Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño

Las tecnologías de control estructural para aliviar la respuesta estructural ante diferentes cargas dinámicas, especialmente los sismos, se han convertido en un estándar a nivel mundial. Su uso está justificado no solo para la protección de la vida, sino también para la protección de los elementos n...

Full description

Autores:
Valencia Hernández, Luis Alexánder
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79146
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79146
Palabra clave:
620 - Ingeniería y operaciones afines
Control estructural
Diseño basado en desempeño
Análisis dinámico no lineal
Structural control
Performance based design
Nonlinear dynamic analysis
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e427b7ed4deaaf698f27fec737e86a85
oai_identifier_str oai:repositorio.unal.edu.co:unal/79146
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
dc.title.alternative.spa.fl_str_mv Evaluation of the behavior of active control in reducing damage using performance based seismic design
title Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
spellingShingle Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
620 - Ingeniería y operaciones afines
Control estructural
Diseño basado en desempeño
Análisis dinámico no lineal
Structural control
Performance based design
Nonlinear dynamic analysis
title_short Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
title_full Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
title_fullStr Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
title_full_unstemmed Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
title_sort Evaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeño
dc.creator.fl_str_mv Valencia Hernández, Luis Alexánder
dc.contributor.advisor.spa.fl_str_mv Alvarez Marín, Diego Andrés
dc.contributor.author.spa.fl_str_mv Valencia Hernández, Luis Alexánder
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Control estructural
Diseño basado en desempeño
Análisis dinámico no lineal
Structural control
Performance based design
Nonlinear dynamic analysis
dc.subject.proposal.spa.fl_str_mv Control estructural
dc.subject.proposal.none.fl_str_mv Diseño basado en desempeño
Análisis dinámico no lineal
Structural control
Performance based design
Nonlinear dynamic analysis
description Las tecnologías de control estructural para aliviar la respuesta estructural ante diferentes cargas dinámicas, especialmente los sismos, se han convertido en un estándar a nivel mundial. Su uso está justificado no solo para la protección de la vida, sino también para la protección de los elementos no estructurales y el contenido propio de la edificación. El propósito de este trabajo de grado es aplicar el control estructural a un pórtico de acero, validando su comportamiento mediante los criterios del diseño basado en desempeño, en el que se entienda de manera más realista el riesgo asociado a la pérdida de ocupación y a las pérdidas económicas como resultado de un sismo futuro.
publishDate 2020
dc.date.issued.spa.fl_str_mv 2020-06-15
dc.date.accessioned.spa.fl_str_mv 2021-02-08T22:46:58Z
dc.date.available.spa.fl_str_mv 2021-02-08T22:46:58Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79146
url https://repositorio.unal.edu.co/handle/unal/79146
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv AIS (2010). Reglamento Colombiano de Construcción Sismo Resistente. Reporte técnico, Asociación de Ingeniería Sísmica.
Akbay, A. y Aktan, H.M. (1991). Actively regulated friction slip braces. In proceedings of the 6th Canadian Conference on Earthquake Engineering, 2(2):367{374.
Akhlaghi, S., Zhou, N., and Huang, X. (2017). Adaptive adjustment of noise covariance in Kalman lter for dynamic state estimation. IEEE Power and Energy Society General Meeting, pages 1-5.
Ali, M. y Hassan, J. B. (2012). Weighting matrix selection method for LQR design based on a multi objetive evolutionary algorithm. Journal of Advanced Materials Research, 383:1047-054.
ASCE (2014). Seismic Evaluation and Retro t of Existing Buildings ASCE/SEI 41-13. American Society of Civil Engineers, ASCE standard ASCE/SEI 41-13 edition.
Awad, R. R. (2012). Análisis y diseño sísmico de edi ficios. Universidad Ea t, Medellín, Colombia.
Banazadeh, M., Gholhaki, M., and Sani, H. P. (2016). Cost-bene t analysis of seismicisolated structures with viscous damper based on loss estimation. Structure and infrastructure engineering, 13(8):1045{1055.
Barroso, L. R. y Smith, H. A. (1999). Performance evaluation of vibration controlled steel structures under seismic load. Technical report, Stanford University.
Blachowski, B. y Pnevmatikos, N. (2017). Neural network based vibration control of seismically excited civil structures. Periodica Polytechnica of Civil Engineering, 62(3):1{9.
Buckle, I. G. (2000). Passive control of structures for seismic loads. In 12th World Conference on Earthquake Engineering, number 209.
Cha, Y.-J., Agrawal, A. K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S. J., Spencer, B. F., Ricles, J., and Christenson, R. (2014). Performance validations of semiactive controllers on large scale moment resisting frame equipped with 200-kN MR damper using real time hybrid simulations. Journal of Structural Engineering ASCE, 140(10):1{11.
Cha, Y. J. y Bai, J. W. (2016). Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design. Engineering Structures, 116(10):192{202.
Chao, S. H. y Loh, C. H. (2007). Inelastic response analysis of reinforced concrete structures using modi ed force analogy method. Earthquake Engineering and Structural Dynamics, 36:1659{1683.
Chen, C.-T. (1999). Linear system theory and design. Oxford University Press, New York, NY.
Chen, C. y Chen, G. (2004). Shaking table tests of a quarter scale three storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring, 11(6):239{257.
Cheng, F. Y., Juang, H., and Lou, K. (2008). Smart Structures, Innovative Systems for Seismic Response Control. CRC, Press.
Cheng, F. Y. y Jiang H. (1998). Hybrid control of seismic structures with optimal placement of control devices. ASCE Journal of Engineering Mechanics, 11(2):52.
Cheng, F. Y. y Jiang H. (1999). Optimum control of a hybrid system for seismic excitation with observer seismic state. Smart Materials and Structures, 7(5):654.
Cheng, F. Y. y P. Tian (1992). Generalized optimal active control algorithm for nonlinear seismic structures. Proceedings of the 10th World Conference on Earthquake Engineering, 44(6):860{865.
Chopra, A. K. (2012). Dynamics of Structures. Theory and applications to earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics.
Connor, J. J. (2001). Introduction to structural motion control. Prentice Hall.
Cornell, A. y Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER center news, 3:1-3.
Cut eld, M., Ma, Q., and Ryan, K. (2014). Cost-bene t analysis of base isolated and conventional buildings: A case study. In 2014 NZSEE Conference.
Datta, T. (2003). A state of the art review on active control of structures. Journal of Earthquake Technology, 40(430):1-17.
Dyanati, M., Huang, Q., and Roke, D. (2017). Cost-bene t evaluation of self-centring concentrically braced frames considering uncertainties. Structure and infrastructure engineering, 13(5):537-553.
Farsangi, E. N. (2011). Performance evaluation of viscoelastic and frition passive damping systems in vibration control of tall buildings. International Journal of Advanced Structural Engineering, 3(2):187-211.
FEMA, F. E. M. A. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.
FEMA, F. E. M. A. (2000). Prestandard and comentary for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.
FEMA, F. E. M. A. (2018). Seismic performance assessment of buildings methodology. Technical report, Federal Emergency Management Agency FEMA.
Ferreira, F., Moutinho, C., Cunha, A., and Caetano, E. (2020). An arti cial accelerogram generator code written in Matlab. Engineering Reports, 10:1{17.
Fischinger, M. (2014). Performance based seismic engineering: vision for an earthquake resilient society, volume 32. Springer.
Fisco, N.R. y Adeli, H. (2011a). Smart structures: Part 1 - Active and semiactive control. Scientia Iranica, 18(3):275{284.
Fisco, N.R. y Adeli, H. (2011b). Smart structures: Part 2 - Hybrid control systems and control strategies. Scientia Iranica, 18(3):285-295.
García, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. Universidad de los Andes.
Ghali, A., Neville, A. M., and Brown, T. (2009). Structural analysis: a uni ed classical and matrix approach. Taylor and Francis, New York, NY.
Gonzalez, O. R. y Kelkar, A. G. (2005). Robust multivariable control. The electrical engineering handbook, pages 1037-1047.
Hiemenz, G. J., Choi, Y. T., and Wereley, N. M. (2003). Seismic control of civil structures utilizing semi-active magnetorheological braces. Computer Aided Civil and Infrastructure Engineering, 18(1):31-44.
Jaramillo, J. O. (2010). Ingeniería estructural. Universidad Nacional de Colombia, Manizales, Colombia.
Jarrett, J. (2013). Performance assessment of seismic resistant steel structures. PhD thesis, Virginia Polytechnic Institute and State University.
Ji, X., Liu, D., and Hutt, C. M. (2018). Seismic performance evaluation of a high-rise building with novel hybrid coupled walls. Engineering Structures, 169:216-225.
Jung, H. J., Lee, I. W., and Kim, J.-T. (2000). Optimal structural control using neural networks. Journal of Engineering Mechanics, 126(2):201.
Kim, J. y Shin, H. (2017). Seismic loss assessment of a structure retro tted with slit-friction hybrid dampers. Engineering Structures, 130:336-350.
Kirk, D. E. (1998). Optimal control theory: An introduction. Prentice Hall, New York, NY.
Kokotovic, P. (1990). The joy of feedback: Nonlinear and adaptative. Control Systems Technology, IEEE transactions, 12(3):7-17.
Krawinkler, H. y Miranda, E. (2004). Performance based earthquake engineering: From engineering seismology to performance based engineering. CRC press.
Kumar, A. (2005). Active control of buildings subjected to seismic excitations: Control system design using LQG optimal approach. LAMBERT Academic Publishing.
Kurata, N., Kobori, T., and Koshika, N. (2002). Performance based design with semi-active structural control technique. Earthquake Engineering and Structural Dynamics, (31):445-458.
Lee, K. S., Ricles, J., and Sause, R. (2009). Performance based seismic design of steel MRFs with elastomeric dampers. Journal of Structural Engineering ASCE, (135):489-498.
Lei, Y., Wu, D., and Lin, Y. (2015). A decentraliced control algorithm for large scale systems. Computer Aided Civil and Infrastructure Engineering, 10(30):824-842.
G. y Wong, K. (2014). Theory of nonlinear structural analysis. John Wiley and sons.
Li, J. J. y Li, G. Q. (2007). Advanced analysis and design of steel frames. John Wiley and sons.
Li, Z. y Adeli, H. (2016). New discrete time robust H2/H1 algorithm for vibration control of smart structures using linear matrix inequalities. Engineering Applications of Arti cial Inteligence, 55:47-57.
Malaviya, P., Lamba, S., and Kumar, A. (2014). Review of algorithms for control systems for civil engineering structures. International Journal of Engineering Research and Applications, pages 35-40.
Marrs, N. (2013). Seismic performance comparison of a xed-base versus a base isolated office building. Master's thesis, Faculty of California Polytechnic State University.
Moehle, J. y Dierlein, G. G. (2004). A framework methodology for performance based earthquake engineering. In 13th World Conference on Earthquake Engineering, number 679.
Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. Informe de la construcción, 53(477):37-39.
NEHRP (2010). Nonlinear structural analysis for seismic design. Technical report, National Institute of Standards and Technology.
NEHRP (2013). Nonlinear analysis research and development program for performance based seismic design. Technical report, National Institute of Standards and Technology.
Ogata, K. (2010). Ingenier a de control moderna. Prentice Hall.
Pall, A. y Pall, T. (2004). Performance based design using Pall friction dampers: An economical design solution. In 13th World Conference on Earthquake Engineering, number 1955.
Pnevmatikos, N. G. (2017). Pole placement algorithms for control of civil structures subjected to earthquake excitation. Journal of Applied and Computational Mechanics, 3:25-36.
Pnevmatikos, N. G. y Gantes, C. J. (2015). Actively and semi-actively controlled structures under seismic actions: modelling and analysis. Encyclopedia of Earthquake Engineering, pages 1-20.
Priestley, M. (2003). Myths and Fallacies in Earthquake Engineering, Revisited. European School for Advanced Studies in Reduction of Seismic Risk.
Rabih, A. y M., G. (2003). Active structural vibration control: A review. The Shock and Vibration Digest, 35(5):367-383.
Rashid, M. y Ahmad, N. (2017). Economic losses due to earthquake - induced structural damages in RC SMRF structures. Civil and Enviromental Engineering, 4:1-15.
Saaed, T. E., Nikolokopoulos, G., Jonasson, J.-E., and Hedlund, H. (2013). A state of the art review of structural control systems. Journal of Vibration Control, 21(5):1-19
Scott, N. T. y Snyder, D. (1995). Active control of vibration using neural network. IEEE Transactions on Neural Networks, 6(4):819-828.
Shu, Z., Li, S., Sun, X., and He, M. (2019). Performance-based Seismic Design of a Pendulum Tuned Mass Damper System. Journal of Earthquake Engineering, 23(2):334-355.
Soong, T. T. (1990). Active Structural Control: Theory and Practice. Longman Scienti c and Technical.
Soto, M. G. y Adeli, H. (2016). Recent advances in control algorithms for smart structures and machines. Wiley: Expert Systems, (34):1-14.
Spencer, B. F. y Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering ASCE, 129(7):845-856.
Stengel, R. F. (1994). Optimal Control and Estimation. John Wiley and sons, United States of America.
Taghavi, S. y Miranda, E. (2003). Response assessment of nonstructural buildings elements. Technical report, Paci c Earthquake Engineering Research Center PEER.
Taranath, B. (2016). Tall building design: steel, concrete and composite systems. CRC Press.
Urrego, P. (2018). Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada (tuned mass damper). Master's thesis, Escuela de Ingeniería de Antioquia.
Wang, N. y Adeli, H. (2015). Robust vibration control of wind excited highrise building structures. Journal of Civil Engineering and Management, 21:967-976.
Wong, K. y Hart, G. C. (1997). Active control of inelastic structural response during earthquakes. The Structural Design of Tall Buildings, 6:125-149.
Wong, K. y Yang, R. (1999). Inelastic dynamic response of structures using force analogy method. Journal of Engineering Mechanics, 125:1190-1199.
Xu, Y. L. y He, J. (2017). Smart civil structures. Taylor and Francis group.
Yang, J. N., Danielians, A., and Liu, S. C. (1991). A seismic hybrid control system for buildings strutcures. ASCE Journal of Engineering Mechanics, 177(4):836.
Yang, T. Y., Moehle, J., Stojadinovic, B., and Kiureghian, A. (2009). Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering ASCE, 135:1146-1154.
Yoshioka, H., Ramallo, J. C., and Spencer, B. F. J. (2002). Smart base isolation strategies employing magnetorheological dampers. ASCE Journal of Engineering Mechanics, 128(5):540.
Zameeruddin, M. y Sangle, K. K. (2016). Review on recent developments in the performance based seismic design of reinforced concrete. Structures, 6(3):119-133.
Zeng, X., Lu, X., Yang, T. Y., and Xu, Z. (2016). Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazard, 83(1):177-192.
Zhang, X., Toranzo, L., Reynolds, A., Cheng, F., Xu, B., and Langhaar, V. (2012). Seismic performance assessment of active/hybrid controlled building by response probability approach. In 15th World Conference on Earthquake Engineering.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
Acceso abierto
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 134
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79146/4/1060651625.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/79146/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79146/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79146/7/1060651625.2020.pdf.jpg
bitstream.checksum.fl_str_mv 98e4b0b6251cf31e1c2c24aab2e3e80a
cccfe52f796b7c63423298c2d3365fc6
42fd4ad1e89814f5e4a476b409eb708c
215f47d92245b96cc9494dea0cf84578
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806885942773940224
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/Acceso abiertoinfo:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Alvarez Marín, Diego Andrés2c083352-431f-4592-a7b2-d8f76a1b93a2Valencia Hernández, Luis Alexánderbd90dcc4-58af-446a-8275-9f6ea2e5b9a62021-02-08T22:46:58Z2021-02-08T22:46:58Z2020-06-15https://repositorio.unal.edu.co/handle/unal/79146Las tecnologías de control estructural para aliviar la respuesta estructural ante diferentes cargas dinámicas, especialmente los sismos, se han convertido en un estándar a nivel mundial. Su uso está justificado no solo para la protección de la vida, sino también para la protección de los elementos no estructurales y el contenido propio de la edificación. El propósito de este trabajo de grado es aplicar el control estructural a un pórtico de acero, validando su comportamiento mediante los criterios del diseño basado en desempeño, en el que se entienda de manera más realista el riesgo asociado a la pérdida de ocupación y a las pérdidas económicas como resultado de un sismo futuro.Structural control technologies to alleviate the structural response to di erent dynamic loads, especially earthquakes, have become a worldwide standard. Its use is justi ed not only for the protection of life, but also for the protection of non-structural elements and the content of the building itself. The purpose of this degree work is to apply structural control to a steel frame, validating its behavior using performance-based design criteria, in which the risk associated with economic losses is understood more realistically as result of a future earthquake.Maestría134application/pdfspa620 - Ingeniería y operaciones afinesControl estructuralDiseño basado en desempeñoAnálisis dinámico no linealStructural controlPerformance based designNonlinear dynamic analysisEvaluación del comportamiento del control activo en la reducción del daño usando los criterios del diseño por desempeñoEvaluation of the behavior of active control in reducing damage using performance based seismic designTrabajo de grado - Maestríainfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_8042Texthttp://purl.org/redcol/resource_type/WPManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - EstructurasDepartamento de Ingeniería CivilUniversidad Nacional de Colombia - Sede ManizalesAIS (2010). Reglamento Colombiano de Construcción Sismo Resistente. Reporte técnico, Asociación de Ingeniería Sísmica.Akbay, A. y Aktan, H.M. (1991). Actively regulated friction slip braces. In proceedings of the 6th Canadian Conference on Earthquake Engineering, 2(2):367{374.Akhlaghi, S., Zhou, N., and Huang, X. (2017). Adaptive adjustment of noise covariance in Kalman lter for dynamic state estimation. IEEE Power and Energy Society General Meeting, pages 1-5.Ali, M. y Hassan, J. B. (2012). Weighting matrix selection method for LQR design based on a multi objetive evolutionary algorithm. Journal of Advanced Materials Research, 383:1047-054.ASCE (2014). Seismic Evaluation and Retro t of Existing Buildings ASCE/SEI 41-13. American Society of Civil Engineers, ASCE standard ASCE/SEI 41-13 edition.Awad, R. R. (2012). Análisis y diseño sísmico de edi ficios. Universidad Ea t, Medellín, Colombia.Banazadeh, M., Gholhaki, M., and Sani, H. P. (2016). Cost-bene t analysis of seismicisolated structures with viscous damper based on loss estimation. Structure and infrastructure engineering, 13(8):1045{1055.Barroso, L. R. y Smith, H. A. (1999). Performance evaluation of vibration controlled steel structures under seismic load. Technical report, Stanford University.Blachowski, B. y Pnevmatikos, N. (2017). Neural network based vibration control of seismically excited civil structures. Periodica Polytechnica of Civil Engineering, 62(3):1{9.Buckle, I. G. (2000). Passive control of structures for seismic loads. In 12th World Conference on Earthquake Engineering, number 209.Cha, Y.-J., Agrawal, A. K., Friedman, A., Phillips, B., Ahn, R., Dong, B., Dyke, S. J., Spencer, B. F., Ricles, J., and Christenson, R. (2014). Performance validations of semiactive controllers on large scale moment resisting frame equipped with 200-kN MR damper using real time hybrid simulations. Journal of Structural Engineering ASCE, 140(10):1{11.Cha, Y. J. y Bai, J. W. (2016). Seismic fragility estimates of a moment-resisting frame building controlled by MR dampers using performance-based design. Engineering Structures, 116(10):192{202.Chao, S. H. y Loh, C. H. (2007). Inelastic response analysis of reinforced concrete structures using modi ed force analogy method. Earthquake Engineering and Structural Dynamics, 36:1659{1683.Chen, C.-T. (1999). Linear system theory and design. Oxford University Press, New York, NY.Chen, C. y Chen, G. (2004). Shaking table tests of a quarter scale three storey building model with piezoelectric friction dampers. Structural Control and Health Monitoring, 11(6):239{257.Cheng, F. Y., Juang, H., and Lou, K. (2008). Smart Structures, Innovative Systems for Seismic Response Control. CRC, Press.Cheng, F. Y. y Jiang H. (1998). Hybrid control of seismic structures with optimal placement of control devices. ASCE Journal of Engineering Mechanics, 11(2):52.Cheng, F. Y. y Jiang H. (1999). Optimum control of a hybrid system for seismic excitation with observer seismic state. Smart Materials and Structures, 7(5):654.Cheng, F. Y. y P. Tian (1992). Generalized optimal active control algorithm for nonlinear seismic structures. Proceedings of the 10th World Conference on Earthquake Engineering, 44(6):860{865.Chopra, A. K. (2012). Dynamics of Structures. Theory and applications to earthquake engineering. Prentice-Hall international series in civil engineering and engineering mechanics.Connor, J. J. (2001). Introduction to structural motion control. Prentice Hall.Cornell, A. y Krawinkler, H. (2000). Progress and challenges in seismic performance assessment. PEER center news, 3:1-3.Cut eld, M., Ma, Q., and Ryan, K. (2014). Cost-bene t analysis of base isolated and conventional buildings: A case study. In 2014 NZSEE Conference.Datta, T. (2003). A state of the art review on active control of structures. Journal of Earthquake Technology, 40(430):1-17.Dyanati, M., Huang, Q., and Roke, D. (2017). Cost-bene t evaluation of self-centring concentrically braced frames considering uncertainties. Structure and infrastructure engineering, 13(5):537-553.Farsangi, E. N. (2011). Performance evaluation of viscoelastic and frition passive damping systems in vibration control of tall buildings. International Journal of Advanced Structural Engineering, 3(2):187-211.FEMA, F. E. M. A. (1997). NEHRP guidelines for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.FEMA, F. E. M. A. (2000). Prestandard and comentary for the seismic rehabilitation of buildings. Technical report, Federal Emergency Management Agency FEMA.FEMA, F. E. M. A. (2018). Seismic performance assessment of buildings methodology. Technical report, Federal Emergency Management Agency FEMA.Ferreira, F., Moutinho, C., Cunha, A., and Caetano, E. (2020). An arti cial accelerogram generator code written in Matlab. Engineering Reports, 10:1{17.Fischinger, M. (2014). Performance based seismic engineering: vision for an earthquake resilient society, volume 32. Springer.Fisco, N.R. y Adeli, H. (2011a). Smart structures: Part 1 - Active and semiactive control. Scientia Iranica, 18(3):275{284.Fisco, N.R. y Adeli, H. (2011b). Smart structures: Part 2 - Hybrid control systems and control strategies. Scientia Iranica, 18(3):285-295.García, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. Universidad de los Andes.Ghali, A., Neville, A. M., and Brown, T. (2009). Structural analysis: a uni ed classical and matrix approach. Taylor and Francis, New York, NY.Gonzalez, O. R. y Kelkar, A. G. (2005). Robust multivariable control. The electrical engineering handbook, pages 1037-1047.Hiemenz, G. J., Choi, Y. T., and Wereley, N. M. (2003). Seismic control of civil structures utilizing semi-active magnetorheological braces. Computer Aided Civil and Infrastructure Engineering, 18(1):31-44.Jaramillo, J. O. (2010). Ingeniería estructural. Universidad Nacional de Colombia, Manizales, Colombia.Jarrett, J. (2013). Performance assessment of seismic resistant steel structures. PhD thesis, Virginia Polytechnic Institute and State University.Ji, X., Liu, D., and Hutt, C. M. (2018). Seismic performance evaluation of a high-rise building with novel hybrid coupled walls. Engineering Structures, 169:216-225.Jung, H. J., Lee, I. W., and Kim, J.-T. (2000). Optimal structural control using neural networks. Journal of Engineering Mechanics, 126(2):201.Kim, J. y Shin, H. (2017). Seismic loss assessment of a structure retro tted with slit-friction hybrid dampers. Engineering Structures, 130:336-350.Kirk, D. E. (1998). Optimal control theory: An introduction. Prentice Hall, New York, NY.Kokotovic, P. (1990). The joy of feedback: Nonlinear and adaptative. Control Systems Technology, IEEE transactions, 12(3):7-17.Krawinkler, H. y Miranda, E. (2004). Performance based earthquake engineering: From engineering seismology to performance based engineering. CRC press.Kumar, A. (2005). Active control of buildings subjected to seismic excitations: Control system design using LQG optimal approach. LAMBERT Academic Publishing.Kurata, N., Kobori, T., and Koshika, N. (2002). Performance based design with semi-active structural control technique. Earthquake Engineering and Structural Dynamics, (31):445-458.Lee, K. S., Ricles, J., and Sause, R. (2009). Performance based seismic design of steel MRFs with elastomeric dampers. Journal of Structural Engineering ASCE, (135):489-498.Lei, Y., Wu, D., and Lin, Y. (2015). A decentraliced control algorithm for large scale systems. Computer Aided Civil and Infrastructure Engineering, 10(30):824-842.G. y Wong, K. (2014). Theory of nonlinear structural analysis. John Wiley and sons.Li, J. J. y Li, G. Q. (2007). Advanced analysis and design of steel frames. John Wiley and sons.Li, Z. y Adeli, H. (2016). New discrete time robust H2/H1 algorithm for vibration control of smart structures using linear matrix inequalities. Engineering Applications of Arti cial Inteligence, 55:47-57.Malaviya, P., Lamba, S., and Kumar, A. (2014). Review of algorithms for control systems for civil engineering structures. International Journal of Engineering Research and Applications, pages 35-40.Marrs, N. (2013). Seismic performance comparison of a xed-base versus a base isolated office building. Master's thesis, Faculty of California Polytechnic State University.Moehle, J. y Dierlein, G. G. (2004). A framework methodology for performance based earthquake engineering. In 13th World Conference on Earthquake Engineering, number 679.Montanaro, M. I. (2002). Sistemas de control de vibraciones en estructuras de gran altura. Informe de la construcción, 53(477):37-39.NEHRP (2010). Nonlinear structural analysis for seismic design. Technical report, National Institute of Standards and Technology.NEHRP (2013). Nonlinear analysis research and development program for performance based seismic design. Technical report, National Institute of Standards and Technology.Ogata, K. (2010). Ingenier a de control moderna. Prentice Hall.Pall, A. y Pall, T. (2004). Performance based design using Pall friction dampers: An economical design solution. In 13th World Conference on Earthquake Engineering, number 1955.Pnevmatikos, N. G. (2017). Pole placement algorithms for control of civil structures subjected to earthquake excitation. Journal of Applied and Computational Mechanics, 3:25-36.Pnevmatikos, N. G. y Gantes, C. J. (2015). Actively and semi-actively controlled structures under seismic actions: modelling and analysis. Encyclopedia of Earthquake Engineering, pages 1-20.Priestley, M. (2003). Myths and Fallacies in Earthquake Engineering, Revisited. European School for Advanced Studies in Reduction of Seismic Risk.Rabih, A. y M., G. (2003). Active structural vibration control: A review. The Shock and Vibration Digest, 35(5):367-383.Rashid, M. y Ahmad, N. (2017). Economic losses due to earthquake - induced structural damages in RC SMRF structures. Civil and Enviromental Engineering, 4:1-15.Saaed, T. E., Nikolokopoulos, G., Jonasson, J.-E., and Hedlund, H. (2013). A state of the art review of structural control systems. Journal of Vibration Control, 21(5):1-19Scott, N. T. y Snyder, D. (1995). Active control of vibration using neural network. IEEE Transactions on Neural Networks, 6(4):819-828.Shu, Z., Li, S., Sun, X., and He, M. (2019). Performance-based Seismic Design of a Pendulum Tuned Mass Damper System. Journal of Earthquake Engineering, 23(2):334-355.Soong, T. T. (1990). Active Structural Control: Theory and Practice. Longman Scienti c and Technical.Soto, M. G. y Adeli, H. (2016). Recent advances in control algorithms for smart structures and machines. Wiley: Expert Systems, (34):1-14.Spencer, B. F. y Nagarajaiah, S. (2003). State of the art of structural control. Journal of Structural Engineering ASCE, 129(7):845-856.Stengel, R. F. (1994). Optimal Control and Estimation. John Wiley and sons, United States of America.Taghavi, S. y Miranda, E. (2003). Response assessment of nonstructural buildings elements. Technical report, Paci c Earthquake Engineering Research Center PEER.Taranath, B. (2016). Tall building design: steel, concrete and composite systems. CRC Press.Urrego, P. (2018). Comparación del comportamiento estructural en edificaciones controladas sísmicamente con un amortiguador de masa sintonizada (tuned mass damper). Master's thesis, Escuela de Ingeniería de Antioquia.Wang, N. y Adeli, H. (2015). Robust vibration control of wind excited highrise building structures. Journal of Civil Engineering and Management, 21:967-976.Wong, K. y Hart, G. C. (1997). Active control of inelastic structural response during earthquakes. The Structural Design of Tall Buildings, 6:125-149.Wong, K. y Yang, R. (1999). Inelastic dynamic response of structures using force analogy method. Journal of Engineering Mechanics, 125:1190-1199.Xu, Y. L. y He, J. (2017). Smart civil structures. Taylor and Francis group.Yang, J. N., Danielians, A., and Liu, S. C. (1991). A seismic hybrid control system for buildings strutcures. ASCE Journal of Engineering Mechanics, 177(4):836.Yang, T. Y., Moehle, J., Stojadinovic, B., and Kiureghian, A. (2009). Seismic performance evaluation of facilities: Methodology and implementation. Journal of Structural Engineering ASCE, 135:1146-1154.Yoshioka, H., Ramallo, J. C., and Spencer, B. F. J. (2002). Smart base isolation strategies employing magnetorheological dampers. ASCE Journal of Engineering Mechanics, 128(5):540.Zameeruddin, M. y Sangle, K. K. (2016). Review on recent developments in the performance based seismic design of reinforced concrete. Structures, 6(3):119-133.Zeng, X., Lu, X., Yang, T. Y., and Xu, Z. (2016). Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazard, 83(1):177-192.Zhang, X., Toranzo, L., Reynolds, A., Cheng, F., Xu, B., and Langhaar, V. (2012). Seismic performance assessment of active/hybrid controlled building by response probability approach. In 15th World Conference on Earthquake Engineering.ORIGINAL1060651625.2020.pdf1060651625.2020.pdfTesis de Maestría en Ingeniería - Estructurasapplication/pdf5052946https://repositorio.unal.edu.co/bitstream/unal/79146/4/1060651625.2020.pdf98e4b0b6251cf31e1c2c24aab2e3e80aMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79146/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8701https://repositorio.unal.edu.co/bitstream/unal/79146/6/license_rdf42fd4ad1e89814f5e4a476b409eb708cMD56THUMBNAIL1060651625.2020.pdf.jpg1060651625.2020.pdf.jpgGenerated Thumbnailimage/jpeg4954https://repositorio.unal.edu.co/bitstream/unal/79146/7/1060651625.2020.pdf.jpg215f47d92245b96cc9494dea0cf84578MD57unal/79146oai:repositorio.unal.edu.co:unal/791462024-07-30 23:11:13.214Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==