On moment maps and Jacobi manifolds
The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian ac...
- Autores:
-
Leguizamón Robayo, Alexander
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79669
- Palabra clave:
- 510 - Matemáticas
Sistemas Hamiltonianos
Hamilton-Jacobi equation
Jacobi structures
Contact Manifolds
Locally conformally symplectic structures
Hamiltonian actions
Moment Maps
Estructuras de Jacobi
Variedades de contact
Estructuras localmente conformemente simplécticas
Acción Hamiltoniana
Aplicación momento
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e464c8ccb5190f8772af77f8c52e5b83 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79669 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
On moment maps and Jacobi manifolds |
dc.title.translated.spa.fl_str_mv |
Sobre mapas momento y variedades de Jacobi |
title |
On moment maps and Jacobi manifolds |
spellingShingle |
On moment maps and Jacobi manifolds 510 - Matemáticas Sistemas Hamiltonianos Hamilton-Jacobi equation Jacobi structures Contact Manifolds Locally conformally symplectic structures Hamiltonian actions Moment Maps Estructuras de Jacobi Variedades de contact Estructuras localmente conformemente simplécticas Acción Hamiltoniana Aplicación momento |
title_short |
On moment maps and Jacobi manifolds |
title_full |
On moment maps and Jacobi manifolds |
title_fullStr |
On moment maps and Jacobi manifolds |
title_full_unstemmed |
On moment maps and Jacobi manifolds |
title_sort |
On moment maps and Jacobi manifolds |
dc.creator.fl_str_mv |
Leguizamón Robayo, Alexander |
dc.contributor.advisor.none.fl_str_mv |
Sepe, Daniele Martinez Alba, Nicolas |
dc.contributor.author.none.fl_str_mv |
Leguizamón Robayo, Alexander |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas |
topic |
510 - Matemáticas Sistemas Hamiltonianos Hamilton-Jacobi equation Jacobi structures Contact Manifolds Locally conformally symplectic structures Hamiltonian actions Moment Maps Estructuras de Jacobi Variedades de contact Estructuras localmente conformemente simplécticas Acción Hamiltoniana Aplicación momento |
dc.subject.lemb.none.fl_str_mv |
Sistemas Hamiltonianos Hamilton-Jacobi equation |
dc.subject.proposal.eng.fl_str_mv |
Jacobi structures Contact Manifolds Locally conformally symplectic structures Hamiltonian actions Moment Maps |
dc.subject.proposal.spa.fl_str_mv |
Estructuras de Jacobi Variedades de contact Estructuras localmente conformemente simplécticas Acción Hamiltoniana Aplicación momento |
description |
The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-06-21T22:30:00Z |
dc.date.available.none.fl_str_mv |
2021-06-21T22:30:00Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79669 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79669 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
S. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473. Marius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016. Marius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012. Marius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0. Pierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152. Rui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf. Rui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf. Hansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008. Hansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242. Janusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9. A A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451. Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf. Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898. John Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8. André Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488. Frank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020). Charles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16. Jet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8. Marı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033. Daniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020. Ana Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7. Ana Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020). Miron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020). Alfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020). Izu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564. Luca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. Bibliography Luca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020). Carlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
103 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Matemáticas |
dc.publisher.department.spa.fl_str_mv |
Departamento de Matemáticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79669/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79669/3/license_rdf https://repositorio.unal.edu.co/bitstream/unal/79669/2/EncabezadoTesisMSc.pdf https://repositorio.unal.edu.co/bitstream/unal/79669/4/EncabezadoTesisMSc.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 24013099e9e6abb1575dc6ce0855efd5 708f7cf8b3f4e80c0422e3139a984d84 fbe88bcb98e669cf5654e251640f95ba |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089267615367168 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sepe, Danieled40a0bdc3d5d3fe10adc8702ae095999Martinez Alba, Nicolas1f63b38dcb81b6cd934eaffcd285b12aLeguizamón Robayo, Alexanderbdc73b2ac8bea0faa96c6bfbc02c5f4b2021-06-21T22:30:00Z2021-06-21T22:30:00Z2021https://repositorio.unal.edu.co/handle/unal/79669Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry.En el siguiente trabajo introducimos la idea de acción Hamiltoniana en el contexto de la geometría de Jacobi en fibrados de línea generales. Esta construcción la realizamos de forma intrínseca sin necesidad de recurrir al ”truco de Poissonización”. El concepto de acción Hamiltoniana en geometría de Jacobi nos permite recuperar resultados conocidos en geometría de Poisson, contacto, y localmente conformemente simplécticaMaestríaMagíster en Ciencias - MatemáticasGeometría Diferencial103 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasSistemas HamiltonianosHamilton-Jacobi equationJacobi structuresContact ManifoldsLocally conformally symplectic structuresHamiltonian actionsMoment MapsEstructuras de JacobiVariedades de contactEstructuras localmente conformemente simplécticasAcción HamiltonianaAplicación momentoOn moment maps and Jacobi manifoldsSobre mapas momento y variedades de JacobiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473.Marius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016.Marius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012.Marius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0.Pierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152.Rui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf.Rui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf.Hansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008.Hansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242.Janusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9.A A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451.Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf.Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898.John Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8.André Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488.Frank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020).Charles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16.Jet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8.Marı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033.Daniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020.Ana Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7.Ana Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020).Miron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020).Alfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020).Izu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564.Luca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. BibliographyLuca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020).Carlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79669/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unal.edu.co/bitstream/unal/79669/3/license_rdf24013099e9e6abb1575dc6ce0855efd5MD53ORIGINALEncabezadoTesisMSc.pdfEncabezadoTesisMSc.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf703143https://repositorio.unal.edu.co/bitstream/unal/79669/2/EncabezadoTesisMSc.pdf708f7cf8b3f4e80c0422e3139a984d84MD52THUMBNAILEncabezadoTesisMSc.pdf.jpgEncabezadoTesisMSc.pdf.jpgGenerated Thumbnailimage/jpeg3565https://repositorio.unal.edu.co/bitstream/unal/79669/4/EncabezadoTesisMSc.pdf.jpgfbe88bcb98e669cf5654e251640f95baMD54unal/79669oai:repositorio.unal.edu.co:unal/796692024-07-22 00:43:08.717Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |