg1107036049.2020.pdf.jpgGenerated Thumbnailimage/jpeg5561https://repositorio.unal.edu.co/bitstream/unal/81428/6/1107036049.2020.pdf.jpg1d05b7183e80327dbb877cde1929a5d3MD56unal/81428oai:repositorio.unal.edu.co:unal/814282023-10-13 14:12:20.305Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK