Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)

ilustraciones, diagramas

Autores:
Bonilla Amaya, Miguel Fernando
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84629
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84629
https://repositorio.unal.edu.co/
Palabra clave:
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Plásticos biodegradables
Biodegradable Plastics
Poliestireno
Icopor
Plásticos
Insectos como alimento
Tenebrios
Gusano rey
Nutrición de peces
Economía circular
Coleópteros
Bioconversión
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e41c048c4a986dba1176ff0f745bc4fd
oai_identifier_str oai:repositorio.unal.edu.co:unal/84629
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
dc.title.translated.eng.fl_str_mv Evaluation of the consumption of expanded polystyrene (styrofoam) for larvae of two species of Coleoptera (Tenebrio molitor and Zophobas atratus) and their inclusion in cachama fry diets white (Piaractus brachypomus)
title Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
spellingShingle Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Plásticos biodegradables
Biodegradable Plastics
Poliestireno
Icopor
Plásticos
Insectos como alimento
Tenebrios
Gusano rey
Nutrición de peces
Economía circular
Coleópteros
Bioconversión
title_short Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
title_full Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
title_fullStr Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
title_full_unstemmed Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
title_sort Evaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)
dc.creator.fl_str_mv Bonilla Amaya, Miguel Fernando
dc.contributor.advisor.none.fl_str_mv Barragán Fonseca, Karol Bibiana
dc.contributor.author.none.fl_str_mv Bonilla Amaya, Miguel Fernando
dc.contributor.researchgroup.spa.fl_str_mv Grupo en Conservación y Manejo de Vida Silvestre
Un Acuictio
dc.contributor.orcid.spa.fl_str_mv Bonilla Amya, Miguel Fernando [0009-0009-4957-0323]
dc.subject.ddc.spa.fl_str_mv 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
topic 630 - Agricultura y tecnologías relacionadas::636 - Producción animal
Plásticos biodegradables
Biodegradable Plastics
Poliestireno
Icopor
Plásticos
Insectos como alimento
Tenebrios
Gusano rey
Nutrición de peces
Economía circular
Coleópteros
Bioconversión
dc.subject.decs.spa.fl_str_mv Plásticos biodegradables
dc.subject.decs.eng.fl_str_mv Biodegradable Plastics
dc.subject.lemb.spa.fl_str_mv Poliestireno
Icopor
dc.subject.proposal.spa.fl_str_mv Plásticos
Insectos como alimento
Tenebrios
Gusano rey
Nutrición de peces
Economía circular
Coleópteros
Bioconversión
description ilustraciones, diagramas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-09-01T19:44:52Z
dc.date.available.none.fl_str_mv 2023-09-01T19:44:52Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84629
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84629
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv Abdel, M., Ahmad, M. H., Khattab, Y. A. E., & Shalaby, A. M. E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298(3–4), 267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027
Abdulhay, H. S. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian Journal of Agriculture and Biology, 8(2), 201–206. https://doi.org/10.35495/ajab.2019.11.515
Aboelkheir, M. G., Visconte, L. Y., Oliveira, G. E., Toledo Filho, R. D., & Souza, F. G. (2019). The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 649, 1075–1082. https://doi.org/10.1016/j.scitotenv.2018.08.228
Abraham, J., Ghosh, E., Mukherjee, P., & Gajendiran, A. (2017). Microbial degradation of low density polyethylene. Environmental Progress and Sustainable Energy, 36(1), 147–154. https://doi.org/10.1002/ep.12467
Aharon, Y., Pasternak, Z., Yosef, M. Ben, Behar, A., Lauzon, C., Yuval, B., & Jurkevitch, E. (2013). Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Applied and Environmental Microbiology, 79(1), 303–313. https://doi.org/10.1128/AEM.02761-12
Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. In Environmental Science and Pollution Research (Vol. 25, Issue 8, pp. 7287–7298). Springer Verlag. https://doi.org/10.1007/s11356-018-1234-9
Albertsson, A. C., & Hakkarainen, M. (2017). Designed to degrade - Suitably designed degradable polymers can play a role in reducing plastic waste. In Science (Vol. 358, Issue 6365, pp. 872–873). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaq8115
Arango, G. P. , Vergara Ruiz, R. A., & Mejía Vélez, H. (2004). Analisis composicional, microbiológico y digestibilidad de la proteína de la harina de larvas de Hermetia illuscens l (diptera:stratiomyiidae) en Angelópolis-Antioquia,Colombia. Rev. Fac. Nac. Agron. Medellín. , Vol.57, 2491–2499.
Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. In Food Control (Vol. 138). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2022.109030
Ashter, S. A. (2016). Mechanisms of Polymer Degradation. In Introduction to Bioplastics Engineering (pp. 31–59). Elsevier. https://doi.org/10.1016/b978-0-323-39396- 6.00003-8
Azagoh, C., Ducept, F., Garcia, R., Rakotozafy, L., Cuvelier, M. E., Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24– 31. https://doi.org/10.1016/j.foodres.2016.06.010
Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205
Barragán-Fonseca, K. B., Muñoz-Ramírez, A. P., Mc Cune, N. M., Pineda, J., Dicke, M., & Cortés, J. (2022). Fighting rural poverty in Colombia: Circular agriculture by using insects as feed in aquaculture. www.wageningenUR.nl/livestockresearch
Barragán-Fonseca, K. Y., Barragán-Fonseca, K. B., Verschoor, G., van Loon, J. J., & Dicke, M. (2020). Insects for peace. In Current Opinion in Insect Science (Vol. 40, pp. 85–93). Elsevier Inc. https://doi.org/10.1016/j.cois.2020.05.011
Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422–423, 193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024
Basto, A., Matos, E., & Valente, L. M. P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521. https://doi.org/10.1016/j.aquaculture.2020.735085
Beach, E. S., Weeks, B. R., Stern, R., & Anastas, P. T. (2013). Plastics additives and green chemistry. Pure and Applied Chemistry, 85(8), 1611–1624. https://doi.org/10.1351/PAC-CON-12-08-08
Benítez, G. (2013). Investigación: ―Relleno sanitario bordo poniente: ECÓPOLIS.‖ http://www.obrasenmiciudad.df.gob.mx/?p=14819
Benzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J., & Józefiak, D. (2019). Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals, 9(12). https://doi.org/10.3390/ani9121128
Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015- 7186-9
Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M. T., Biasibetti, E., Tarantola, M., Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I., & Schiavone, A. (2018). Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poultry Science, 97(2), 540–548. https://doi.org/10.3382/ps/pex308
Billen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macroorganisms such as mealworms and wax moth larvae. Science of the Total Environment, 735. https://doi.org/10.1016/j.scitotenv.2020.139521
Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? In Environmental Health Perspectives (Vol. 112, Issue 1, pp. 9–17). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.6559
Bombelli, P., Howe, C. J., & Bertocchini, F. (2017). Current Biology Polyethylene biodegradation by caterpillars of the wax moth Galleria mellonella. R292 Current Biology, 27, 283–293. https://doi.org/10.1016/j
Bosch, G., Vervoort, J. J. M., & Hendriks, W. H. (2016). In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology, 221, 174–184. https://doi.org/10.1016/j.anifeedsci.2016.08.018
Bosch, G., Zhang, S., Oonincx, D. G. A. B., & Hendriks, W. H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3. https://doi.org/10.1017/jns.2014.23
Bourtzis, & Miller. (2003). Insect symbiosis An introduction (2003rd ed.). Taylo & Fraancis Group,LLc.
Bovera F, Loponte R, Marono S, Piccolo G, Parisi G, Laconisi V, Gasco L, & Nizza A. (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Animal Science, 639–647.
Bożek, M., Hanus-Lorenz, B., & Rybak, J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17, 1–7. https://doi.org/10.1051/e3sconf/20171700011
Brandon, A. M., El Abbadi, S. H., Ibekwe, U. A., Cho, Y. M., Wu, W. M., & Criddle, C. S. (2020). Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: Elevated HBCD levels in egested polymer but no bioaccumulation. Environmental Science and Technology, 54(1), 364–371. https://doi.org/10.1021/acs.est.9b06501
Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301
Bulak, P., Polakowski, C., Nowak, K., Waśko, A., Wiącek, D., & Bieganowski, A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Science of the Total Environment, 633, 912–919. https://doi.org/10.1016/j.scitotenv.2018.03.252
Canopoli, L., Fidalgo, B., Coulon, F., & Wagland, S. T. (2018). Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. In Waste Management (Vol. 76, pp. 55–67). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2018.03.043
Caparros, R., Poelaert, C., Ernens, M., Liotta, M., Blecker, C., Danthine, S., Tyteca, E., Haubruge, É., Alabi, T., Bindelle, J., & Francis, F. (2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 106, 503–508. https://doi.org/10.1016/j.foodres.2018.01.002
Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. In Nature Methods (Vol. 7, Issue 5, pp. 335–336). https://doi.org/10.1038/nmeth.f.303
Cappelli, A., Cini, E., Lorini, C., Oliva, N., & Bonaccorsi, G. (2020). Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. In Food Control (Vol. 108). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2019.106877
Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. https://doi.org/10.1016/j.watres.2016.01.002
Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. In Environmental Pollution (Vol. 240, pp. 387–395). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2018.05.008
Chainark, P. . , Prachom, N. . , Boonyoung, S. . , & Yuangsoi, B. (2022). Replacement of Fish Meal Protein with Giant Worm (Zophobas morio) and Black Cricket (Gryllus bimaculatus) in Diet of Cobia (Rachycentron canadum). Ournal of Fisheries and Environment, 122–129.
Chapman, R. F. (2009). Mouthparts. In Encyclopedia of Insects (pp. 663–668). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374144-8.00182-X
Chirinos, N., Díaz-Viteri, J., & Mego-Mego, V. (2022). Efecto de dietas extruidas en base a torta de castaña y fruto de macambo, sobre los índices de crecimiento y zootécnicos en el cultivo de pacos juveniles. Ariotake – Revista de Investigación Veterinaria y Amazonía, 1(1), e176. https://doi.org/10.55873/ariva.v1i1.176
Choi, E. Y., Lee, J. H., Han, S. H., Jung, G. H., Han, E. J., Jeon, S. J., Jung, S. H., Park, J. U., Park, J. H., Bae, Y. J., Park, E. S., & Jung, J. Y. (2022). Subacute Oral Toxicity Evaluation of ExpandedPolystyrene-Fed Tenebrio molitor Larvae (Yellow Mealworm) Powder in Sprague-Dawley Rats. Food Science of Animal Resources, 42(4), 609–624. https://doi.org/10.5851/kosfa.2022.e25
Coffey, D., Dawson, K., Ferket, P., & Connolly, A. (2016). Review of the feed industry from a historical perspective and implications for its future. Journal of Applied Animal Nutrition, 4. https://doi.org/10.1017/jan.2015.11
Comisión Euopea. (2017). Comisión Europea.(2017) Reglamento (UE) 2017/893 de la comisión de 24 de mayo de 2017 que modifica los anexos I y IV del Reglamento (CE) No. 999/2001 del Parlamento Europeo y del Consejo y los anexos X, XIV y XV del Reglamento (UE) No. 142/2011 de la Comisión por lo que se refiere a las disposiciones sobre proteína animal transformada.transformada.
Couto, F. , Tavares, F. , Calvacante, E. F. , da Costa, D. V. , Silva, A. C., & Cardoso, S. P. (2021). Uso de farinha de inseto como alimento alternativo na dieta de alevinos de pirapitinga (Piaractus brachypomus). Revista Panorâmica Online, 2.
Craig, S. R., Washburn, B. S., & Gatlin, D. M. (1999). Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. In Fish Physiology and Biochemistry (Vol. 21). https://doi.org/10.1023/a:1007843420128
Dalev, P. G. (1994). Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. In Bioresource Technology (Vol. 45).
De Almeida, Á. J., Sado, R. Y., & Cyrino, J. E. P. (2009). Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40(4), 486–495. https://doi.org/10.1111/j.1365- 2109.2008.02120.x
De Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L., & Schiavone, A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, 209, 211–218. https://doi.org/10.1016/j.anifeedsci.2015.08.006
De Smet, J., Lenaerts, S., Borremans, A., Scholliers, J., Van Der Borght, M., & Van Campenhout, L. (2019). Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT, 102, 113–121. https://doi.org/10.1016/j.lwt.2018.12.017
Delort, A.-M., & Combourieu, B. (2001). In situ 1 H NMR study of the biodegradation of xenobiotics: Application to heterocyclic compounds. In Journal of Industrial Microbiology & Biotechnology. www.nature.com/jim
Derraik, B. (2002). The pollution of the marine environment by plastic debris: a review. 842–852. www.elsevier.com/locate/marpolbul
Dillon, R. J., Webster, G., Weightman, A. J., Dillon, V. M., Blanford, S., & Charnley, A. K. (2008). Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. Journal of Invertebrate Pathology, 97(3), 265–272. https://doi.org/10.1016/j.jip.2007.09.010
Doğankaya, L. (2016). Effects of fish meal substitution with super worm (Zophobas morio) meal on growth performance of rainbow trout fingerlings. Aquatic Sciences and Engineering. Turkish Journal of Aquatic Sciences, 1–7. https://doi.org/10.18864/tjas201701
Dossey, A. T., Morales-Ramos, J. A., & Rojas, M. G. (2016). Insects as sustainable food ingredients : production, processing and food applications.
Douglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and Their Symbiotic Bacteria Buchnera. In Annu. Rev. Entomol (Vol. 43). www.annualreviews.org
Douglas, A. E. (2009). The microbial dimension in insect nutritional ecology. In Functional Ecology (Vol. 23, Issue 1, pp. 38–47). https://doi.org/10.1111/j.1365- 2435.2008.01442.x
Engel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025
European Bioplastics. (2018). Bioplastics market data 2018 - Global production capacities of bioplastics 2018-2023. https://www.european-bioplastics.org/wpcontent/uploads/2016/02/Report_Bioplastics-Market-Data_2018.pdf
Fabrikov, D., Sánchez-Muros, M. J., Barroso, F. G., Tomás-Almenar, C., Melenchón, F., Hidalgo, M. C., Morales, A. E., Rodriguez-Rodriguez, M., & Montes-Lopez, J. (2020). Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. Aquaculture, 529. https://doi.org/10.1016/j.aquaculture.2020.735731
Fernández, F., Guerrero, R. J., & Sánchez-Restrepo, A. F. (2021). Systematics and diversity of neotropical ants. Revista Colombiana de Entomologia, 47(1). https://doi.org/10.25100/socolen.v47i1.11082
Filiciotto, L., & Rothenberg, G. (2021). Biodegradable Plastics: Standards, Policies, and Impacts. In ChemSusChem (Vol. 14, Issue 1, pp. 56–72). Wiley-VCH Verlag. https://doi.org/10.1002/cssc.202002044
Flórez, L. V., Biedermann, P. H. W., Engl, T., & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32(7), 904–936. https://doi.org/10.1039/c5np00010f
Folino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. In Sustainability (Switzerland) (Vol. 12, Issue 15). MDPI. https://doi.org/10.3390/su12156030
Fontes, T., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of insect meals for nile tilapia fingerlings. Animals, 9(4). https://doi.org/10.3390/ani9040181
Fontes, T. V. (2018). Coeficiente de digestibilidade de farinha de insetos na alimentação de alevinos de tilápia do nilo (Oreochromis niloticus). Universidade Federal de Lavras.
Gao, W., Liu, Y. J., Tian, L. X., Mai, K. S., Liang, G. Y., Yang, H. J., Huai, M. Y., & Luo, W. J. (2011). Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: A comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus × O. aureus). Aquaculture Nutrition, 17(1), 2–12. https://doi.org/10.1111/j.1365- 2095.2009.00698.x
Garofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Riolo, P., Ruschioni, S., Isidoro, N., & Clementi, F. (2017). The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012
Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. In Current Opinion in Green and Sustainable Chemistry (Vol. 23, pp. 67–79). Elsevier B.V. https://doi.org/10.1016/j.cogsc.2020.03.003
Gasco, L., Biasato, I., Dabbou, S., Schiavone, A., & Gai, F. (2019). Animals fed insectbased diets: State-of-the-art on digestibility, performance and product quality. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040170
Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 34–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003
Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). Plastic and Foam Biodegradation 85 A Review of Biodegradation of Synthetic Plastic and Foams. In Applied Biochemistry and Biotechnology (Vol. 141).
Ghaly, A. E., & Alkoaik, F. N. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Sciences, 4(4), 319–331.
Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. In Ecology Letters (Vol. 13, Issue 2, pp. 223–234). https://doi.org/10.1111/j.1461-0248.2009.01416.x
Gilpin, R. K., Wagel, D. J., & Solch, J. G. (2003). Production, Distribution, and Fate of Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Related Organohalogens in the Environment (A. Schecter & T. A. Gasiewicz, Eds.; Second edition). https://doi.org/doi.org/10.1002/0471722014.ch2
Gómez, E. F., & Michel, F. C. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591. https://doi.org/10.1016/j.polymdegradstab.2013.09.018
Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247–253. https://doi.org/10.1016/S0141-3910(03)00269-6
Gümüş, E., & İkiz, R. (2009). Effect of dietary levels of lipid and carbohydrate on growth performance, chemical contents and digestibility in rainbow trout, Oncorhynchus mykiss. Pakistan Vet. J, 29(2), 59–63.
Guo, B., Yin, J., Hao, W., & Jiao, M. (2019). Polyurethane foam induces epigenetic modification of mitochondrial DNA during different metamorphic stages of Tenebrio molitor. Ecotoxicology and Environmental Safety, 183. https://doi.org/10.1016/j.ecoenv.2019.109461
Gutiérrez, J. (2013). Biodegradación de polietileno de baja densidad por consorcios microbianos. Universidad Nacional Autónoma de Mexico.
Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.x
Hahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. In Journal of Hazardous Materials (Vol. 344, pp. 179–199). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2017.10.014
Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. In Polymer Degradation and Stability (Vol. 98, Issue 12, pp. 2801–2812). https://doi.org/10.1016/j.polymdegradstab.2013.09.025
Hamed, M., & Attias, J. (1987). Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria mellonella (L.). In Insect Biochem (Vol. 17, Issue 5).
Harshvardhan, K., & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1–2), 100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025
Henry, Gai, F., Enes, P., Peréz-Jiménez, A., & Gasco, L. (2018). Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 83, 308–313. https://doi.org/10.1016/j.fsi.2018.09.040
Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. In Animal Feed Science and Technology (Vol. 203, Issue 1, pp. 1–22). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2015.03.001
Hivrale, V. K., Chougule, N. P., Chhabda, P. J., Giri, A. P., & Kachole, M. S. (2005). Unraveling biochemical properties of cockroach (Periplaneta americana) proteinases with a gel X-ray film contact print method. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 141(3), 261–266. https://doi.org/10.1016/j.cbpc.2005.02.015
Iaconisi, V., Bonelli, A., Pupino, R., Gai, F., & Parisi, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484, 197– 204. https://doi.org/10.1016/j.aquaculture.2017.11.034
Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F., & Piccolo, G. (2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476, 49–58. https://doi.org/10.1016/j.aquaculture.2017.04.007
Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. In NFS Journal (Vol. 18, pp. 1–11). Elsevier GmbH. https://doi.org/10.1016/j.nfs.2019.11.002
Jabir, R., Razak, S., & Vikinesway, S. (2012). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology, 11(24). https://doi.org/10.5897/ajb11.1084
Jayasekara, R., Harding, I., Bowater, I., & Lonergan, G. (2005). Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. In Journal of Polymers and the Environment (Vol. 13, Issue 3, pp. 231–251). https://doi.org/10.1007/s10924-005-4758-2
Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1). https://doi.org/10.1186/s41240-020-00158-7
Jordan, R. (2015). Plastic-eating worms may offer solution to mounting waste, Stanford researchers discover. https://news.stanford.edu/2015/09/29/worms-digest-plastics092915/
Jung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016
Kannan, M., Mubarakali, D., Thiyonila, B., Krishnan, M., Padmanaban, B., & Shantkriti, S. (2019). Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. In Biocatalysis and Agricultural Biotechnology (Vol. 18). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.01.048
Karian, H. G. (2003). Handbook of polypropylene and polypropylene composites. Marcel Dekker.
Karlsson, S., Ljungquist, O., & Albertsson, A.-C. (1988). Biodegradation of Polyethylene and the Influence of Surfactants. In Polymer Degradation and Stability (Vol. 21).
Kathiresan, C. R. (2003). Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51, 629–633. http://www.redalyc.org/articulo.oa?id=44911882003
Khan, S., Dong, Y., Nadir, S., Schaefer, D. A., Mortimer, P. E., Xu, J., Ye, L., Gui, H., Wanasinghe, D. N., Dossa, G. G. O., Yu, M., & Sheng, J. (2021). Valorizing plastic waste by insect consumption. Circular Agricultural Systems, 1(1), 1–9. https://doi.org/10.48130/CAS-2021-0007
Kong, H. G., Kim, H. H., Chung, J. hui, Jun, J. H., Lee, S., Kim, H. M., Jeon, S., Park, S. G., Bhak, J., & Ryu, C. M. (2019). The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of Long-Chain Hydrocarbon Beeswax. Cell Reports, 26(9), 2451-2464.e5. https://doi.org/10.1016/j.celrep.2019.02.018
Kooijman, B. (2009). Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press. https://doi.org/10.1017/CBO9780511805400
Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S., & Chotimanothum, B. (2019). Potential of insect meals as protein sources for meattype ducks based on in vitro digestibility. Animals, 9(4). https://doi.org/10.3390/ani9040155
Krenn, H. W. (2019). Insect Mouthparts (Vol. 5). http://www.springer.com/series/15188
Kudrya, V. A., & Simonenko, I. A. (1994). Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subUIis. In Appl Microbiol Biotechnol (Vol. 41).
Kulma, M., Kouřimská, L., Homolková, D., Božik, M., Plachý, V., & Vrabec, V. (2020). Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. Journal of Food Composition and Analysis, 92. https://doi.org/10.1016/j.jfca.2020.103570
Kumar, S., Hatha, A. A. M., & Christi, K. S. (2007). Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev. Biol. Trop., 55(4), 777–786.
Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A., & Devipriya, S. P. (2021). Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology (United Kingdom), 42(5), 717–730. https://doi.org/10.1080/09593330.2019.1643925
Kwon, B. G., Saido, K., Koizumi, K., Sato, H., Ogawa, N., Chung, S. Y., Kusui, T., Kodera, Y., & Kogure, K. (2014). Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii. Environmental Pollution, 188, 45–49. https://doi.org/10.1016/j.envpol.2014.01.019
Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419. https://doi.org/10.1007/s12088-012-0250-6
Kyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. In Journal of Polymers and the Environment (Vol. 15, Issue 2, pp. 125–150). https://doi.org/10.1007/s10924-007-0053-8
Landines, M. A., Rodríguez L., & Rodríguez D. (2011). Estrategias de alimentación para Cachama y Yamú a partir de prácticas de restricción alimenticia. ResearchGate. https://www.researchgate.net/publication/266416402
Latney, L. V. , Toddes, B. D. , Wyre, N. R. , Brown, D. C. , Michel, K. E. , & Briscoe, J. A. (2017). Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). 178–185.
Law, K. L. (2017). Plastics in the Marine Environment. In Annual Review of Marine Science (Vol. 9, Issue 1, pp. 205–229). Annual Reviews Inc. https://doi.org/10.1146/annurev-marine-010816-060409
Lear, G., Kingsbury, J. M., Franchini, S., Gambarini, V., Maday, S. D. M., Wallbank, J. A., Weaver, L., & Pantos, O. (2021). Plastics and the microbiome: impacts and solutions. In Environmental Microbiomes (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40793-020-00371-w
Lee, B., Pometto Iii, A. L., Fratzke, A., & Bailey, T. B. (1991). Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Speciest. In Applied And Environmental Microbiology (Vol. 678, Issue 3).
Leja, & Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 19.
Liaqat, S. (2020). Microbial ecology: A new perspective of plastic degradation. Pure and Applied Biology, 9(4). https://doi.org/10.19045/bspab.2020.90228
Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. In Current Opinion in Insect Science (Vol. 48, pp. 32–36). Elsevier Inc. https://doi.org/10.1016/j.cois.2021.08.002
Llagostera, P., Kallas, Z., Reig, L., & Amores de Gea, D. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10–21. https://doi.org/10.1016/j.jclepro.2019.05.012
Mahdavi, A., Ghadamyari, M., Sajedi, R. H., Sharifi, M., & Kouchaki, B. (2013). Identification and Partial Characterization of Midgut Proteases in the Lesser Mulberry Pyralid, Glyphodes pyloalis. Journal of Insect Science, 13. https://doi.org/10.1673/031.013.8101
Mancini, S., Mattioli, S., Paolucci, S., Fratini, F., Dal Bosco, A., Tuccinardi, T., & Paci, G. (2021). Effect of Cooking Techniques on the in vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio molitor). Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.675572
Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., & Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91(3), 620–627. https://doi.org/10.1016/j.polymdegradstab.2005.02.029
Mastoraki, M., Mollá Ferrándiz, P., Vardali, S. C., Kontodimas, D. C., Kotzamanis, Y. P., Gasco, L., Chatzifotis, S., & Antonopoulou, E. (2020). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735511
Meena, M. D., Joshi, P. K., Narjary, B., Sheoran, P., Jat, H. S., Chinchmalatpure, A. R., Yadav, R. K., & Sharma, D. K. (2016). Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system. Soil Research, 54(8), 958–969. https://doi.org/10.1071/SR15342
Mehmood, C. T., Qazi, I. A., Hashmi, I., Bhargava, S., & Deepa, S. (2016). Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. International Biodeterioration and Biodegradation, 113, 276–286. https://doi.org/10.1016/j.ibiod.2016.01.025
Melenchón, F., Larrán, A. M., de Mercado, E., Hidalgo, M. C., Cardenete, G., Barroso, F. G., Fabrikov, D., Lourenço, H. M., Pessoa, M. F., & Tomás-Almenar, C. (2021). Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 27(2), 491–505. https://doi.org/10.1111/anu.13201
Melgar-Lalanne, G., Hernández-Álvarez, A. J., & Salinas-Castro, A. (2019). Edible Insects Processing: Traditional and Innovative Technologies. In Comprehensive Reviews in Food Science and Food Safety. Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12463
Melis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science and Emerging Technologies, 48, 138–149. https://doi.org/10.1016/j.ifset.2018.06.003
Mesa, M. N., & Botero-Aguirre, M. C. (2007). La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. In Rev Col Cienc Pec (Vol. 20, Issue 1).
Mika, N., Zorn, H., & Rühl, M. (2013). Insect-derived enzymes: A treasure for industrial biotechnology and food biotechnology. In Advances in Biochemical Engineering/Biotechnology (Vol. 136, pp. 1–17). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/10_2013_204
Mikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10(6), 1–20. https://doi.org/10.3390/ani10061031
Ministerio de Agricultura y Desarrollo Rural. (2021). Dirección de Cadenas Pecuarias, Pesqueras y Acuicolas. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2021- 03-31%20Cifras%20Sectoriales.pdf
Mondragón, I. (2021). Dimorfismo sexual de Zophobas morio (Fabricius, 1776) (Coleoptera, Tenebrionidae) en las etapas de pupa y de adulto. Ingeniería y Región, 25, 22–31. https://doi.org/10.25054/22161325.2703
Moran, N. A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. www.nasonline.org/adaptationandcomplexdesign.
Moruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G., & Mancini, S. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. In Animals (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/ani11092568
Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (Yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9(5). https://doi.org/10.3390/ani9050258
Mustafa, N. S., Omer, M. A., Garlnabi, M. E., & Ismail, H. A. (2016). Reviewing of General Polymer Types, Properties and Application in Medical Field. International Journal of Science and Research (IJSR), 5(8), 212–221. https://doi.org/10.21275/art2016772
Nanda, S., Snigdha Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manage, 14(2), 57–60. www.bioline.org.br/ja
Neklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Properties and Uses of Protein Hydrolysates (Review). In Translated frora Prikladnaya Bioldaimiya i Mikrobiologi)~ (Vol. 36, Issue 5).
Novotný, Č., Malachová, K., Adamus, G., Kwiecień, M., Lotti, N., Soccio, M., Verney, V., & Fava, F. (2018). Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. International Biodeterioration and Biodegradation, 132, 259–267. https://doi.org/10.1016/j.ibiod.2018.04.014
Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39–46. https://doi.org/10.1016/j.foodchem.2014.10.114
Nukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28
Nyangena, D. N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S., Nakimbugwe, D., & Fiaboe, K. K. M. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods, 9(5). https://doi.org/10.3390/foods9050574
OECD. (2022). Global Plastics Outlook Economic Drivers, Environmental Impacts and Policy Options. https://rds.org.co/apc-aa-files/205ec78c9cca6d1850bdca24e20e50bf/document.pdf
Ojha, S., Bußler, S., & Schlüter, O. K. (2020). Food waste valorisation and circular economy concepts in insect production and processing. In Waste Management (Vol. 118, pp. 600–609). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2020.09.010
Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., Pasquini, M., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Petruzzelli, A., Foglini, M., Gabucci, C., Tonucci, F., & Aquilanti, L. (2018). The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001
Panini, R. L., Freitas, L. E. L., Guimarães, A. M., Rios, C., da Silva, M. F. O., Vieira, F. N., Fracalossi, D. M., Samuels, R. I., Prudêncio, E. S., Silva, C. P., & Amboni, R. D. M. C. (2017). Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture, 473, 115–120. https://doi.org/10.1016/j.aquaculture.2017.02.008
Peng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115206
Peng, B. Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W. M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256–5265. https://doi.org/10.1021/acs.est.8b06963
Peydaei, A., Bagheri, H., Gurevich, L., de Jonge, N., & Nielsen, J. L. (2020). Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 34. https://doi.org/10.1016/j.cbd.2020.100678
Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12–20. https://doi.org/10.1016/j.anifeedsci.2017.02.007
PlascticsEurope. (2020). Plastics-the Facts 2020 An analysis of European plastics production, demand and waste data.
Plastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdf
Plastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdf
Pramila, R., & Vijaya Ramesh, K. (2015). African Journal of Bacteriology Research Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. 7(3), 24–28. https://doi.org/10.5897/JBR2015.0152
Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256. https://doi.org/10.1016/j.envpol.2019.113265
Purcell, J. P., Greenplate, J. T., & Sammons, R. D. (1992). Examination of midgut luminal proteinase activities in six economically important insects. In Insect Biochem. Molec. Biol (Vol. 22).
Purschke, B., Brüggen, H., Scheibelberger, R., & Jäger, H. (2018). Effect of pretreatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology, 244(2), 269–280. https://doi.org/10.1007/s00217-017-2953-8
Queiroz, L. S., Nogueira Silva, N. F., Jessen, F., Mohammadifar, M. A., Stephani, R., Fernandes de Carvalho, A., Perrone, Í. T., & Casanova, F. (2023). Edible insect as an alternative protein source: a review on the chemistry and functionalities of proteins under different processing methods. In Heliyon (Vol. 9, Issue 4). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e14831
R: The R Project for Statistical Computing. (2021). https://www.r-project.org/
Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J. Acad. Indus. Res, 1(6), 313
Radajewski, S., Ineson23, P., Parekh2 , N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. In NATURE (Vol. 403). www.nature.com
Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. In Waste Management (Vol. 69, pp. 24–58). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.07.044
Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y., & Zhang, W. (2019). Biodegradation of polyethylene by enterobacter sp. D1 from the guts ofwax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11). https://doi.org/10.3390/ijerph16111941
Restrepo-Flórez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene - A review. In International Biodeterioration and Biodegradation (Vol. 88, pp. 83–90). https://doi.org/10.1016/j.ibiod.2013.12.014
Ribeiro, F. M., Divino, P. V., Freitas, X., Oliveira Dos Santos, E., Martins De Sousa, R., Carvalho, T. A., Menezes De Almeida, E., Oliveira, T., Santos, D., & Carvalho Costa, A. (2016). Publicações em Medicina Veterinária e Zootecnia Alimentação e nutrição de Pirapitinga (Piaractus brachypomums) e Tambaqui (Colossoma macropomum): Revisão. 873–882. https://doi.org/10.22256/pubvet.v10n1
Ribeiro, J. C., Lima, R. C., Maia, M. R. G., Almeida, A. A., Fonseca, A. J. M., Cabrita, A. R. J., & Cunha, L. M. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108335
Riudavets, J., Salas, I., & Pons, M. J. (2007). Damage characteristics produced by insect pests in packaging film. Journal of Stored Products Research, 43(4), 564–570. https://doi.org/10.1016/j.jspr.2007.03.006
Rojas-Jiménez, K., & Hernández, M. (2015). Isolation of fungi and bacteria associated with the guts of tropical wood-feeding Coleoptera and determination of their lignocellulolytic activities. International Journal of Microbiology, 2015. https://doi.org/10.1155/2015/285018
Romanelli, D., Casartelli, M., Cappellozza, S., De Eguileor, M., & Tettamanti, G. (2016). Roles and regulation of autophagy and apoptosis in the remodelling of the Lepidopteran midgut epithelium during metamorphosis. Scientific Reports, 6. https://doi.org/10.1038/srep32939
Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00277-7
Sanatan, P. T., Lomate, P. R., Giri, A. P., & Hivrale, V. K. (2013). Characterization of a chemostable serine alkaline protease from Periplaneta americana. http://www.biomedcentral.com/1471-2091/14/32
Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. In Journal of Cleaner Production (Vol. 65, pp. 16–27). https://doi.org/10.1016/j.jclepro.2013.11.068
Sánchez-Muros, M. J., de Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition, 22(5), 943–955. https://doi.org/10.1111/anu.12313
Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T., & Turra, A. (2016). Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Marine Pollution Bulletin, 106(1–2), 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074
Schauer, C., Thompson, C. L., & Brune, A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology, 78(8), 2758– 2767. https://doi.org/10.1128/AEM.07788-11
Scientific Standards & Methods - AOAC INTERNATIONAL. (1996). https://www.aoac.org/scientific-solutions/
Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. In Biotechnology Advances (Vol. 26, Issue 3, pp. 246–265). https://doi.org/10.1016/j.biotechadv.2007.12.005
Shibao, J., Helena, D., & Bastos, M. (2011). Maillard reaction products in foods: implications for human health R E S U M O. In Rev. Nutr (Vol. 24, Issue 6)
Shorthouse, J. D. (2003). Insects and Other Animals Overview of Insects.
Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. In Polymer Degradation and Stability (Vol. 93, Issue 3, pp. 561–584). https://doi.org/10.1016/j.polymdegradstab.2007.11.008
Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylenedegrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4
Smith, R., & Barnes, E. (2015). PROteINSECT Consensus Business Case Report:‗Determining the contribution that insects can make to addressing the protein deficit in Europe. www.proteinsect.eu
Soares, R., Rafael Ribeiro, dos Santos Benfica, T. A. R., Ferraz, V. P., & Moreira Santos, E. (2019). Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. Journal of Food Composition and Analysis, 76, 22–26. https://doi.org/10.1016/j.jfca.2018.11.005
Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040119
Song, S. G., Chi, S. Y., Tan, B. P., Liang, G. L., Lu, B. Q., Dong, X. H., Yang, Q. H., Liu, H. Y., & Zhang, S. (2018). Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus♀). Aquaculture Research, 49(6), 2210–2217. https://doi.org/10.1111/are.13677
Stathopoulou, P., Asimaki, A., Berillis, P., Vlahos, N., Levizou, E., Katsoulas, N., Karapanagiotidis, I. T., Rumbos, C. I., Athanassiou, C. G., & Mente, E. (2022). Aqua-Ento-Ponics: Effect of Insect Meal on the Development of Sea Bass, Dicentrarchus labrax, in Co-Culture with Lettuce. Fishes, 7(6). https://doi.org/10.3390/fishes7060397
Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., & Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010
Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 69, 59–66. https://doi.org/10.1016/j.fsi.2017.08.008
Sudakaran, S., Retz, F., Kikuchi, Y., Kost, C., & Kaltenpoth, M. (2015). Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME Journal, 9(12), 2587–2604. https://doi.org/10.1038/ismej.2015.75
Sudhakar, M., Doble, M., Murthy, P. S., & Venkatesan, R. (2008). Marine microbemediated biodegradation of low- and high-density polyethylenes. International Biodeterioration and Biodegradation, 61(3), 203–213. https://doi.org/10.1016/j.ibiod.2007.07.011
Szendrő, K., Nagy, M. Z., & Tóth, K. (2020). Consumer acceptance of meat from animals reared on insect meal as feed. Animals, 10(8), 1–10. https://doi.org/10.3390/ani10081312
Tang, S., Yin, H., Chen, S., Peng, H., Chang, J., Liu, Z., & Dang, Z. (2016). Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. Journal of Hazardous Materials, 308, 335–342. https://doi.org/10.1016/j.jhazmat.2016.01.062
Terra, W. R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. In Biochem. Physiol (Vol. 109, Issue 1).
Tsybina, T. A., Dunaevsky, Y. E., Belozersky, M. A., Zhuzhikov, D. P., Oppert, B., & Elpidina, E. N. (2005). Digestive Proteinases of Yellow Mealworm (Tenebrio molitor) Larvae: Purification and Characterization of a TrypsinnLike Proteinase. Translated from Biokhimiya, 70(3), 3700377.
Tubin, J. S. B., Paiano, D., Hashimoto, G. S. de O., Furtado, W. E., Martins, M. L., Durigon, E., & Emerenciano, M. G. C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519. https://doi.org/10.1016/j.aquaculture.2019.734763
Tuomela, M., Vikman, M., Hatakka, A., & It• Avaara, M. (2000). Biodegradation of lignin in a compost environment: a review. El Sevier, 169–183.
Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated βglucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89(6), 1761–1771. https://doi.org/10.1007/s00253- 010-2963-y
United Nations Environment Programme. (2018). Single-use plastics, a roadmap for sustainability
Urbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262. https://doi.org/10.1016/j.envpol.2020.114281
Uzcátegui, J. P. , Méndez, X. , Isea, F. , & Parra, R. (2014). Evaluación de dietas con diferente contenido proteico sobre el desempeño productivo de alevines del híbrido Cachamay (Colossoma macropomum x Piaractus brachypomus) en condiciones de cautiverio. XXIV, 458–465.
Valdez, C., & Untiveros, G. (2010). Extracción y caracterización del aceite de las larvas del Tenebrio molitor. Revista de La Sociedad Química Del Perú, 407–414.
van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9
Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. In Annual Review of Entomology (Vol. 58, pp. 563–583). https://doi.org/10.1146/annurev-ento-120811-153704
van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. In Journal of Insects as Food and Feed (Vol. 6, Issue 1, pp. 27–44). Wageningen Academic Publishers. https://doi.org/10.3920/JIFF2019.0017
Van Huis, A. , Van Itterbeeck, J. , Klunder, H. , Mertens, E. , Halloran, A. , Muir, G. , & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Fao Forestry Paper
van Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. In Agronomy for Sustainable Development (Vol. 37, Issue 5). Springer-Verlag France. https://doi.org/10.1007/s13593-017-0452-8
van Huis, A., Rumpold, B. A., van der Fels-Klerx, H. J., & Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935–948. https://doi.org/10.3920/JIFF2021.x005
Varela, H. , Daniel Ferrari, M. , Belobrajdic, L. , Vázquez, A. , & Lyliam Loperena, M. (1997). Skin unhairing proteases of Bacillus subtilis - Production andpartial characterization.
Vásquez, W. (2005). A pirapitinga, reprodução e cultivo. Espécies Nativas para Piscicultura no Brasil. Santa Maria. 203–223. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=TNoET1w AAAAJ&citation_for_view=TNoET1wAAAAJ:9yKSN-GCB0IC
Vásquez, W., & Arias-Castellanos, J. A. (2012). Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus). Aquaculture Research.
Vásquez, W., Pereira Filho, M. , & Arias-Castellanos, J. A. (2011). Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural, 41, 2183–2189. http://www.redalyc.org/articulo.oa?id=33121069020
Vega, F., & Dowd, P. (2005). The Role of Yeasts as Insect Endosymbionts
Veldkamp, T., & Bosch, G. (2012). Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. https://www.researchgate.net/publication/283419849
Verbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B., & Eeckhout, M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Science and Technology, 204, 72–87. https://doi.org/10.1016/j.anifeedsci.2015.04.001
Viana, R., & Revollo B, A. (1988). Cultivo intensivo de la cachama Colossoma macropomum (cuvier 1818) en estanques tipo campesino en Gaira. Universidad tecnologica del Magdalena .
Volke-Seplveda, T., Saucedo-Castaeda, G., Gutirrez-Rojas, M., Manzur, A., & FavelaTorres, E. (2002). Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. Journal of Applied Polymer Science, 83(2), 305–314. https://doi.org/10.1002/app.2245
Wang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., Guo, H., Han, T., Zhou, A., & Zhao, X. (2022). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837. https://doi.org/10.1016/j.scitotenv.2022.155719
Wang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726. https://doi.org/10.1016/j.scitotenv.2020.138564
Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001
Whiteley, K. S. (2011). Polyethylene. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a21_487.pub2
World Economic Forum. (2016). World Economic Forum, Ellen MacArthur Foundation, McKinsey & Company The New Plastics Economy — Rethinking the Future of Plastics Ellen MacArthur Foundation, Cowes.
Wu, & Criddle, C. S. (2021). Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 648, 95–120. https://doi.org/10.1016/BS.MIE.2020.12.029
Wu, Q., Tao, H., & Wong, M. H. (2019). Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health, 41(1), 17–26. https://doi.org/10.1007/s10653-018-0161-5
Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., Borremans, A., Bruyninckx, L., & Van Campenhout, L. (2017). Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004
Wynants, E., Crauwels, S., Verreth, C., Gianotten, N., Lievens, B., Claes, J., & Van Campenhout, L. (2018). Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiology, 70, 181–191. https://doi.org/10.1016/j.fm.2017.09.012
Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. El Sevier, 72, 323–327. www.elsevier.nl/locate/polydegstab
Yang, Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S. Y., Fan, H. Q., Wang, Z. Y., Ren, J., Benbow, E., Ren, N. Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W. M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117
Yang, Chen, J., Wu, W. M., Zhao, J., & Yang, J. (2015). Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. Journal of Biotechnology, 200, 77–78. https://doi.org/10.1016/j.jbiotec.2015.02.034
Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262. https://doi.org/10.1016/j.chemosphere.2020.127818
Yang, Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708. https://doi.org/10.1016/j.scitotenv.2019.135233
Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661
Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661
Yang, Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038a
Yepes, L. M. (2014). Degradación de Polietileno de Baja Densidad Utilizando Hongos. Revisión Sistemática de la Literatura [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/16184
Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135931
Zielińska, E., Zieliński, D., Jakubczyk, A., Karaś, M., Pankiewicz, U., Flasz, B., Dziewięcka, M., & Lewicki, S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 345. https://doi.org/10.1016/j.foodchem.2020.128846
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvii, 84 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animal
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina Veterinaria y de Zootecnia
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84629/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84629/6/1013610734.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84629/7/1013610734.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1563b3ce3cd32f6991fa4a848431513b
58be7934576f29496d73bfa3a9190bc5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886677511143424
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Barragán Fonseca, Karol Bibianae4a5a9cdf8d9c396b05e1a61e1b3eee6Bonilla Amaya, Miguel Fernando9f5c19ee83883f5a8a3246ac60cf5abeGrupo en Conservación y Manejo de Vida SilvestreUn AcuictioBonilla Amya, Miguel Fernando [0009-0009-4957-0323]2023-09-01T19:44:52Z2023-09-01T19:44:52Z2023https://repositorio.unal.edu.co/handle/unal/84629Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEn la actualidad los residuos sólidos se han convertido en un gran problema ambiental, porque su manejo es ineficiente. Dentro de los residuos sólidos, los plásticos representan un gran desafío debido a su alta producción y escaso manejo. El poliestireno expandido (PS), conocido como icopor, es uno de los tipos de plástico conocidos, y es catalogado como un material que no es biodegradable. Diversos estudios han demostrado que ciertos insectos y microorganismos son capaces de consumir y degradar algunos tipos de plástico, incluyendo el PS. En esta investigación, se realizó una revisión del estado del arte de las perspectivas y desarrollos actuales de la biodegradación de plásticos por parte de los insectos, como el gusano de la harina (Tenebrio molitor, Linnaeus 1758) y el gusano rey (Zophobas atratus, Fabricius, 1775) (Coleóptera: Tenebrionidae). Posteriormente, se efectuaron experimentos para evaluar el desempeño productivo y la capacidad de degradación del PS por larvas de T. molitor y Z. atratus, bajo cinco tratamientos experimentales con diferentes niveles de inclusión de PS y salvado de trigo (ST) (PS:ST 0:100, 25:75, 50:50, 75:25 y 100:0). Establecimos que las dos especies tienen la capacidad de biodegradar el PS. En las dos especies el mejor tratamiento fue la relación 25:75, debido a que presentaron mejor índice de conversión, mejor peso y tiempo de desarrollo de las larvas. Por otro lado, T. molitor y Z. atratus han sido utilizadas como alternativa nutricional en la alimentación de peces, por lo que también se evaluó el desempeño productivo de alevinos de cachama blanca (Piaractus brachypomus, Cuvier, 1818) alimentados con larvas de estos insectos alimentados con PS. Se formularon 10 dietas, correspondientes a 10%, 7,5%, 5,0%, 2,5% y 0% de inclusión de harina de T. molitor o Z. atratus en reemplazo de total o parcial de harina de pescado, atendiendo los requerimientos nutricionales de la cachama blanca. No se registraron diferencias entre los tratamientos experimentales, por lo que podemos concluir que es posible utilizar hasta 10% de harina de T. molitor o Z. atratus para alimentación de alevinos de cachama blanca sin afectar el desempeño productivo de la especie. Los hallazgos que se presentan aquí permitieron concluir que los insectos pueden biodegradar PS, sin embargo, se recomienda suministrarlo en una relación 25:75 de PS:ST, respectivamente, para que no se afecte el ciclo de vida ni la supervivencia de los insectos. A su vez, la harina de estos insectos alimentados con PS podría ser una alternativa de alimento para la cachama blanca. Sin embargo, es importante considerar que, aunque los parámetros productivos de los peces no fueron afectados, es necesario realizar estudios direccionadas a verificar la calidad nutricional de los peces, así como la ausencia de microplásticos provenientes del PS utilizado en la alimentación de los insectos. (Texto tomado de la fuente)Currently, solid waste has become a major environmental problem due to inefficient management. Among solid waste, plastics pose a significant challenge due to their high production and inadequate handling. Expanded polystyrene (EPS), known as Styrofoam, is one type of plastic that is non-biodegradable. Several studies have shown that certain insects and microorganisms are capable of consuming and degrading certain types of plastics, including EPS. In this research, a review of the state of the art regarding the perspectives and current developments in plastic biodegradation by insects such as the mealworm (Tenebrio molitor, Linnaeus 1758) and the superworm (Zophobas atratus, Fabricius, 1775) (Coleóptera: Tenebrionidae), was conducted. Subsequently, experiments were carried out to evaluate the productive performance and EPS degradation capacity of T. molitor and Z. atratus larvae under five experimental treatments with different levels of EPS and wheat bran inclusion (EPS: Wheat Bran 0:100, 25:75, 50:50, 75:25, and 100:0). It was found that both species have the ability to biodegrade EPS. The best treatment for both species was the 25:75 ratios, as it showed better conversion rates, biodegradation, larval weight, and development time. Furthermore, T. molitor and Z. atratus have been used as a nutritional alternative in fish feeding. Therefore, the productive performance of white cachama fingerlings (Piaractus brachypomus) fed with larvae of these insects fed with EPS was also evaluated. Ten diets were formulated, corresponding to 10%, 7.5%, 5.0%, 2.5%, and 0% inclusion of T. molitoror Z. atratus meal, replacing total or partial of fishmeal, meeting the nutritional requirements of the white cachama. There were no differences between the experimental treatments, so we can deduce that it is possible to use up to 10% of T. molitor or Z. atratus meal to feed white cachama fingerlings without affecting the productive performance of the species. The findings presented here allowed us to conclude that insects can biodegrade PS, however, it is recommended to supply it in a 25:75 ratio of PS and ST, respectively, so that the life cycle and survival of insects are not affected. In turn, the meal of these insects fed with PS could be a food alternative for the white cachama. However, it is important to consider that, although the productive parameters of the fish were not affected, it is necessary to carry out more research aimed at verifying the nutritional quality of the fish, as well as the absence of microplastics from the PS used in insect feeding.MaestríaMagíster en Salud Animal o Magíster en Producción AnimalSistemas Pecuariosxvii, 84 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción AnimalFacultad de Medicina Veterinaria y de ZootecniaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá630 - Agricultura y tecnologías relacionadas::636 - Producción animalPlásticos biodegradablesBiodegradable PlasticsPoliestirenoIcoporPlásticosInsectos como alimentoTenebriosGusano reyNutrición de pecesEconomía circularColeópterosBioconversiónEvaluación del consumo de poliestireno expandido (icopor) por larvas de dos especies de coleópteros (Tenebrio molitor y Zophobas atratus) y su inclusión en dietas de alevinos de cachama blanca (Piaractus brachypomus)Evaluation of the consumption of expanded polystyrene (styrofoam) for larvae of two species of Coleoptera (Tenebrio molitor and Zophobas atratus) and their inclusion in cachama fry diets white (Piaractus brachypomus)Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdel, M., Ahmad, M. H., Khattab, Y. A. E., & Shalaby, A. M. E. (2010). Effect of dietary protein level, initial body weight, and their interaction on the growth, feed utilization, and physiological alterations of Nile tilapia, Oreochromis niloticus (L.). Aquaculture, 298(3–4), 267–274. https://doi.org/10.1016/j.aquaculture.2009.10.027Abdulhay, H. S. (2020). Biodegradation of plastic wastes by confused flour beetle Tribolium confusum Jacquelin du Val larvae. Asian Journal of Agriculture and Biology, 8(2), 201–206. https://doi.org/10.35495/ajab.2019.11.515Aboelkheir, M. G., Visconte, L. Y., Oliveira, G. E., Toledo Filho, R. D., & Souza, F. G. (2019). The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Science of the Total Environment, 649, 1075–1082. https://doi.org/10.1016/j.scitotenv.2018.08.228Abraham, J., Ghosh, E., Mukherjee, P., & Gajendiran, A. (2017). Microbial degradation of low density polyethylene. Environmental Progress and Sustainable Energy, 36(1), 147–154. https://doi.org/10.1002/ep.12467Aharon, Y., Pasternak, Z., Yosef, M. Ben, Behar, A., Lauzon, C., Yuval, B., & Jurkevitch, E. (2013). Phylogenetic, metabolic, and taxonomic diversities shape mediterranean fruit fly microbiotas during ontogeny. Applied and Environmental Microbiology, 79(1), 303–313. https://doi.org/10.1128/AEM.02761-12Ahmed, T., Shahid, M., Azeem, F., Rasul, I., Shah, A. A., Noman, M., Hameed, A., Manzoor, N., Manzoor, I., & Muhammad, S. (2018). Biodegradation of plastics: current scenario and future prospects for environmental safety. In Environmental Science and Pollution Research (Vol. 25, Issue 8, pp. 7287–7298). Springer Verlag. https://doi.org/10.1007/s11356-018-1234-9Albertsson, A. C., & Hakkarainen, M. (2017). Designed to degrade - Suitably designed degradable polymers can play a role in reducing plastic waste. In Science (Vol. 358, Issue 6365, pp. 872–873). American Association for the Advancement of Science. https://doi.org/10.1126/science.aaq8115Arango, G. P. , Vergara Ruiz, R. A., & Mejía Vélez, H. (2004). Analisis composicional, microbiológico y digestibilidad de la proteína de la harina de larvas de Hermetia illuscens l (diptera:stratiomyiidae) en Angelópolis-Antioquia,Colombia. Rev. Fac. Nac. Agron. Medellín. , Vol.57, 2491–2499.Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. In Food Control (Vol. 138). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2022.109030Ashter, S. A. (2016). Mechanisms of Polymer Degradation. In Introduction to Bioplastics Engineering (pp. 31–59). Elsevier. https://doi.org/10.1016/b978-0-323-39396- 6.00003-8Azagoh, C., Ducept, F., Garcia, R., Rakotozafy, L., Cuvelier, M. E., Keller, S., Lewandowski, R., & Mezdour, S. (2016). Extraction and physicochemical characterization of Tenebrio molitor proteins. Food Research International, 88, 24– 31. https://doi.org/10.1016/j.foodres.2016.06.010Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. (2009). Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1526), 1985–1998. https://doi.org/10.1098/rstb.2008.0205Barragán-Fonseca, K. B., Muñoz-Ramírez, A. P., Mc Cune, N. M., Pineda, J., Dicke, M., & Cortés, J. (2022). Fighting rural poverty in Colombia: Circular agriculture by using insects as feed in aquaculture. www.wageningenUR.nl/livestockresearchBarragán-Fonseca, K. Y., Barragán-Fonseca, K. B., Verschoor, G., van Loon, J. J., & Dicke, M. (2020). Insects for peace. In Current Opinion in Insect Science (Vol. 40, pp. 85–93). Elsevier Inc. https://doi.org/10.1016/j.cois.2020.05.011Barroso, F. G., de Haro, C., Sánchez-Muros, M. J., Venegas, E., Martínez-Sánchez, A., & Pérez-Bañón, C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422–423, 193–201. https://doi.org/10.1016/j.aquaculture.2013.12.024Basto, A., Matos, E., & Valente, L. M. P. (2020). Nutritional value of different insect larvae meals as protein sources for European sea bass (Dicentrarchus labrax) juveniles. Aquaculture, 521. https://doi.org/10.1016/j.aquaculture.2020.735085Beach, E. S., Weeks, B. R., Stern, R., & Anastas, P. T. (2013). Plastics additives and green chemistry. Pure and Applied Chemistry, 85(8), 1611–1624. https://doi.org/10.1351/PAC-CON-12-08-08Benítez, G. (2013). Investigación: ―Relleno sanitario bordo poniente: ECÓPOLIS.‖ http://www.obrasenmiciudad.df.gob.mx/?p=14819Benzertiha, A., Kierończyk, B., Rawski, M., Józefiak, A., Kozłowski, K., Jankowski, J., & Józefiak, D. (2019). Tenebrio molitor and Zophobas morio full-fat meals in broiler chicken diets: Effects on nutrients digestibility, digestive enzyme activities, and cecal microbiome. Animals, 9(12). https://doi.org/10.3390/ani9121128Berasategui, A., Shukla, S., Salem, H., & Kaltenpoth, M. (2016). Potential applications of insect symbionts in biotechnology. In Applied Microbiology and Biotechnology (Vol. 100, Issue 4, pp. 1567–1577). Springer Verlag. https://doi.org/10.1007/s00253-015- 7186-9Biasato, I., Gasco, L., De Marco, M., Renna, M., Rotolo, L., Dabbou, S., Capucchio, M. T., Biasibetti, E., Tarantola, M., Sterpone, L., Cavallarin, L., Gai, F., Pozzo, L., Bergagna, S., Dezzutto, D., Zoccarato, I., & Schiavone, A. (2018). Yellow mealworm larvae (Tenebrio molitor) inclusion in diets for male broiler chickens: Effects on growth performance, gut morphology, and histological findings. Poultry Science, 97(2), 540–548. https://doi.org/10.3382/ps/pex308Billen, P., Khalifa, L., Van Gerven, F., Tavernier, S., & Spatari, S. (2020). Technological application potential of polyethylene and polystyrene biodegradation by macroorganisms such as mealworms and wax moth larvae. Science of the Total Environment, 735. https://doi.org/10.1016/j.scitotenv.2020.139521Birnbaum, L. S., & Staskal, D. F. (2004). Brominated flame retardants: Cause for concern? In Environmental Health Perspectives (Vol. 112, Issue 1, pp. 9–17). Public Health Services, US Dept of Health and Human Services. https://doi.org/10.1289/ehp.6559Bombelli, P., Howe, C. J., & Bertocchini, F. (2017). Current Biology Polyethylene biodegradation by caterpillars of the wax moth Galleria mellonella. R292 Current Biology, 27, 283–293. https://doi.org/10.1016/jBosch, G., Vervoort, J. J. M., & Hendriks, W. H. (2016). In vitro digestibility and fermentability of selected insects for dog foods. Animal Feed Science and Technology, 221, 174–184. https://doi.org/10.1016/j.anifeedsci.2016.08.018Bosch, G., Zhang, S., Oonincx, D. G. A. B., & Hendriks, W. H. (2014). Protein quality of insects as potential ingredients for dog and cat foods. Journal of Nutritional Science, 3. https://doi.org/10.1017/jns.2014.23Bourtzis, & Miller. (2003). Insect symbiosis An introduction (2003rd ed.). Taylo & Fraancis Group,LLc.Bovera F, Loponte R, Marono S, Piccolo G, Parisi G, Laconisi V, Gasco L, & Nizza A. (2016). Use of Tenebrio molitor larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Animal Science, 639–647.Bożek, M., Hanus-Lorenz, B., & Rybak, J. (2017). The studies on waste biodegradation by Tenebrio molitor. E3S Web of Conferences, 17, 1–7. https://doi.org/10.1051/e3sconf/20171700011Brandon, A. M., El Abbadi, S. H., Ibekwe, U. A., Cho, Y. M., Wu, W. M., & Criddle, C. S. (2020). Fate of hexabromocyclododecane (HBCD), a common flame retardant, in polystyrene-degrading mealworms: Elevated HBCD levels in egested polymer but no bioaccumulation. Environmental Science and Technology, 54(1), 364–371. https://doi.org/10.1021/acs.est.9b06501Brandon, A. M., Gao, S. H., Tian, R., Ning, D., Yang, S. S., Zhou, J., Wu, W. M., & Criddle, C. S. (2018). Biodegradation of Polyethylene and Plastic Mixtures in Mealworms (Larvae of Tenebrio molitor) and Effects on the Gut Microbiome. Environmental Science and Technology, 52(11), 6526–6533. https://doi.org/10.1021/acs.est.8b02301Bulak, P., Polakowski, C., Nowak, K., Waśko, A., Wiącek, D., & Bieganowski, A. (2018). Hermetia illucens as a new and promising species for use in entomoremediation. Science of the Total Environment, 633, 912–919. https://doi.org/10.1016/j.scitotenv.2018.03.252Canopoli, L., Fidalgo, B., Coulon, F., & Wagland, S. T. (2018). Physico-chemical properties of excavated plastic from landfill mining and current recycling routes. In Waste Management (Vol. 76, pp. 55–67). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2018.03.043Caparros, R., Poelaert, C., Ernens, M., Liotta, M., Blecker, C., Danthine, S., Tyteca, E., Haubruge, É., Alabi, T., Bindelle, J., & Francis, F. (2018). Effect of household cooking techniques on the microbiological load and the nutritional quality of mealworms (Tenebrio molitor L. 1758). Food Research International, 106, 503–508. https://doi.org/10.1016/j.foodres.2018.01.002Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., Fierer, N., Pẽa, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T., Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D., Pirrung, M., … Knight, R. (2010). QIIME allows analysis of high-throughput community sequencing data. In Nature Methods (Vol. 7, Issue 5, pp. 335–336). https://doi.org/10.1038/nmeth.f.303Cappelli, A., Cini, E., Lorini, C., Oliva, N., & Bonaccorsi, G. (2020). Insects as food: A review on risks assessments of Tenebrionidae and Gryllidae in relation to a first machines and plants development. In Food Control (Vol. 108). Elsevier Ltd. https://doi.org/10.1016/j.foodcont.2019.106877Carr, S. A., Liu, J., & Tesoro, A. G. (2016). Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182. https://doi.org/10.1016/j.watres.2016.01.002Chae, Y., & An, Y. J. (2018). Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review. In Environmental Pollution (Vol. 240, pp. 387–395). Elsevier Ltd. https://doi.org/10.1016/j.envpol.2018.05.008Chainark, P. . , Prachom, N. . , Boonyoung, S. . , & Yuangsoi, B. (2022). Replacement of Fish Meal Protein with Giant Worm (Zophobas morio) and Black Cricket (Gryllus bimaculatus) in Diet of Cobia (Rachycentron canadum). Ournal of Fisheries and Environment, 122–129.Chapman, R. F. (2009). Mouthparts. In Encyclopedia of Insects (pp. 663–668). Elsevier Inc. https://doi.org/10.1016/B978-0-12-374144-8.00182-XChirinos, N., Díaz-Viteri, J., & Mego-Mego, V. (2022). Efecto de dietas extruidas en base a torta de castaña y fruto de macambo, sobre los índices de crecimiento y zootécnicos en el cultivo de pacos juveniles. Ariotake – Revista de Investigación Veterinaria y Amazonía, 1(1), e176. https://doi.org/10.55873/ariva.v1i1.176Choi, E. Y., Lee, J. H., Han, S. H., Jung, G. H., Han, E. J., Jeon, S. J., Jung, S. H., Park, J. U., Park, J. H., Bae, Y. J., Park, E. S., & Jung, J. Y. (2022). Subacute Oral Toxicity Evaluation of ExpandedPolystyrene-Fed Tenebrio molitor Larvae (Yellow Mealworm) Powder in Sprague-Dawley Rats. Food Science of Animal Resources, 42(4), 609–624. https://doi.org/10.5851/kosfa.2022.e25Coffey, D., Dawson, K., Ferket, P., & Connolly, A. (2016). Review of the feed industry from a historical perspective and implications for its future. Journal of Applied Animal Nutrition, 4. https://doi.org/10.1017/jan.2015.11Comisión Euopea. (2017). Comisión Europea.(2017) Reglamento (UE) 2017/893 de la comisión de 24 de mayo de 2017 que modifica los anexos I y IV del Reglamento (CE) No. 999/2001 del Parlamento Europeo y del Consejo y los anexos X, XIV y XV del Reglamento (UE) No. 142/2011 de la Comisión por lo que se refiere a las disposiciones sobre proteína animal transformada.transformada.Couto, F. , Tavares, F. , Calvacante, E. F. , da Costa, D. V. , Silva, A. C., & Cardoso, S. P. (2021). Uso de farinha de inseto como alimento alternativo na dieta de alevinos de pirapitinga (Piaractus brachypomus). Revista Panorâmica Online, 2.Craig, S. R., Washburn, B. S., & Gatlin, D. M. (1999). Effects of dietary lipids on body composition and liver function in juvenile red drum, Sciaenops ocellatus. In Fish Physiology and Biochemistry (Vol. 21). https://doi.org/10.1023/a:1007843420128Dalev, P. G. (1994). Utilisation of waste feathers from poultry slaughter for production of a protein concentrate. In Bioresource Technology (Vol. 45).De Almeida, Á. J., Sado, R. Y., & Cyrino, J. E. P. (2009). Growth and haematology of pacu, Piaractus mesopotamicus, fed diets with varying protein to energy ratio. Aquaculture Research, 40(4), 486–495. https://doi.org/10.1111/j.1365- 2109.2008.02120.xDe Marco, M., Martínez, S., Hernandez, F., Madrid, J., Gai, F., Rotolo, L., Belforti, M., Bergero, D., Katz, H., Dabbou, S., Kovitvadhi, A., Zoccarato, I., Gasco, L., & Schiavone, A. (2015). Nutritional value of two insect larval meals (Tenebrio molitor and Hermetia illucens) for broiler chickens: Apparent nutrient digestibility, apparent ileal amino acid digestibility and apparent metabolizable energy. Animal Feed Science and Technology, 209, 211–218. https://doi.org/10.1016/j.anifeedsci.2015.08.006De Smet, J., Lenaerts, S., Borremans, A., Scholliers, J., Van Der Borght, M., & Van Campenhout, L. (2019). Stability assessment and laboratory scale fermentation of pastes produced on a pilot scale from mealworms (Tenebrio molitor). LWT, 102, 113–121. https://doi.org/10.1016/j.lwt.2018.12.017Delort, A.-M., & Combourieu, B. (2001). In situ 1 H NMR study of the biodegradation of xenobiotics: Application to heterocyclic compounds. In Journal of Industrial Microbiology & Biotechnology. www.nature.com/jimDerraik, B. (2002). The pollution of the marine environment by plastic debris: a review. 842–852. www.elsevier.com/locate/marpolbulDillon, R. J., Webster, G., Weightman, A. J., Dillon, V. M., Blanford, S., & Charnley, A. K. (2008). Composition of Acridid gut bacterial communities as revealed by 16S rRNA gene analysis. Journal of Invertebrate Pathology, 97(3), 265–272. https://doi.org/10.1016/j.jip.2007.09.010Doğankaya, L. (2016). Effects of fish meal substitution with super worm (Zophobas morio) meal on growth performance of rainbow trout fingerlings. Aquatic Sciences and Engineering. Turkish Journal of Aquatic Sciences, 1–7. https://doi.org/10.18864/tjas201701Dossey, A. T., Morales-Ramos, J. A., & Rojas, M. G. (2016). Insects as sustainable food ingredients : production, processing and food applications.Douglas, A. E. (1998). Nutritional interactions in insect-microbial symbioses: Aphids and Their Symbiotic Bacteria Buchnera. In Annu. Rev. Entomol (Vol. 43). www.annualreviews.orgDouglas, A. E. (2009). The microbial dimension in insect nutritional ecology. In Functional Ecology (Vol. 23, Issue 1, pp. 38–47). https://doi.org/10.1111/j.1365- 2435.2008.01442.xEngel, P., & Moran, N. A. (2013). The gut microbiota of insects - diversity in structure and function. In FEMS Microbiology Reviews (Vol. 37, Issue 5, pp. 699–735). https://doi.org/10.1111/1574-6976.12025European Bioplastics. (2018). Bioplastics market data 2018 - Global production capacities of bioplastics 2018-2023. https://www.european-bioplastics.org/wpcontent/uploads/2016/02/Report_Bioplastics-Market-Data_2018.pdfFabrikov, D., Sánchez-Muros, M. J., Barroso, F. G., Tomás-Almenar, C., Melenchón, F., Hidalgo, M. C., Morales, A. E., Rodriguez-Rodriguez, M., & Montes-Lopez, J. (2020). Comparative study of growth performance and amino acid catabolism in Oncorhynchus mykiss, Tinca tinca and Sparus aurata and the catabolic changes in response to insect meal inclusion in the diet. Aquaculture, 529. https://doi.org/10.1016/j.aquaculture.2020.735731Fernández, F., Guerrero, R. J., & Sánchez-Restrepo, A. F. (2021). Systematics and diversity of neotropical ants. Revista Colombiana de Entomologia, 47(1). https://doi.org/10.25100/socolen.v47i1.11082Filiciotto, L., & Rothenberg, G. (2021). Biodegradable Plastics: Standards, Policies, and Impacts. In ChemSusChem (Vol. 14, Issue 1, pp. 56–72). Wiley-VCH Verlag. https://doi.org/10.1002/cssc.202002044Flórez, L. V., Biedermann, P. H. W., Engl, T., & Kaltenpoth, M. (2015). Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32(7), 904–936. https://doi.org/10.1039/c5np00010fFolino, A., Karageorgiou, A., Calabrò, P. S., & Komilis, D. (2020). Biodegradation of wasted bioplastics in natural and industrial environments: A review. In Sustainability (Switzerland) (Vol. 12, Issue 15). MDPI. https://doi.org/10.3390/su12156030Fontes, T., de Oliveira, K. R. B., Almeida, I. L. G., Orlando, T. M., Rodrigues, P. B., da Costa, D. V., & E Rosa, P. V. (2019). Digestibility of insect meals for nile tilapia fingerlings. Animals, 9(4). https://doi.org/10.3390/ani9040181Fontes, T. V. (2018). Coeficiente de digestibilidade de farinha de insetos na alimentação de alevinos de tilápia do nilo (Oreochromis niloticus). Universidade Federal de Lavras.Gao, W., Liu, Y. J., Tian, L. X., Mai, K. S., Liang, G. Y., Yang, H. J., Huai, M. Y., & Luo, W. J. (2011). Protein-sparing capability of dietary lipid in herbivorous and omnivorous freshwater finfish: A comparative case study on grass carp (Ctenopharyngodon idella) and tilapia (Oreochromis niloticus × O. aureus). Aquaculture Nutrition, 17(1), 2–12. https://doi.org/10.1111/j.1365- 2095.2009.00698.xGarofalo, C., Osimani, A., Milanović, V., Taccari, M., Cardinali, F., Aquilanti, L., Riolo, P., Ruschioni, S., Isidoro, N., & Clementi, F. (2017). The microbiota of marketed processed edible insects as revealed by high-throughput sequencing. Food Microbiology, 62, 15–22. https://doi.org/10.1016/j.fm.2016.09.012Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. In Current Opinion in Green and Sustainable Chemistry (Vol. 23, pp. 67–79). Elsevier B.V. https://doi.org/10.1016/j.cogsc.2020.03.003Gasco, L., Biasato, I., Dabbou, S., Schiavone, A., & Gai, F. (2019). Animals fed insectbased diets: State-of-the-art on digestibility, performance and product quality. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040170Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 34–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). Plastic and Foam Biodegradation 85 A Review of Biodegradation of Synthetic Plastic and Foams. In Applied Biochemistry and Biotechnology (Vol. 141).Ghaly, A. E., & Alkoaik, F. N. (2009). The Yellow Mealworm as a Novel Source of Protein. American Journal of Agricultural and Biological Sciences, 4(4), 319–331.Gibson, C. M., & Hunter, M. S. (2010). Extraordinarily widespread and fantastically complex: Comparative biology of endosymbiotic bacterial and fungal mutualists of insects. In Ecology Letters (Vol. 13, Issue 2, pp. 223–234). https://doi.org/10.1111/j.1461-0248.2009.01416.xGilpin, R. K., Wagel, D. J., & Solch, J. G. (2003). Production, Distribution, and Fate of Polychlorinated Dibenzo-p-Dioxins, Dibenzofurans, and Related Organohalogens in the Environment (A. Schecter & T. A. Gasiewicz, Eds.; Second edition). https://doi.org/doi.org/10.1002/0471722014.ch2Gómez, E. F., & Michel, F. C. (2013). Biodegradability of conventional and bio-based plastics and natural fiber composites during composting, anaerobic digestion and long-term soil incubation. Polymer Degradation and Stability, 98(12), 2583–2591. https://doi.org/10.1016/j.polymdegradstab.2013.09.018Gracida, J., Alba, J., Cardoso, J., & Perez-Guevara, F. (2004). Studies of biodegradation of binary blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) with poly(2-hydroxyethylmetacrilate) (PHEMA). Polymer Degradation and Stability, 83(2), 247–253. https://doi.org/10.1016/S0141-3910(03)00269-6Gümüş, E., & İkiz, R. (2009). Effect of dietary levels of lipid and carbohydrate on growth performance, chemical contents and digestibility in rainbow trout, Oncorhynchus mykiss. Pakistan Vet. J, 29(2), 59–63.Guo, B., Yin, J., Hao, W., & Jiao, M. (2019). Polyurethane foam induces epigenetic modification of mitochondrial DNA during different metamorphic stages of Tenebrio molitor. Ecotoxicology and Environmental Safety, 183. https://doi.org/10.1016/j.ecoenv.2019.109461Gutiérrez, J. (2013). Biodegradación de polietileno de baja densidad por consorcios microbianos. Universidad Nacional Autónoma de Mexico.Hadad, D., Geresh, S., & Sivan, A. (2005). Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. Journal of Applied Microbiology, 98(5), 1093–1100. https://doi.org/10.1111/j.1365-2672.2005.02553.xHahladakis, J. N., Velis, C. A., Weber, R., Iacovidou, E., & Purnell, P. (2018). An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. In Journal of Hazardous Materials (Vol. 344, pp. 179–199). Elsevier B.V. https://doi.org/10.1016/j.jhazmat.2017.10.014Hamad, K., Kaseem, M., & Deri, F. (2013). Recycling of waste from polymer materials: An overview of the recent works. In Polymer Degradation and Stability (Vol. 98, Issue 12, pp. 2801–2812). https://doi.org/10.1016/j.polymdegradstab.2013.09.025Hamed, M., & Attias, J. (1987). Isolation and partial characterization of two alkaline proteases of the greater wax moth Galleria mellonella (L.). In Insect Biochem (Vol. 17, Issue 5).Harshvardhan, K., & Jha, B. (2013). Biodegradation of low-density polyethylene by marine bacteria from pelagic waters, Arabian Sea, India. Marine Pollution Bulletin, 77(1–2), 100–106. https://doi.org/10.1016/j.marpolbul.2013.10.025Henry, Gai, F., Enes, P., Peréz-Jiménez, A., & Gasco, L. (2018). Effect of partial dietary replacement of fishmeal by yellow mealworm (Tenebrio molitor) larvae meal on the innate immune response and intestinal antioxidant enzymes of rainbow trout (Oncorhynchus mykiss). Fish and Shellfish Immunology, 83, 308–313. https://doi.org/10.1016/j.fsi.2018.09.040Henry, M., Gasco, L., Piccolo, G., & Fountoulaki, E. (2015). Review on the use of insects in the diet of farmed fish: Past and future. In Animal Feed Science and Technology (Vol. 203, Issue 1, pp. 1–22). Elsevier B.V. https://doi.org/10.1016/j.anifeedsci.2015.03.001Hivrale, V. K., Chougule, N. P., Chhabda, P. J., Giri, A. P., & Kachole, M. S. (2005). Unraveling biochemical properties of cockroach (Periplaneta americana) proteinases with a gel X-ray film contact print method. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 141(3), 261–266. https://doi.org/10.1016/j.cbpc.2005.02.015Iaconisi, V., Bonelli, A., Pupino, R., Gai, F., & Parisi, G. (2018). Mealworm as dietary protein source for rainbow trout: Body and fillet quality traits. Aquaculture, 484, 197– 204. https://doi.org/10.1016/j.aquaculture.2017.11.034Iaconisi, V., Marono, S., Parisi, G., Gasco, L., Genovese, L., Maricchiolo, G., Bovera, F., & Piccolo, G. (2017). Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture, 476, 49–58. https://doi.org/10.1016/j.aquaculture.2017.04.007Imathiu, S. (2020). Benefits and food safety concerns associated with consumption of edible insects. In NFS Journal (Vol. 18, pp. 1–11). Elsevier GmbH. https://doi.org/10.1016/j.nfs.2019.11.002Jabir, R., Razak, S., & Vikinesway, S. (2012). Nutritive potential and utilization of super worm (Zophobas morio) meal in the diet of Nile tilapia (Oreochromis niloticus) juvenile. African Journal of Biotechnology, 11(24). https://doi.org/10.5897/ajb11.1084Jayasekara, R., Harding, I., Bowater, I., & Lonergan, G. (2005). Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. In Journal of Polymers and the Environment (Vol. 13, Issue 3, pp. 231–251). https://doi.org/10.1007/s10924-005-4758-2Jeong, S. M., Khosravi, S., Mauliasari, I. R., & Lee, S. M. (2020). Dietary inclusion of mealworm (Tenebrio molitor) meal as an alternative protein source in practical diets for rainbow trout (Oncorhynchus mykiss) fry. Fisheries and Aquatic Sciences, 23(1). https://doi.org/10.1186/s41240-020-00158-7Jordan, R. (2015). Plastic-eating worms may offer solution to mounting waste, Stanford researchers discover. https://news.stanford.edu/2015/09/29/worms-digest-plastics092915/Jung, J., Heo, A., Woo Park, Y., Ji Kim, Y., Koh, H., & Park, W. (2014). Gut microbiota of Tenebrio molitor and their response to environmental change. Journal of Microbiology and Biotechnology, 24(7), 888–897. https://doi.org/10.4014/jmb.1405.05016Kannan, M., Mubarakali, D., Thiyonila, B., Krishnan, M., Padmanaban, B., & Shantkriti, S. (2019). Insect gut as a bioresource for potential enzymes - an unexploited area for industrial biotechnology. In Biocatalysis and Agricultural Biotechnology (Vol. 18). Elsevier Ltd. https://doi.org/10.1016/j.bcab.2019.01.048Karian, H. G. (2003). Handbook of polypropylene and polypropylene composites. Marcel Dekker.Karlsson, S., Ljungquist, O., & Albertsson, A.-C. (1988). Biodegradation of Polyethylene and the Influence of Surfactants. In Polymer Degradation and Stability (Vol. 21).Kathiresan, C. R. (2003). Polythene and Plastics-degrading microbes from the mangrove soil. Revista de Biología Tropical, 51, 629–633. http://www.redalyc.org/articulo.oa?id=44911882003Khan, S., Dong, Y., Nadir, S., Schaefer, D. A., Mortimer, P. E., Xu, J., Ye, L., Gui, H., Wanasinghe, D. N., Dossa, G. G. O., Yu, M., & Sheng, J. (2021). Valorizing plastic waste by insect consumption. Circular Agricultural Systems, 1(1), 1–9. https://doi.org/10.48130/CAS-2021-0007Kong, H. G., Kim, H. H., Chung, J. hui, Jun, J. H., Lee, S., Kim, H. M., Jeon, S., Park, S. G., Bhak, J., & Ryu, C. M. (2019). The Galleria mellonella Hologenome Supports Microbiota-Independent Metabolism of Long-Chain Hydrocarbon Beeswax. Cell Reports, 26(9), 2451-2464.e5. https://doi.org/10.1016/j.celrep.2019.02.018Kooijman, B. (2009). Dynamic Energy Budget Theory for Metabolic Organisation. Cambridge University Press. https://doi.org/10.1017/CBO9780511805400Kovitvadhi, A., Chundang, P., Thongprajukaew, K., Tirawattanawanich, C., Srikachar, S., & Chotimanothum, B. (2019). Potential of insect meals as protein sources for meattype ducks based on in vitro digestibility. Animals, 9(4). https://doi.org/10.3390/ani9040155Krenn, H. W. (2019). Insect Mouthparts (Vol. 5). http://www.springer.com/series/15188Kudrya, V. A., & Simonenko, I. A. (1994). Alkaline serine proteinase and lectin isolation from the culture fluid of Bacillus subUIis. In Appl Microbiol Biotechnol (Vol. 41).Kulma, M., Kouřimská, L., Homolková, D., Božik, M., Plachý, V., & Vrabec, V. (2020). Effect of developmental stage on the nutritional value of edible insects. A case study with Blaberus craniifer and Zophobas morio. Journal of Food Composition and Analysis, 92. https://doi.org/10.1016/j.jfca.2020.103570Kumar, S., Hatha, A. A. M., & Christi, K. S. (2007). Diversity and effectiveness of tropical mangrove soil microflora on the degradation of polythene carry bags. Rev. Biol. Trop., 55(4), 777–786.Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A., & Devipriya, S. P. (2021). Role of pretreatment and evidence for the enhanced biodegradation and mineralization of low-density polyethylene films by greater waxworm. Environmental Technology (United Kingdom), 42(5), 717–730. https://doi.org/10.1080/09593330.2019.1643925Kwon, B. G., Saido, K., Koizumi, K., Sato, H., Ogawa, N., Chung, S. Y., Kusui, T., Kodera, Y., & Kogure, K. (2014). Regional distribution of styrene analogues generated from polystyrene degradation along the coastlines of the North-East Pacific Ocean and Hawaii. Environmental Pollution, 188, 45–49. https://doi.org/10.1016/j.envpol.2014.01.019Kyaw, B. M., Champakalakshmi, R., Sakharkar, M. K., Lim, C. S., & Sakharkar, K. R. (2012). Biodegradation of Low Density Polythene (LDPE) by Pseudomonas Species. Indian Journal of Microbiology, 52(3), 411–419. https://doi.org/10.1007/s12088-012-0250-6Kyrikou, I., & Briassoulis, D. (2007). Biodegradation of agricultural plastic films: A critical review. In Journal of Polymers and the Environment (Vol. 15, Issue 2, pp. 125–150). https://doi.org/10.1007/s10924-007-0053-8Landines, M. A., Rodríguez L., & Rodríguez D. (2011). Estrategias de alimentación para Cachama y Yamú a partir de prácticas de restricción alimenticia. ResearchGate. https://www.researchgate.net/publication/266416402Latney, L. V. , Toddes, B. D. , Wyre, N. R. , Brown, D. C. , Michel, K. E. , & Briscoe, J. A. (2017). Effects of various diets on the calcium and phosphorus composition of mealworms (Tenebrio molitor larvae) and superworms (Zophobas morio larvae). 178–185.Law, K. L. (2017). Plastics in the Marine Environment. In Annual Review of Marine Science (Vol. 9, Issue 1, pp. 205–229). Annual Reviews Inc. https://doi.org/10.1146/annurev-marine-010816-060409Lear, G., Kingsbury, J. M., Franchini, S., Gambarini, V., Maday, S. D. M., Wallbank, J. A., Weaver, L., & Pantos, O. (2021). Plastics and the microbiome: impacts and solutions. In Environmental Microbiomes (Vol. 16, Issue 1). BioMed Central Ltd. https://doi.org/10.1186/s40793-020-00371-wLee, B., Pometto Iii, A. L., Fratzke, A., & Bailey, T. B. (1991). Biodegradation of Degradable Plastic Polyethylene by Phanerochaete and Streptomyces Speciest. In Applied And Environmental Microbiology (Vol. 678, Issue 3).Leja, & Lewandowicz, G. (2010). Polymer biodegradation and biodegradable polymers-a review. Polish Journal of Environmental Studies, 19.Liaqat, S. (2020). Microbial ecology: A new perspective of plastic degradation. Pure and Applied Biology, 9(4). https://doi.org/10.19045/bspab.2020.90228Liceaga, A. M. (2021). Processing insects for use in the food and feed industry. In Current Opinion in Insect Science (Vol. 48, pp. 32–36). Elsevier Inc. https://doi.org/10.1016/j.cois.2021.08.002Llagostera, P., Kallas, Z., Reig, L., & Amores de Gea, D. (2019). The use of insect meal as a sustainable feeding alternative in aquaculture: Current situation, Spanish consumers’ perceptions and willingness to pay. Journal of Cleaner Production, 229, 10–21. https://doi.org/10.1016/j.jclepro.2019.05.012Mahdavi, A., Ghadamyari, M., Sajedi, R. H., Sharifi, M., & Kouchaki, B. (2013). Identification and Partial Characterization of Midgut Proteases in the Lesser Mulberry Pyralid, Glyphodes pyloalis. Journal of Insect Science, 13. https://doi.org/10.1673/031.013.8101Mancini, S., Mattioli, S., Paolucci, S., Fratini, F., Dal Bosco, A., Tuccinardi, T., & Paci, G. (2021). Effect of Cooking Techniques on the in vitro Protein Digestibility, Fatty Acid Profile, and Oxidative Status of Mealworms (Tenebrio molitor). Frontiers in Veterinary Science, 8. https://doi.org/10.3389/fvets.2021.675572Massardier-Nageotte, V., Pestre, C., Cruard-Pradet, T., & Bayard, R. (2006). Aerobic and anaerobic biodegradability of polymer films and physico-chemical characterization. Polymer Degradation and Stability, 91(3), 620–627. https://doi.org/10.1016/j.polymdegradstab.2005.02.029Mastoraki, M., Mollá Ferrándiz, P., Vardali, S. C., Kontodimas, D. C., Kotzamanis, Y. P., Gasco, L., Chatzifotis, S., & Antonopoulou, E. (2020). A comparative study on the effect of fish meal substitution with three different insect meals on growth, body composition and metabolism of European sea bass (Dicentrarchus labrax L.). Aquaculture, 528. https://doi.org/10.1016/j.aquaculture.2020.735511Meena, M. D., Joshi, P. K., Narjary, B., Sheoran, P., Jat, H. S., Chinchmalatpure, A. R., Yadav, R. K., & Sharma, D. K. (2016). Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system. Soil Research, 54(8), 958–969. https://doi.org/10.1071/SR15342Mehmood, C. T., Qazi, I. A., Hashmi, I., Bhargava, S., & Deepa, S. (2016). Biodegradation of low density polyethylene (LDPE) modified with dye sensitized titania and starch blend using Stenotrophomonas pavanii. International Biodeterioration and Biodegradation, 113, 276–286. https://doi.org/10.1016/j.ibiod.2016.01.025Melenchón, F., Larrán, A. M., de Mercado, E., Hidalgo, M. C., Cardenete, G., Barroso, F. G., Fabrikov, D., Lourenço, H. M., Pessoa, M. F., & Tomás-Almenar, C. (2021). Potential use of black soldier fly (Hermetia illucens) and mealworm (Tenebrio molitor) insectmeals in diets for rainbow trout (Oncorhynchus mykiss). Aquaculture Nutrition, 27(2), 491–505. https://doi.org/10.1111/anu.13201Melgar-Lalanne, G., Hernández-Álvarez, A. J., & Salinas-Castro, A. (2019). Edible Insects Processing: Traditional and Innovative Technologies. In Comprehensive Reviews in Food Science and Food Safety. Blackwell Publishing Inc. https://doi.org/10.1111/1541-4337.12463Melis, R., Braca, A., Mulas, G., Sanna, R., Spada, S., Serra, G., Fadda, M. L., Roggio, T., Uzzau, S., & Anedda, R. (2018). Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innovative Food Science and Emerging Technologies, 48, 138–149. https://doi.org/10.1016/j.ifset.2018.06.003Mesa, M. N., & Botero-Aguirre, M. C. (2007). La cachama blanca (Piaractus brachypomus), una especie potencial para el mejoramiento genético. In Rev Col Cienc Pec (Vol. 20, Issue 1).Mika, N., Zorn, H., & Rühl, M. (2013). Insect-derived enzymes: A treasure for industrial biotechnology and food biotechnology. In Advances in Biochemical Engineering/Biotechnology (Vol. 136, pp. 1–17). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/10_2013_204Mikołajczak, Z., Rawski, M., Mazurkiewicz, J., Kierończyk, B., & Józefiak, D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10(6), 1–20. https://doi.org/10.3390/ani10061031Ministerio de Agricultura y Desarrollo Rural. (2021). Dirección de Cadenas Pecuarias, Pesqueras y Acuicolas. https://sioc.minagricultura.gov.co/Acuicultura/Documentos/2021- 03-31%20Cifras%20Sectoriales.pdfMondragón, I. (2021). Dimorfismo sexual de Zophobas morio (Fabricius, 1776) (Coleoptera, Tenebrionidae) en las etapas de pupa y de adulto. Ingeniería y Región, 25, 22–31. https://doi.org/10.25054/22161325.2703Moran, N. A. (2007). Symbiosis as an adaptive process and source of phenotypic complexity. www.nasonline.org/adaptationandcomplexdesign.Moruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G., & Mancini, S. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. In Animals (Vol. 11, Issue 9). MDPI. https://doi.org/10.3390/ani11092568Motte, C., Rios, A., Lefebvre, T., Do, H., Henry, M., & Jintasataporn, O. (2019). Replacing fish meal with defatted insect meal (Yellow mealworm Tenebrio molitor) improves the growth and immunity of pacific white shrimp (Litopenaeus vannamei). Animals, 9(5). https://doi.org/10.3390/ani9050258Mustafa, N. S., Omer, M. A., Garlnabi, M. E., & Ismail, H. A. (2016). Reviewing of General Polymer Types, Properties and Application in Medical Field. International Journal of Science and Research (IJSR), 5(8), 212–221. https://doi.org/10.21275/art2016772Nanda, S., Snigdha Sahu, S., & Abraham, J. (2010). Studies on the biodegradation of natural and synthetic polyethylene by Pseudomonas spp. J. Appl. Sci. Environ. Manage, 14(2), 57–60. www.bioline.org.br/jaNeklyudov, A. D., Ivankin, A. N., & Berdutina, A. V. (2000). Properties and Uses of Protein Hydrolysates (Review). In Translated frora Prikladnaya Bioldaimiya i Mikrobiologi)~ (Vol. 36, Issue 5).Novotný, Č., Malachová, K., Adamus, G., Kwiecień, M., Lotti, N., Soccio, M., Verney, V., & Fava, F. (2018). Deterioration of irradiation/high-temperature pretreated, linear low-density polyethylene (LLDPE) by Bacillus amyloliquefaciens. International Biodeterioration and Biodegradation, 132, 259–267. https://doi.org/10.1016/j.ibiod.2018.04.014Nowak, V., Persijn, D., Rittenschober, D., & Charrondiere, U. R. (2016). Review of food composition data for edible insects. Food Chemistry, 193, 39–46. https://doi.org/10.1016/j.foodchem.2014.10.114Nukmal, N., Umar, S., Amanda, S. P., & Kanedi, M. (2018). Effect of styrofoam waste feeds on the growth, development and fecundity of mealworms (Tenebrio molitor). OnLine Journal of Biological Sciences, 18(1), 24–28. https://doi.org/10.3844/ojbsci.2018.24.28Nyangena, D. N., Mutungi, C., Imathiu, S., Kinyuru, J., Affognon, H., Ekesi, S., Nakimbugwe, D., & Fiaboe, K. K. M. (2020). Effects of traditional processing techniques on the nutritional and microbiological quality of four edible insect species used for food and feed in East Africa. Foods, 9(5). https://doi.org/10.3390/foods9050574OECD. (2022). Global Plastics Outlook Economic Drivers, Environmental Impacts and Policy Options. https://rds.org.co/apc-aa-files/205ec78c9cca6d1850bdca24e20e50bf/document.pdfOjha, S., Bußler, S., & Schlüter, O. K. (2020). Food waste valorisation and circular economy concepts in insect production and processing. In Waste Management (Vol. 118, pp. 600–609). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2020.09.010Osimani, A., Milanović, V., Cardinali, F., Garofalo, C., Clementi, F., Pasquini, M., Riolo, P., Ruschioni, S., Isidoro, N., Loreto, N., Franciosi, E., Tuohy, K., Petruzzelli, A., Foglini, M., Gabucci, C., Tonucci, F., & Aquilanti, L. (2018). The bacterial biota of laboratory-reared edible mealworms (Tenebrio molitor L.): From feed to frass. International Journal of Food Microbiology, 272, 49–60. https://doi.org/10.1016/j.ijfoodmicro.2018.03.001Panini, R. L., Freitas, L. E. L., Guimarães, A. M., Rios, C., da Silva, M. F. O., Vieira, F. N., Fracalossi, D. M., Samuels, R. I., Prudêncio, E. S., Silva, C. P., & Amboni, R. D. M. C. (2017). Potential use of mealworms as an alternative protein source for Pacific white shrimp: Digestibility and performance. Aquaculture, 473, 115–120. https://doi.org/10.1016/j.aquaculture.2017.02.008Peng, B. Y., Li, Y., Fan, R., Chen, Z., Chen, J., Brandon, A. M., Criddle, C. S., Zhang, Y., & Wu, W. M. (2020). Biodegradation of low-density polyethylene and polystyrene in superworms, larvae of Zophobas atratus (Coleoptera: Tenebrionidae): Broad and limited extent depolymerization. Environmental Pollution, 266. https://doi.org/10.1016/j.envpol.2020.115206Peng, B. Y., Su, Y., Chen, Z., Chen, J., Zhou, X., Benbow, M. E., Criddle, C. S., Wu, W. M., & Zhang, Y. (2019). Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environmental Science and Technology, 53(9), 5256–5265. https://doi.org/10.1021/acs.est.8b06963Peydaei, A., Bagheri, H., Gurevich, L., de Jonge, N., & Nielsen, J. L. (2020). Impact of polyethylene on salivary glands proteome in Galleria melonella. Comparative Biochemistry and Physiology - Part D: Genomics and Proteomics, 34. https://doi.org/10.1016/j.cbd.2020.100678Piccolo, G., Iaconisi, V., Marono, S., Gasco, L., Loponte, R., Nizza, S., Bovera, F., & Parisi, G. (2017). Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Animal Feed Science and Technology, 226, 12–20. https://doi.org/10.1016/j.anifeedsci.2017.02.007PlascticsEurope. (2020). Plastics-the Facts 2020 An analysis of European plastics production, demand and waste data.Plastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdfPlastics Europe. (2015). An analysis of European plastics production, demand and waste data. https://plasticseurope.org/wp-content/uploads/2021/10/2015-Plastics-thefacts.pdfPramila, R., & Vijaya Ramesh, K. (2015). African Journal of Bacteriology Research Potential biodegradation of low density polyethylene (LDPE) by Acinetobacter baumannii. 7(3), 24–28. https://doi.org/10.5897/JBR2015.0152Przemieniecki, S. W., Kosewska, A., Ciesielski, S., & Kosewska, O. (2020). Changes in the gut microbiome and enzymatic profile of Tenebrio molitor larvae biodegrading cellulose, polyethylene and polystyrene waste. Environmental Pollution, 256. https://doi.org/10.1016/j.envpol.2019.113265Purcell, J. P., Greenplate, J. T., & Sammons, R. D. (1992). Examination of midgut luminal proteinase activities in six economically important insects. In Insect Biochem. Molec. Biol (Vol. 22).Purschke, B., Brüggen, H., Scheibelberger, R., & Jäger, H. (2018). Effect of pretreatment and drying method on physico-chemical properties and dry fractionation behaviour of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology, 244(2), 269–280. https://doi.org/10.1007/s00217-017-2953-8Queiroz, L. S., Nogueira Silva, N. F., Jessen, F., Mohammadifar, M. A., Stephani, R., Fernandes de Carvalho, A., Perrone, Í. T., & Casanova, F. (2023). Edible insect as an alternative protein source: a review on the chemistry and functionalities of proteins under different processing methods. In Heliyon (Vol. 9, Issue 4). Elsevier Ltd. https://doi.org/10.1016/j.heliyon.2023.e14831R: The R Project for Statistical Computing. (2021). https://www.r-project.org/Raaman, N., Rajitha, N., Jayshree, A., & Jegadeesh, R. (2012). Biodegradation of plastic by Aspergillus spp. isolated from polythene polluted sites around Chennai. J. Acad. Indus. Res, 1(6), 313Radajewski, S., Ineson23, P., Parekh2 , N. R., & Murrell, J. C. (2000). Stable-isotope probing as a tool in microbial ecology. In NATURE (Vol. 403). www.nature.comRagaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. In Waste Management (Vol. 69, pp. 24–58). Elsevier Ltd. https://doi.org/10.1016/j.wasman.2017.07.044Ren, L., Men, L., Zhang, Z., Guan, F., Tian, J., Wang, B., Wang, J., Zhang, Y., & Zhang, W. (2019). Biodegradation of polyethylene by enterobacter sp. D1 from the guts ofwax moth Galleria mellonella. International Journal of Environmental Research and Public Health, 16(11). https://doi.org/10.3390/ijerph16111941Restrepo-Flórez, J. M., Bassi, A., & Thompson, M. R. (2014). Microbial degradation and deterioration of polyethylene - A review. In International Biodeterioration and Biodegradation (Vol. 88, pp. 83–90). https://doi.org/10.1016/j.ibiod.2013.12.014Ribeiro, F. M., Divino, P. V., Freitas, X., Oliveira Dos Santos, E., Martins De Sousa, R., Carvalho, T. A., Menezes De Almeida, E., Oliveira, T., Santos, D., & Carvalho Costa, A. (2016). Publicações em Medicina Veterinária e Zootecnia Alimentação e nutrição de Pirapitinga (Piaractus brachypomums) e Tambaqui (Colossoma macropomum): Revisão. 873–882. https://doi.org/10.22256/pubvet.v10n1Ribeiro, J. C., Lima, R. C., Maia, M. R. G., Almeida, A. A., Fonseca, A. J. M., Cabrita, A. R. J., & Cunha, L. M. (2019). Impact of defatting freeze-dried edible crickets (Acheta domesticus and Gryllodes sigillatus) on the nutritive value, overall liking and sensory profile of cereal bars. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108335Riudavets, J., Salas, I., & Pons, M. J. (2007). Damage characteristics produced by insect pests in packaging film. Journal of Stored Products Research, 43(4), 564–570. https://doi.org/10.1016/j.jspr.2007.03.006Rojas-Jiménez, K., & Hernández, M. (2015). Isolation of fungi and bacteria associated with the guts of tropical wood-feeding Coleoptera and determination of their lignocellulolytic activities. International Journal of Microbiology, 2015. https://doi.org/10.1155/2015/285018Romanelli, D., Casartelli, M., Cappellozza, S., De Eguileor, M., & Tettamanti, G. (2016). Roles and regulation of autophagy and apoptosis in the remodelling of the Lepidopteran midgut epithelium during metamorphosis. Scientific Reports, 6. https://doi.org/10.1038/srep32939Samir, A., Ashour, F. H., Hakim, A. A. A., & Bassyouni, M. (2022). Recent advances in biodegradable polymers for sustainable applications. Npj Materials Degradation, 6(1). https://doi.org/10.1038/s41529-022-00277-7Sanatan, P. T., Lomate, P. R., Giri, A. P., & Hivrale, V. K. (2013). Characterization of a chemostable serine alkaline protease from Periplaneta americana. http://www.biomedcentral.com/1471-2091/14/32Sánchez-Muros, M. J., Barroso, F. G., & Manzano-Agugliaro, F. (2014). Insect meal as renewable source of food for animal feeding: A review. In Journal of Cleaner Production (Vol. 65, pp. 16–27). https://doi.org/10.1016/j.jclepro.2013.11.068Sánchez-Muros, M. J., de Haro, C., Sanz, A., Trenzado, C. E., Villareces, S., & Barroso, F. G. (2016). Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquaculture Nutrition, 22(5), 943–955. https://doi.org/10.1111/anu.12313Santana, M. F. M., Ascer, L. G., Custódio, M. R., Moreira, F. T., & Turra, A. (2016). Microplastic contamination in natural mussel beds from a Brazilian urbanized coastal region: Rapid evaluation through bioassessment. Marine Pollution Bulletin, 106(1–2), 183–189. https://doi.org/10.1016/j.marpolbul.2016.02.074Schauer, C., Thompson, C. L., & Brune, A. (2012). The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Applied and Environmental Microbiology, 78(8), 2758– 2767. https://doi.org/10.1128/AEM.07788-11Scientific Standards & Methods - AOAC INTERNATIONAL. (1996). https://www.aoac.org/scientific-solutions/Shah, A. A., Hasan, F., Hameed, A., & Ahmed, S. (2008). Biological degradation of plastics: A comprehensive review. In Biotechnology Advances (Vol. 26, Issue 3, pp. 246–265). https://doi.org/10.1016/j.biotechadv.2007.12.005Shibao, J., Helena, D., & Bastos, M. (2011). Maillard reaction products in foods: implications for human health R E S U M O. In Rev. Nutr (Vol. 24, Issue 6)Shorthouse, J. D. (2003). Insects and Other Animals Overview of Insects.Singh, B., & Sharma, N. (2008). Mechanistic implications of plastic degradation. In Polymer Degradation and Stability (Vol. 93, Issue 3, pp. 561–584). https://doi.org/10.1016/j.polymdegradstab.2007.11.008Sivan, A., Szanto, M., & Pavlov, V. (2006). Biofilm development of the polyethylenedegrading bacterium Rhodococcus ruber. Applied Microbiology and Biotechnology, 72(2), 346–352. https://doi.org/10.1007/s00253-005-0259-4Smith, R., & Barnes, E. (2015). PROteINSECT Consensus Business Case Report:‗Determining the contribution that insects can make to addressing the protein deficit in Europe. www.proteinsect.euSoares, R., Rafael Ribeiro, dos Santos Benfica, T. A. R., Ferraz, V. P., & Moreira Santos, E. (2019). Nutritional composition of insects Gryllus assimilis and Zophobas morio: Potential foods harvested in Brazil. Journal of Food Composition and Analysis, 76, 22–26. https://doi.org/10.1016/j.jfca.2018.11.005Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. In Animals (Vol. 9, Issue 4). MDPI AG. https://doi.org/10.3390/ani9040119Song, S. G., Chi, S. Y., Tan, B. P., Liang, G. L., Lu, B. Q., Dong, X. H., Yang, Q. H., Liu, H. Y., & Zhang, S. (2018). Effects of fishmeal replacement by Tenebrio molitor meal on growth performance, antioxidant enzyme activities and disease resistance of the juvenile pearl gentian grouper (Epinephelus lanceolatus ♂ × Epinephelus fuscoguttatus♀). Aquaculture Research, 49(6), 2210–2217. https://doi.org/10.1111/are.13677Stathopoulou, P., Asimaki, A., Berillis, P., Vlahos, N., Levizou, E., Katsoulas, N., Karapanagiotidis, I. T., Rumbos, C. I., Athanassiou, C. G., & Mente, E. (2022). Aqua-Ento-Ponics: Effect of Insect Meal on the Development of Sea Bass, Dicentrarchus labrax, in Co-Culture with Lettuce. Fishes, 7(6). https://doi.org/10.3390/fishes7060397Stoops, J., Crauwels, S., Waud, M., Claes, J., Lievens, B., & Van Campenhout, L. (2016). Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption. Food Microbiology, 53, 122–127. https://doi.org/10.1016/j.fm.2015.09.010Su, J., Gong, Y., Cao, S., Lu, F., Han, D., Liu, H., Jin, J., Yang, Y., Zhu, X., & Xie, S. (2017). Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish and Shellfish Immunology, 69, 59–66. https://doi.org/10.1016/j.fsi.2017.08.008Sudakaran, S., Retz, F., Kikuchi, Y., Kost, C., & Kaltenpoth, M. (2015). Evolutionary transition in symbiotic syndromes enabled diversification of phytophagous insects on an imbalanced diet. ISME Journal, 9(12), 2587–2604. https://doi.org/10.1038/ismej.2015.75Sudhakar, M., Doble, M., Murthy, P. S., & Venkatesan, R. (2008). Marine microbemediated biodegradation of low- and high-density polyethylenes. International Biodeterioration and Biodegradation, 61(3), 203–213. https://doi.org/10.1016/j.ibiod.2007.07.011Szendrő, K., Nagy, M. Z., & Tóth, K. (2020). Consumer acceptance of meat from animals reared on insect meal as feed. Animals, 10(8), 1–10. https://doi.org/10.3390/ani10081312Tang, S., Yin, H., Chen, S., Peng, H., Chang, J., Liu, Z., & Dang, Z. (2016). Aerobic degradation of BDE-209 by Enterococcus casseliflavus: Isolation, identification and cell changes during degradation process. Journal of Hazardous Materials, 308, 335–342. https://doi.org/10.1016/j.jhazmat.2016.01.062Terra, W. R., & Ferreira, C. (1994). Insect digestive enzymes: properties, compartmentalization and function. In Biochem. Physiol (Vol. 109, Issue 1).Tsybina, T. A., Dunaevsky, Y. E., Belozersky, M. A., Zhuzhikov, D. P., Oppert, B., & Elpidina, E. N. (2005). Digestive Proteinases of Yellow Mealworm (Tenebrio molitor) Larvae: Purification and Characterization of a TrypsinnLike Proteinase. Translated from Biokhimiya, 70(3), 3700377.Tubin, J. S. B., Paiano, D., Hashimoto, G. S. de O., Furtado, W. E., Martins, M. L., Durigon, E., & Emerenciano, M. G. C. (2020). Tenebrio molitor meal in diets for Nile tilapia juveniles reared in biofloc system. Aquaculture, 519. https://doi.org/10.1016/j.aquaculture.2019.734763Tuomela, M., Vikman, M., Hatakka, A., & It• Avaara, M. (2000). Biodegradation of lignin in a compost environment: a review. El Sevier, 169–183.Uchima, C. A., Tokuda, G., Watanabe, H., Kitamoto, K., & Arioka, M. (2011). Heterologous expression and characterization of a glucose-stimulated βglucosidase from the termite Neotermes koshunensis in Aspergillus oryzae. Applied Microbiology and Biotechnology, 89(6), 1761–1771. https://doi.org/10.1007/s00253- 010-2963-yUnited Nations Environment Programme. (2018). Single-use plastics, a roadmap for sustainabilityUrbanek, A. K., Rybak, J., Wróbel, M., Leluk, K., & Mirończuk, A. M. (2020). A comprehensive assessment of microbiome diversity in Tenebrio molitor fed with polystyrene waste. Environmental Pollution, 262. https://doi.org/10.1016/j.envpol.2020.114281Uzcátegui, J. P. , Méndez, X. , Isea, F. , & Parra, R. (2014). Evaluación de dietas con diferente contenido proteico sobre el desempeño productivo de alevines del híbrido Cachamay (Colossoma macropomum x Piaractus brachypomus) en condiciones de cautiverio. XXIV, 458–465.Valdez, C., & Untiveros, G. (2010). Extracción y caracterización del aceite de las larvas del Tenebrio molitor. Revista de La Sociedad Química Del Perú, 407–414.van Dijk, M., Morley, T., Rau, M. L., & Saghai, Y. (2021). A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nature Food, 2(7), 494–501. https://doi.org/10.1038/s43016-021-00322-9Van Huis, A. (2013). Potential of insects as food and feed in assuring food security. In Annual Review of Entomology (Vol. 58, pp. 563–583). https://doi.org/10.1146/annurev-ento-120811-153704van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: A review. In Journal of Insects as Food and Feed (Vol. 6, Issue 1, pp. 27–44). Wageningen Academic Publishers. https://doi.org/10.3920/JIFF2019.0017Van Huis, A. , Van Itterbeeck, J. , Klunder, H. , Mertens, E. , Halloran, A. , Muir, G. , & Vantomme, P. (2013). Edible insects: future prospects for food and feed security. Fao Forestry Papervan Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed. A review. In Agronomy for Sustainable Development (Vol. 37, Issue 5). Springer-Verlag France. https://doi.org/10.1007/s13593-017-0452-8van Huis, A., Rumpold, B. A., van der Fels-Klerx, H. J., & Tomberlin, J. K. (2021). Advancing edible insects as food and feed in a circular economy. Journal of Insects as Food and Feed, 7(5), 935–948. https://doi.org/10.3920/JIFF2021.x005Varela, H. , Daniel Ferrari, M. , Belobrajdic, L. , Vázquez, A. , & Lyliam Loperena, M. (1997). Skin unhairing proteases of Bacillus subtilis - Production andpartial characterization.Vásquez, W. (2005). A pirapitinga, reprodução e cultivo. Espécies Nativas para Piscicultura no Brasil. Santa Maria. 203–223. https://scholar.google.com/citations?view_op=view_citation&hl=es&user=TNoET1w AAAAJ&citation_for_view=TNoET1wAAAAJ:9yKSN-GCB0ICVásquez, W., & Arias-Castellanos, J. A. (2012). Effect of dietary carbohydrates and lipids on growth in cachama (Piaractus brachypomus). Aquaculture Research.Vásquez, W., Pereira Filho, M. , & Arias-Castellanos, J. A. (2011). Optimum dietary crude protein requirement for juvenile cachama Piaractus brachypomus. Ciência Rural, 41, 2183–2189. http://www.redalyc.org/articulo.oa?id=33121069020Vega, F., & Dowd, P. (2005). The Role of Yeasts as Insect EndosymbiontsVeldkamp, T., & Bosch, G. (2012). Insects as a sustainable feed ingredient in pig and poultry diets - a feasibility study. https://www.researchgate.net/publication/283419849Verbeke, W., Spranghers, T., De Clercq, P., De Smet, S., Sas, B., & Eeckhout, M. (2015). Insects in animal feed: Acceptance and its determinants among farmers, agriculture sector stakeholders and citizens. Animal Feed Science and Technology, 204, 72–87. https://doi.org/10.1016/j.anifeedsci.2015.04.001Viana, R., & Revollo B, A. (1988). Cultivo intensivo de la cachama Colossoma macropomum (cuvier 1818) en estanques tipo campesino en Gaira. Universidad tecnologica del Magdalena .Volke-Seplveda, T., Saucedo-Castaeda, G., Gutirrez-Rojas, M., Manzur, A., & FavelaTorres, E. (2002). Thermally treated low density polyethylene biodegradation by Penicillium pinophilum and Aspergillus niger. Journal of Applied Polymer Science, 83(2), 305–314. https://doi.org/10.1002/app.2245Wang, Y., Luo, L., Li, X., Wang, J., Wang, H., Chen, C., Guo, H., Han, T., Zhou, A., & Zhao, X. (2022). Different plastics ingestion preferences and efficiencies of superworm (Zophobas atratus Fab.) and yellow mealworm (Tenebrio molitor Linn.) associated with distinct gut microbiome changes. Science of the Total Environment, 837. https://doi.org/10.1016/j.scitotenv.2022.155719Wang, Z., Xin, X., Shi, X., & Zhang, Y. (2020). A polystyrene-degrading Acinetobacter bacterium isolated from the larvae of Tribolium castaneum. Science of the Total Environment, 726. https://doi.org/10.1016/j.scitotenv.2020.138564Webb, H. K., Arnott, J., Crawford, R. J., & Ivanova, E. P. (2013). Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate). Polymers, 5(1), 1–18. https://doi.org/10.3390/polym5010001Whiteley, K. S. (2011). Polyethylene. In Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. https://doi.org/10.1002/14356007.a21_487.pub2World Economic Forum. (2016). World Economic Forum, Ellen MacArthur Foundation, McKinsey & Company The New Plastics Economy — Rethinking the Future of Plastics Ellen MacArthur Foundation, Cowes.Wu, & Criddle, C. S. (2021). Characterization of biodegradation of plastics in insect larvae. Methods in Enzymology, 648, 95–120. https://doi.org/10.1016/BS.MIE.2020.12.029Wu, Q., Tao, H., & Wong, M. H. (2019). Feeding and metabolism effects of three common microplastics on Tenebrio molitor L. Environmental Geochemistry and Health, 41(1), 17–26. https://doi.org/10.1007/s10653-018-0161-5Wynants, E., Crauwels, S., Lievens, B., Luca, S., Claes, J., Borremans, A., Bruyninckx, L., & Van Campenhout, L. (2017). Effect of post-harvest starvation and rinsing on the microbial numbers and the bacterial community composition of mealworm larvae (Tenebrio molitor). Innovative Food Science and Emerging Technologies, 42, 8–15. https://doi.org/10.1016/j.ifset.2017.06.004Wynants, E., Crauwels, S., Verreth, C., Gianotten, N., Lievens, B., Claes, J., & Van Campenhout, L. (2018). Microbial dynamics during production of lesser mealworms (Alphitobius diaperinus) for human consumption at industrial scale. Food Microbiology, 70, 181–191. https://doi.org/10.1016/j.fm.2017.09.012Yamada-Onodera, K., Mukumoto, H., Katsuyaya, Y., Saiganji, A., & Tani, Y. (2001). Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. El Sevier, 72, 323–327. www.elsevier.nl/locate/polydegstabYang, Brandon, A. M., Andrew Flanagan, J. C., Yang, J., Ning, D., Cai, S. Y., Fan, H. Q., Wang, Z. Y., Ren, J., Benbow, E., Ren, N. Q., Waymouth, R. M., Zhou, J., Criddle, C. S., & Wu, W. M. (2018). Biodegradation of polystyrene wastes in yellow mealworms (larvae of Tenebrio molitor Linnaeus): Factors affecting biodegradation rates and the ability of polystyrene-fed larvae to complete their life cycle. Chemosphere, 191, 979–989. https://doi.org/10.1016/j.chemosphere.2017.10.117Yang, Chen, J., Wu, W. M., Zhao, J., & Yang, J. (2015). Complete genome sequence of Bacillus sp. YP1, a polyethylene-degrading bacterium from waxworm’s gut. Journal of Biotechnology, 200, 77–78. https://doi.org/10.1016/j.jbiotec.2015.02.034Yang, L., Gao, J., Liu, Y., Zhuang, G., Peng, X., Wu, W. M., & Zhuang, X. (2021). Biodegradation of expanded polystyrene and low-density polyethylene foams in larvae of Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae): Broad versus limited extent depolymerization and microbe-dependence versus independence. Chemosphere, 262. https://doi.org/10.1016/j.chemosphere.2020.127818Yang, Wang, J., & Xia, M. (2020). Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Science of the Total Environment, 708. https://doi.org/10.1016/j.scitotenv.2019.135233Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015a). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 1. Chemical and Physical Characterization and Isotopic Tests. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661Yang, Y., Yang, J., Wu, W. M., Zhao, J., Song, Y., Gao, L., Yang, R., & Jiang, L. (2015b). Biodegradation and Mineralization of Polystyrene by Plastic-Eating Mealworms: Part 2. Role of Gut Microorganisms. Environmental Science and Technology, 49(20), 12080–12086. https://doi.org/10.1021/acs.est.5b02661Yang, Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038aYepes, L. M. (2014). Degradación de Polietileno de Baja Densidad Utilizando Hongos. Revisión Sistemática de la Literatura [Pontificia Universidad Javeriana]. https://repository.javeriana.edu.co/handle/10554/16184Zhang, J., Gao, D., Li, Q., Zhao, Y., Li, L., Lin, H., Bi, Q., & Zhao, Y. (2020). Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Science of the Total Environment, 704. https://doi.org/10.1016/j.scitotenv.2019.135931Zielińska, E., Zieliński, D., Jakubczyk, A., Karaś, M., Pankiewicz, U., Flasz, B., Dziewięcka, M., & Lewicki, S. (2021). The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chemistry, 345. https://doi.org/10.1016/j.foodchem.2020.128846InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84629/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL1013610734.2023.pdf1013610734.2023.pdfTesis de Maestría en Salud y Producción Animalapplication/pdf3987084https://repositorio.unal.edu.co/bitstream/unal/84629/6/1013610734.2023.pdf1563b3ce3cd32f6991fa4a848431513bMD56THUMBNAIL1013610734.2023.pdf.jpg1013610734.2023.pdf.jpgGenerated Thumbnailimage/jpeg6198https://repositorio.unal.edu.co/bitstream/unal/84629/7/1013610734.2023.pdf.jpg58be7934576f29496d73bfa3a9190bc5MD57unal/84629oai:repositorio.unal.edu.co:unal/846292023-09-01 23:03:51.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=