Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory
Let be a set of points located in a rectangle and is a point that is not in . This article describes the design, implementation, and experimentation of different algorithms to solve the following two problems: (i) Maximum Empty Rectangle (MER), which consists in finding an empty rectangle with a...
- Autores:
-
Lara, Felipe
Gutiérrez, Gilberto
Soto, Maria Antonieta
Corral, Antonio
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2017
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/67560
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/67560
http://bdigital.unal.edu.co/68589/
- Palabra clave:
- 62 Ingeniería y operaciones afines / Engineering
geometric algorithms
spatial databases
geometric problems
Algoritmos geométricos
bases de datos espaciales
problemas geométricos.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e476870292299f0c69a3dccc940d3a63 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/67560 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
title |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
spellingShingle |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory 62 Ingeniería y operaciones afines / Engineering geometric algorithms spatial databases geometric problems Algoritmos geométricos bases de datos espaciales problemas geométricos. |
title_short |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
title_full |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
title_fullStr |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
title_full_unstemmed |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
title_sort |
Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory |
dc.creator.fl_str_mv |
Lara, Felipe Gutiérrez, Gilberto Soto, Maria Antonieta Corral, Antonio |
dc.contributor.author.spa.fl_str_mv |
Lara, Felipe Gutiérrez, Gilberto Soto, Maria Antonieta Corral, Antonio |
dc.subject.ddc.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
topic |
62 Ingeniería y operaciones afines / Engineering geometric algorithms spatial databases geometric problems Algoritmos geométricos bases de datos espaciales problemas geométricos. |
dc.subject.proposal.spa.fl_str_mv |
geometric algorithms spatial databases geometric problems Algoritmos geométricos bases de datos espaciales problemas geométricos. |
description |
Let be a set of points located in a rectangle and is a point that is not in . This article describes the design, implementation, and experimentation of different algorithms to solve the following two problems: (i) Maximum Empty Rectangle (MER), which consists in finding an empty rectangle with a maximum area contained in R and does not contain any point from and (ii) Query Maximum Empty Rectangle (QMER), which consists in finding the rectangle with the same restrictions given for the MER problem but must also contain . It is assumed that both problems have insufficient main memory to store all the objects in set . According to the literature, both problems are very practical in fields such as data mining and Geographic Information Systems (GIS). Specifically, the present study proposes two algorithms that assume that is stored in secondary memory (mainly disk) and that it is impossible to store it completely in main memory. The first algorithm solves the QMER problem and consists of decreasing the size of S by using dominance areas and then processing the points that are not eliminated using an algorithm proposed by Orlowski (1990). The second algorithm solves the MER problem and consists of dividing R into four subrectangles that generate four subsets of similar size; these are processed using an algorithm proposed in Edmons et al. (2003), and finally the partial solutions are combined to obtain a global solution. For the purpose of verifying algorithm efficiency, results are shown for a series of experiments that consider synthetic and real data. |
publishDate |
2017 |
dc.date.issued.spa.fl_str_mv |
2017-09-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T04:32:44Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T04:32:44Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.issn.spa.fl_str_mv |
ISSN: 2248-8723 |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/67560 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/68589/ |
identifier_str_mv |
ISSN: 2248-8723 |
url |
https://repositorio.unal.edu.co/handle/unal/67560 http://bdigital.unal.edu.co/68589/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
https://revistas.unal.edu.co/index.php/ingeinv/article/view/60339 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación Ingeniería e Investigación |
dc.relation.references.spa.fl_str_mv |
Lara, Felipe and Gutiérrez, Gilberto and Soto, Maria Antonieta and Corral, Antonio (2017) Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory. Ingeniería e Investigación, 37 (3). pp. 133-140. ISSN 2248-8723 |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá - Facultad de Ingeniería |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/67560/1/60339-368067-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/67560/2/60339-368067-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb7594be24a5b022c0e317e6c116e0ff f289b5188e4ae8095186f8514cea795a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089884074246144 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lara, Felipe575d28f0-e3d7-43f2-8ea0-1a46cd8fdd58300Gutiérrez, Gilbertoe57dddca-7043-4703-bedb-05d567df95c4300Soto, Maria Antonietab68d513c-7ade-4c83-9a45-ea436512f23c300Corral, Antonio02f6f718-9e5c-45ac-ac7e-40b92ccd41353002019-07-03T04:32:44Z2019-07-03T04:32:44Z2017-09-01ISSN: 2248-8723https://repositorio.unal.edu.co/handle/unal/67560http://bdigital.unal.edu.co/68589/Let be a set of points located in a rectangle and is a point that is not in . This article describes the design, implementation, and experimentation of different algorithms to solve the following two problems: (i) Maximum Empty Rectangle (MER), which consists in finding an empty rectangle with a maximum area contained in R and does not contain any point from and (ii) Query Maximum Empty Rectangle (QMER), which consists in finding the rectangle with the same restrictions given for the MER problem but must also contain . It is assumed that both problems have insufficient main memory to store all the objects in set . According to the literature, both problems are very practical in fields such as data mining and Geographic Information Systems (GIS). Specifically, the present study proposes two algorithms that assume that is stored in secondary memory (mainly disk) and that it is impossible to store it completely in main memory. The first algorithm solves the QMER problem and consists of decreasing the size of S by using dominance areas and then processing the points that are not eliminated using an algorithm proposed by Orlowski (1990). The second algorithm solves the MER problem and consists of dividing R into four subrectangles that generate four subsets of similar size; these are processed using an algorithm proposed in Edmons et al. (2003), and finally the partial solutions are combined to obtain a global solution. For the purpose of verifying algorithm efficiency, results are shown for a series of experiments that consider synthetic and real data.Sea S un conjunto de puntos ubicado en un rectángulo R, y q un punto que no está en S.- Este artículo describe el diseño, la implementación y experimentación de diferentes algoritmos para resolver los siguientes problemas: (i) MER, que consiste en encontrar un rectángulo vacío de máxima área contenido en R y que no contiene un punto de S, y (ii) QMER, que consiste en encontrar un rectángulo con las mismas restricciones dadas para el problema MER y que, además, debe contener a q. En ambos problemas se asume que no existe suficiente memoria para almacenar todos los objetos del conjunto S. De acuerdo con la literatura, ambos problemas son de mucha utilidad práctica, en ámbitos como la minería de datos, sistemas de información geográfica, por nombrar algunos. Concretamente, en este trabajo se proponen dos algoritmos que asumen que S se encuentra almacenado en memoria secundaria y que no es posible almacenarlo completamente en memoria. El primero resuelve el problema QMER y consiste en disminuir el tamaño de mediante la utilización de zonas de dominancia y luego, mediante un algoritmo propuesto por Orlowski (1990), se procesan los puntos no descartados. El segundo, a su vez, resuelve el problema MER y consiste en dividir R en cuatro subrectángulos generando cuatro subconjuntos de similar tamaño los que se procesan mediante un algoritmo propuesto en Edmonds et al. (2003), combinando finalmente las soluciones parciales para obtener la solución global. Con el objeto de verificar la eficiencia de los algoritmos, se muestran los resultados de una serie de experimentos considerando datos sintéticos y reales.application/pdfspaUniversidad Nacional de Colombia - Sede Bogotá - Facultad de Ingenieríahttps://revistas.unal.edu.co/index.php/ingeinv/article/view/60339Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónLara, Felipe and Gutiérrez, Gilberto and Soto, Maria Antonieta and Corral, Antonio (2017) Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memory. Ingeniería e Investigación, 37 (3). pp. 133-140. ISSN 2248-872362 Ingeniería y operaciones afines / Engineeringgeometric algorithmsspatial databasesgeometric problemsAlgoritmos geométricosbases de datos espacialesproblemas geométricos.Queries about the largest empty rectangle in large 2-dimensional datasets stored in secondary memoryArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTORIGINAL60339-368067-1-PB.pdfapplication/pdf1630875https://repositorio.unal.edu.co/bitstream/unal/67560/1/60339-368067-1-PB.pdfeb7594be24a5b022c0e317e6c116e0ffMD51THUMBNAIL60339-368067-1-PB.pdf.jpg60339-368067-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg8667https://repositorio.unal.edu.co/bitstream/unal/67560/2/60339-368067-1-PB.pdf.jpgf289b5188e4ae8095186f8514cea795aMD52unal/67560oai:repositorio.unal.edu.co:unal/675602023-05-30 23:03:07.962Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |