On moment maps and Jacobi manifolds

The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian ac...

Full description

Autores:
Leguizamón Robayo, Alexander
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79669
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79669
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas
Sistemas Hamiltonianos
Hamilton-Jacobi equation
Jacobi structures
Contact Manifolds
Locally conformally symplectic structures
Hamiltonian actions
Moment Maps
Estructuras de Jacobi
Variedades de contact
Estructuras localmente conformemente simplécticas
Acción Hamiltoniana
Aplicación momento
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e464c8ccb5190f8772af77f8c52e5b83
oai_identifier_str oai:repositorio.unal.edu.co:unal/79669
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv On moment maps and Jacobi manifolds
dc.title.translated.spa.fl_str_mv Sobre mapas momento y variedades de Jacobi
title On moment maps and Jacobi manifolds
spellingShingle On moment maps and Jacobi manifolds
510 - Matemáticas
Sistemas Hamiltonianos
Hamilton-Jacobi equation
Jacobi structures
Contact Manifolds
Locally conformally symplectic structures
Hamiltonian actions
Moment Maps
Estructuras de Jacobi
Variedades de contact
Estructuras localmente conformemente simplécticas
Acción Hamiltoniana
Aplicación momento
title_short On moment maps and Jacobi manifolds
title_full On moment maps and Jacobi manifolds
title_fullStr On moment maps and Jacobi manifolds
title_full_unstemmed On moment maps and Jacobi manifolds
title_sort On moment maps and Jacobi manifolds
dc.creator.fl_str_mv Leguizamón Robayo, Alexander
dc.contributor.advisor.none.fl_str_mv Sepe, Daniele
Martinez Alba, Nicolas
dc.contributor.author.none.fl_str_mv Leguizamón Robayo, Alexander
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas
topic 510 - Matemáticas
Sistemas Hamiltonianos
Hamilton-Jacobi equation
Jacobi structures
Contact Manifolds
Locally conformally symplectic structures
Hamiltonian actions
Moment Maps
Estructuras de Jacobi
Variedades de contact
Estructuras localmente conformemente simplécticas
Acción Hamiltoniana
Aplicación momento
dc.subject.lemb.none.fl_str_mv Sistemas Hamiltonianos
Hamilton-Jacobi equation
dc.subject.proposal.eng.fl_str_mv Jacobi structures
Contact Manifolds
Locally conformally symplectic structures
Hamiltonian actions
Moment Maps
dc.subject.proposal.spa.fl_str_mv Estructuras de Jacobi
Variedades de contact
Estructuras localmente conformemente simplécticas
Acción Hamiltoniana
Aplicación momento
description The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-21T22:30:00Z
dc.date.available.none.fl_str_mv 2021-06-21T22:30:00Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79669
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79669
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv S. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473.
Marius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016.
Marius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012.
Marius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0.
Pierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152.
Rui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf.
Rui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf.
Hansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008.
Hansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242.
Janusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9.
A A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451.
Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf.
Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898.
John Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8.
André Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488.
Frank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020).
Charles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16.
Jet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8.
Marı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033.
Daniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020.
Ana Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7.
Ana Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020).
Miron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020).
Alfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020).
Izu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564.
Luca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. Bibliography
Luca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020).
Carlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 103 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.department.spa.fl_str_mv Departamento de Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79669/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79669/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79669/2/EncabezadoTesisMSc.pdf
https://repositorio.unal.edu.co/bitstream/unal/79669/4/EncabezadoTesisMSc.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
24013099e9e6abb1575dc6ce0855efd5
708f7cf8b3f4e80c0422e3139a984d84
fbe88bcb98e669cf5654e251640f95ba
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089267615367168
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sepe, Danieled40a0bdc3d5d3fe10adc8702ae095999Martinez Alba, Nicolas1f63b38dcb81b6cd934eaffcd285b12aLeguizamón Robayo, Alexanderbdc73b2ac8bea0faa96c6bfbc02c5f4b2021-06-21T22:30:00Z2021-06-21T22:30:00Z2021https://repositorio.unal.edu.co/handle/unal/79669Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/The main goal of this work is to introduce the idea of a Hamiltonian action in the context of Jacobi structures on line bundles. This work aims to make these construction without relying on the "Poissonization trick". Our definition allows us to recover the notion of (weakly)Hamiltonian action in the context of Poisson, contact, and locally conformally symplectic geometry.En el siguiente trabajo introducimos la idea de acción Hamiltoniana en el contexto de la geometría de Jacobi en fibrados de línea generales. Esta construcción la realizamos de forma intrínseca sin necesidad de recurrir al ”truco de Poissonización”. El concepto de acción Hamiltoniana en geometría de Jacobi nos permite recuperar resultados conocidos en geometría de Poisson, contacto, y localmente conformemente simplécticaMaestríaMagíster en Ciencias - MatemáticasGeometría Diferencial103 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MatemáticasDepartamento de MatemáticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - MatemáticasSistemas HamiltonianosHamilton-Jacobi equationJacobi structuresContact ManifoldsLocally conformally symplectic structuresHamiltonian actionsMoment MapsEstructuras de JacobiVariedades de contactEstructuras localmente conformemente simplécticasAcción HamiltonianaAplicación momentoOn moment maps and Jacobi manifoldsSobre mapas momento y variedades de JacobiTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMS. C. Coutinho. A Primer of Algebraic D-Modules. London Mathematical Society Student Texts. Cambridge: Cambridge University Press, 1995. isbn: 978-0-521-55119-9. doi: 10 . 1017/CBO9780511623653. url: https://www.cambridge.org/core/books/primer- of- algebraic-dmodules/87B8F8AB3B53DBA8A8BD33A058E54473.Marius Crainic. Mastermath course Differential Geometry 2015/2016. Lecture Notes. Uni- versity of Utrecht, 2016.Marius Crainic and Marı́a Amelia Salazar. “Jacobi structures and Spencer operators”. In: Journal des Mathematiques Pures et Appliquees 103.2 (2015), pp. 504–521. doi: 10.1016/ j.matpur.2014.04.012.Marius Crainic and Chenchang Zhu. “Integrability of Jacobi and Poison Structures”. In: Annales de L’Institut Fourier 57.4 (2007), pp. 1181–1216. url: http://aif.cedram.org/ item?id=AIF_2007__57_4_1181_0.Pierre Dazord, André Lichnerowicz, and Charles-Michel Marle. “Structure locale des variétés de Jacobi”. In: Journal de mathématiques pures et appliquées 70.1 (1991), pp. 101–152.Rui Loja Fernandes. Differential Geometry. Lecture Notes. University of Illinois Urbana Champaign, Oct. 2020. url: https : / / faculty . math . illinois . edu / ~ruiloja / Meus - papers/HTML/notesDG.pdf.Rui Loja Fernandes and Ioan Marcut. Lectures on Poisson geometry. 2015. url: https : //faculty.math.illinois.edu/~ruiloja/Math595/Spring14/book.pdf.Hansjörg Geiges. An Introduction to Contact Topology. Cambridge University Press, 2008.Hansjörg Geiges. “Contact geometry”. In: Handbook of Differential Geometry Vol. 2. July 2006, pp. 315–312. doi: 10.1007/978-94-011-3330-2_3. url: http://arxiv.org/abs/ math/0307242.Janusz Grabowski. “Local lie algebra determines base manifold”. In: Progress in Mathematics 252.2 (2007), pp. 131–145. doi: 10.1007/978-0-8176-4530-4_9.A A Kirillov. “Local Lie Algebras”. In: Russian Mathematical Surveys 31.4 (Aug. 1976), pp. 55–75. doi: 10.1070/RM1976v031n04ABEH001556. url: http://stacks.iop.org/0036- 0279/31/i=4/a=R02?key=crossref.b88697572b48af4d7d2216e575131451.Ivan Kolář, Peter W. Michor, and Jan Slovák. Natural operations in differential geometry. en. Web Version, 1st Ed. 1993. Berlin ; New York: Springer-Verlag, 2005. isbn: 978-3-540-56235-1 978-0-387-56235-3. url: https://www.emis.de/monographs/KSM/kmsbookh.pdf.Camille Laurent-Gengoux, Anne Pichereau, and Pol Vanhaecke. Poisson Structures. 1st ed. Publication Title: Grundlehren der mathematischen Wissenschaften. Basel: Springer-Verlag Berlin Heidelberg, 2013. isbn: 978-3-642-31090-4. doi: 10.1007/978-3-642-31090-4. url: https://www.springer.com/gp/book/9783642310898.John Lee. Introduction to Smooth Manifolds. 2nd ed. Pages: XVI, 708. New York: Springer- Verlag New York, 2012. isbn: 978-1-4419-9981-8.André Lichnerowicz. “Les variétés de Jacobi et leurs algébres de Lie associées”. In: J. Math. Pures Appl 57 (1978), pp. 453–488.Frank Loose. “Reduction in Contact Geometry”. In: Journal of Lie Theory 11.1 (2001), pp. 9–22. url: https://www.emis.de/journals/JLT/vol.11_no.1/2.html (visited on 11/01/2020).Charles-Michel Marle. “On Jacobi Manifolds and Jacobi Bundles”. In: In Dazord P., We- instein A. (eds) Symplectic Geometry, Groupoids, and Integrable Systems. Ed. by Mathe- matical Sciences Research Institute Publications. Vol. 111. New York, NY: Springer, New York, NY, 1991, pp. 1009–1010. doi: 10 . 1007 / 978 - 1 - 4613 - 9719 - 9 _ 16. url: http : //link.springer.com/10.1007/978-1-4613-9719-9_16.Jet Nestruev. Smooth manifolds and observables. English. OCLC: 1199307234. 2020. isbn: 978-3-030-45649-8.Marı́a Amelia Salazar and Daniele Sepe. “Contact Isotropic Realisations of Jacobi Manifolds via Spencer Operators”. In: 13 (2014). doi: 10.3842/SIGMA.2017.033. url: http://arxiv. org/abs/1406.2138%0Ahttp://dx.doi.org/10.3842/SIGMA.2017.033.Daniele Sepe. Geometria Simpletica. Universidade Federal Fluminense (UFF), 2020.Ana Canas da Silva. Lectures on Symplectic Geometry. Vol. 1764. Lecture Notes in Math- ematics. Publication Title: Lectures on Symplectic Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. isbn: 978-3-540-42195-5. doi: 10.1007/b80865. url: http://link. springer.com/10.1007/978-3-540-45330-7.Ana Cannas da Silva and Alan Weinstein. Geometric Models for Noncommutative Algebras. Berkeley, CA: American Mathematical Society, 2000. url: https://bookstore.ams.org/ bmln-10 (visited on 10/19/2020).Miron Stanciu. “Locally conformally symplectic reduction”. en. In: (Aug. 2018). url: https: //arxiv.org/abs/1809.00034v2 (visited on 10/14/2020).Alfonso Giuseppe Tortorella. “Deformations of coisotropic submanifolds in Jacobi manifolds”. In: arXiv:1705.08962 [math] (May 2017). arXiv: 1705.08962. url: http://arxiv.org/abs/ 1705.08962 (visited on 07/22/2020).Izu Vaisman. “Locally Conformal Symplectic Manifolds”. In: International Journal of Math- ematics and Mathematical Sciences 8 (Jan. 1985). doi: 10.1155/S0161171285000564.Luca Vitagliano. “Dirac–Jacobi bundles”. In: Journal of Symplectic Geometry 16.2 (2018), pp. 485–561. doi: 10.4310/JSG.2018.v16.n2.a4. url: http://www.intlpress.com/site/ pub/pages/journals/items/jsg/content/vols/0016/0002/a004/. BibliographyLuca Vitagliano and Aı̈ssa Wade. “Holomorphic Jacobi Manifolds and Holomorphic Contact Groupoids”. en. In: Math. Z. 294.3-4 (2020). arXiv: 1710.03300, pp. 1181–1225. issn: 0025- 5874, 1432-1823. doi: 10.1007/s00209-019-02320-x. url: http://arxiv.org/abs/1710. 03300 (visited on 07/20/2020).Carlos Zapata-Carratala. “A Landscape of Hamiltonian Phase Spaces: on the foundations and generalizations of one of the most powerful ideas of modern science”. PhD thesis. Oct. 2019. url: http://arxiv.org/abs/1910.08469.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79669/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8914https://repositorio.unal.edu.co/bitstream/unal/79669/3/license_rdf24013099e9e6abb1575dc6ce0855efd5MD53ORIGINALEncabezadoTesisMSc.pdfEncabezadoTesisMSc.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf703143https://repositorio.unal.edu.co/bitstream/unal/79669/2/EncabezadoTesisMSc.pdf708f7cf8b3f4e80c0422e3139a984d84MD52THUMBNAILEncabezadoTesisMSc.pdf.jpgEncabezadoTesisMSc.pdf.jpgGenerated Thumbnailimage/jpeg3565https://repositorio.unal.edu.co/bitstream/unal/79669/4/EncabezadoTesisMSc.pdf.jpgfbe88bcb98e669cf5654e251640f95baMD54unal/79669oai:repositorio.unal.edu.co:unal/796692024-07-22 00:43:08.717Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==