Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos

ilustraciones, diagramas, fotografías

Autores:
Tamayo Figueroa, Diana Paola
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85319
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85319
https://repositorio.unal.edu.co
Palabra clave:
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Ureasa
Bacteria
Precipitación de Calcita Inducida Microbiológicamente
Materiales base cemento
Grietas
Urease
Microbial induced calcite precipitation
Cracks
Cement based materials
Materiales de construcción
Biotecnología
Microorganismo
Building materials
Biotechnology
Microorganisms
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_e3bf9d1ca279853cc18c653567c9ac02
oai_identifier_str oai:repositorio.unal.edu.co:unal/85319
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
dc.title.translated.eng.fl_str_mv Repair of cracks in cement-based materials using axenic and mixed bacterial cultures
title Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
spellingShingle Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Ureasa
Bacteria
Precipitación de Calcita Inducida Microbiológicamente
Materiales base cemento
Grietas
Urease
Microbial induced calcite precipitation
Cracks
Cement based materials
Materiales de construcción
Biotecnología
Microorganismo
Building materials
Biotechnology
Microorganisms
title_short Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
title_full Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
title_fullStr Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
title_full_unstemmed Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
title_sort Reparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtos
dc.creator.fl_str_mv Tamayo Figueroa, Diana Paola
dc.contributor.advisor.spa.fl_str_mv de Brito Brandão, Pedro Filipe
Lizarazo Marriaga, Juan Manuel
dc.contributor.author.spa.fl_str_mv Tamayo Figueroa, Diana Paola
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente Germina
Análisis, Diseño y Materiales Gies
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000005690
dc.subject.ddc.spa.fl_str_mv 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
topic 690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicos
Ureasa
Bacteria
Precipitación de Calcita Inducida Microbiológicamente
Materiales base cemento
Grietas
Urease
Microbial induced calcite precipitation
Cracks
Cement based materials
Materiales de construcción
Biotecnología
Microorganismo
Building materials
Biotechnology
Microorganisms
dc.subject.proposal.spa.fl_str_mv Ureasa
Bacteria
Precipitación de Calcita Inducida Microbiológicamente
Materiales base cemento
Grietas
dc.subject.proposal.eng.fl_str_mv Urease
Microbial induced calcite precipitation
Cracks
Cement based materials
dc.subject.unesco.spa.fl_str_mv Materiales de construcción
Biotecnología
Microorganismo
dc.subject.unesco.eng.fl_str_mv Building materials
Biotechnology
Microorganisms
description ilustraciones, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023-11-21
dc.date.accessioned.none.fl_str_mv 2024-01-16T02:14:27Z
dc.date.available.none.fl_str_mv 2024-01-16T02:14:27Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85319
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co
url https://repositorio.unal.edu.co/handle/unal/85319
https://repositorio.unal.edu.co
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abadi, S., Azouri, D., Pupko, T., & Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08822-w
Achal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4). https://doi.org/10.1016/j.ecoleng.2010.11.009
ACI Committee 222. (2001). Protection of Metals in Concrete Against Corrosion. Aci 222R-01.
Akoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).
Allaire, J. J. (2015). RStudio: Integrated development environment for R. The Journal of Wildlife Management, 75(8).
Appanna, V. D., Anderson, S. L., & Skakoon, T. (1997). Biogenesis of calcite: A biochemical model. Microbiological Research, 152(4), 341–343. https://doi.org/10.1016/S0944-5013(97)80049-3
Armstrong, K. A. (1983). Molecular Cloning: A Laboratory Manual . T. Maniatis , E. F. Fritsch , J. Sambrook . The Quarterly Review of Biology, 58(2). https://doi.org/10.1086/413230
Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722
Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001a). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3
Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001b). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3
Bang, S. S., & Ramakrishnan, V. (2001). Microbiologically-enhanced crack remediation (MECR). Proceedings of the International Symposium on Industrial Application of Microbial Genomes. Daegu, Korea.
Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196(1). https://doi.org/10.1016/0003-2697(91)90120-I
Bhattacharya, A., Naik, S. N., & Khare, S. K. (2018). Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 215, 143–152. https://doi.org/10.1016/j.jenvman.2018.03.055
Brandão, P. F., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Applied Microbiology and Biotechnology, 58(1). https://doi.org/10.1007/s00253-001-0855-x
De Muynck, W., Cox, K., Belie, N. De, & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011
De Muynck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38(7), 1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005
Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van Der Meeren, P., De Belie, N., & Verstraete, W. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. https://doi.org/10.1007/s10532-005-9006-x
Emerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 32(12). https://doi.org/10.1139/f75-274
Farajnia, A., Shafaat, A., Farajnia, S., Sartipipour, M., & Khodadadi Tirkolaei, H. (2022). The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Construction and Building Materials, 317, 125868. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125868
Feng, W. W., Wang, T. T., Bai, J. L., Ding, P., Xing, K., Jiang, J. H., Peng, X., & Qin, S. (2017). Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. International Journal of Systematic and Evolutionary Microbiology, 67(5). https://doi.org/10.1099/ijsem.0.001775
Garg, R., Garg, R., & Eddy, N. O. (2022). Microbial induced calcite precipitation for self-healing of concrete: a review. Journal of Sustainable Cement-Based Materials, 1–14. https://doi.org/10.1080/21650373.2022.2054477
Gomez, M. G., Graddy, C. M. R., DeJong, J. T., & Nelson, D. C. (2019). Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47973-0
Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J. S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18(5). https://doi.org/10.1007/s12257-013-0030-0
Hall, T. A. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT.
Hou, X. G., Kawamura, Y., Sultana, F., Shu, S., Hirose, K., Goto, K., & Ezaki, T. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. International Journal of Systematic Bacteriology, 48(2). https://doi.org/10.1099/00207713-48-2-423
Iamchaturapatr, J., Piriyakul, K., Ketklin, T., Di Emidio, G., & Petcherdchoo, A. (2021). Sandy Soil Improvement Using MICP-Based Urease Enzymatic Acceleration Method Monitored by Real-Time System. Advances in Materials Science and Engineering, 2021, 6905802. https://doi.org/10.1155/2021/6905802
Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. In Journal of Clinical Microbiology (Vol. 45, Issue 9). https://doi.org/10.1128/JCM.01228-07
Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13036-1
Kalfon, A., Larget-Thiéry, I., Charles, J. F., & de Barjac, H. (1983). Growth, sporulation and larvicidal activity of Bacillus sphaericus. European Journal of Applied Microbiology and Biotechnology, 18(3). https://doi.org/10.1007/BF00498040
Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1). https://doi.org/10.1007/BF00257924
Kato, C., Li, L., Tamaoka, J., & Horikoshi, K. (1997). Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles, 1(3), 117–123. https://doi.org/10.1007/s007920050024
Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151
Kim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468
Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008
Kim, H. K., Park, S. J., Han, J. I., & Lee, H. K. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38. https://doi.org/10.1016/j.conbuildmat.2012.07.040
Kim, W., Traiwan, J., Park, M. H., Jung, M. Y., Oh, S. J., Yoon, J. H., & Sukhoom, A. (2012). Chungangia koreensis gen. nov., sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 62(8). https://doi.org/10.1099/ijs.0.028837-0
Koch. (2002). Corrosion costs and preventive strategies in the United States. US Federal Highway Administration. Materials Performance, 41(7 (cost of corrosion supplement)).
Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
Lane, D. J. (1991). 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics.
Lauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–1332. https://doi.org/10.1111/jam.12804
Li, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of Oxygen Availability on Microbially Induced Calcite Precipitation (MICP) Treatment. Geomicrobiology Journal, 35(1), 15–22. https://doi.org/10.1080/01490451.2017.1303553
Liang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422
Lozano-Ruíz, J. M. (2018). Evaluación del efecto de soluciones de urea y sales de calcio sobre la resistencia a la compresión del mortero hidráulico, compuestos necesarios en el proceso de precipitación de calcita inducida por microorganismos. Universidad Nacional de colombia.
Luhar, S., Luhar, I., & Shaikh, F. U. (2022). A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. In Journal of Composites Science (Vol. 6, Issue 1). https://doi.org/10.3390/jcs6010023
Ma, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-z
MacFaddin, J. F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica (3a ed.). Médica Panamericana.
Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158X
Monnet, C., Loux, V., Gibrat, J. F., Spinnler, E., Barbe, V., Vacherie, B., Gavory, F., Gourbeyre, E., Siguier, P., Chandler, M., Elleuch, R., Irlinger, F., & Vallaeys, T. (2010). The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS ONE, 5(11). https://doi.org/10.1371/journal.pone.0015489
Montaño-Salazar, S. M. (2013). Aislamiento de bacterias formadoras de calcita presentes en muestras e concreto de Colombia. Universidad Nacional de colombia.
Montaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0
Nain, N., Surabhi, R., Yathish, N. V., Krishnamurthy, V., Deepa, T., & Tharannum, S. (2019). Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials, 202. https://doi.org/10.1016/j.conbuildmat.2019.01.059
Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879
Nuaklong, P., Jongvivatsakul, P., Phanupornprapong, V., Intarasoontron, J., Shahzadi, H., Pungrasmi, W., Thaiboonrod, S., & Likitlersuang, S. (2023). Self-repairing of shrinkage crack in mortar containing microencapsulated bacterial spores. Journal of Materials Research and Technology, 23, 3441–3454. https://doi.org/10.1016/J.JMRT.2023.02.010
Omoregie, A. I., Khoshdelnezamiha, G., Senian, N., Ong, D. E. L., & Nissom, P. M. (2017). Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering, 109. https://doi.org/10.1016/j.ecoleng.2017.09.012
Omoregie, A. I., Senian, N., Li, P. Y., Hei, N. L., Leong, D. O. E., Ginjom, I. R. H., & Nissom, P. M. (2016). Ureolytic bacteria isolated from Sarawak limestone caves show high urease enzyme activity comparable to that of Sporosarcina pasteurii (DSM 33). Malaysian Journal of Microbiology, 12(6).
Onal Okyay, T., & Frigi Rodrigues, D. (2013). High throughput colorimetric assay for rapid urease activity quantification. Journal of Microbiological Methods, 95(3), 324–326. https://doi.org/10.1016/J.MIMET.2013.09.018
Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015
Peker, N., Garcia-Croes, S., Dijkhuizen, B., Wiersma, H. H., Van Zanten, E., Wisselink, G., Friedrich, A. W., Kooistra-Smid, M., Sinha, B., Rossen, J. W. A., & Couto, N. (2019). A comparison of three different bioinformatics analyses of the 16S-23S rRNA encoding region for bacterial identification. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00620
Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports. https://doi.org/10.1038/s41598-019-49002-6
Reddy, B. M. S., & Revathi, D. (2019). An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2019.08.135
Rohmah, E., Febria, F. A., & Tjong, D. H. (2021). Isolation, screening and characterization of ureolytic bacteria from cave ornament. Pakistan Journal of Biological Sciences, 24(9). https://doi.org/10.3923/pjbs.2021.939.943
Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019a). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018
Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019b). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018
Santos, R. G., Hurtado, R., Gomes, L. G. R., Profeta, R., Rifici, C., Attili, A. R., Spier, S. J., Giuseppe, M., Morais-Rodrigues, F., Gomide, A. C. P., Brenig, B., Gala-García, A., Cuteri, V., Castro, T. L. de P., Ghosh, P., Seyffert, N., & Azevedo, V. (2020). Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene, 741. https://doi.org/10.1016/j.gene.2020.144566
Schwantes-Cezario, N., Medeiros, L. P., De Oliveira, A. G., Nakazato, G., Katsuko Takayama Kobayashi, R., & Toralles, B. M. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. International Biodeterioration and Biodegradation, 123, 200–205. https://doi.org/10.1016/j.ibiod.2017.06.021
Schwieger, F., & Tebbe, C. C. (1998). A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12). https://doi.org/10.1128/aem.64.12.4870-4876.1998
Seifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5
Seifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8
Shaheen, N., Jalil, A., Adnan, F., & Arsalan Khushnood, R. (2021). Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO3 precipitation in bio-based cementitious composites. Microbial Biotechnology, 14(3), 1044–1059. https://doi.org/10.1111/1751-7915.13752
Shen, Z., Han, J., Wang, Y., Sahin, O., & Zhang, Q. (2013). The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058894
Siala, R., Hammemi, I., Sellimi, S., Vallaeys, T., Kamoun, A. S., & Nasri, M. (2015). <i>Arthrobacter arilaitensis</i> Re117 as a Source of Solvent-Stable Proteases: Production, Characteristics, Potential Application in the Deproteinization of Shrimp Wastes and Evaluation in Liquid Laundry Commercial Detergents. Advances in Bioscience and Biotechnology, 06(02). https://doi.org/10.4236/abb.2015.62011
Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1). https://doi.org/10.1093/ve/vey016
Sun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14(3). https://doi.org/10.1007/s11440-018-0758-y
Sutthiwong, N., & Dufossé, L. (2014). Production of carotenoids by Arthrobacter arilaitensis strains isolated from smear-ripened cheeses. FEMS Microbiology Letters, 360(2). https://doi.org/10.1111/1574-6968.12603
Tamaki, H., Wright, C. L., Li, X., Lin, Q., Hwang, C., Wang, S., Thimmapuram, J., Kamagata, Y., & Liu, W. T. (2011). Analysis of 16S rRNA amplicon sequencing options on the roche/454 next-generation titanium sequencing platform. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0025263
Tamayo-Figueroa, Diana Paola; Brandão, Pedro; Lizarazo Marriaga, Juan Manuel (2023), “diffractograms of crystals precipitated by the ureolytic activity of isolated bacteria that carry out MICP from cement-based materials in Colombia”, Mendeley Data, V1, doi: 10.17632/cr6p7x6ycp.1
Tan, Y., Xie, X., Wu, S., Wu, T., Seifan, M., Samani, A. K., Hewitt, S., Berenjian, A., Wang, X., Tao, J., Bao, R., Tran, T., Tucker-Kulesza, S., Amarakoon, G. G. N. N., Kawasaki, S., Pasillas, J. N., Khodadadi, H., Martin, K., Bandini, P., … Whiffin, V. S. (2018). Microbial CaCO3 Precipitation for the Production of Biocement. In Murdor University Repository (Vols. 2018-March, Issue September).
Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In American Mathematical Society: Lectures on Mathematics in the Life Sciences (Vol. 17).
Tepe, M., Arslan, Ş., Koralay, T., & Mercan Doğan, N. (2019). Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. Turkish Journal of Biology, 43(3). https://doi.org/10.3906/biy-1901-56
Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22). https://doi.org/10.1093/nar/22.22.4673
Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015a). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560
Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015b). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560
Wang, J., Jonkers, H. M., Boon, N., & De Belie, N. (2017). Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, 101(12), 5101–5114. https://doi.org/10.1007/s00253-017-8260-2
Xu, J., Du, Y., Jiang, Z., & She, A. (2015). Effects of calcium source on biochemical properties of microbial CaCo3 precipitation. Frontiers in Microbiology, 6(DEC). https://doi.org/10.3389/fmicb.2015.01366
Yang, G., Li, F., Zhang, W., Guo, X., & Zhang, S. (2023). Formation mechanism of disc-shaped calcite—a case study on Arthrobacter sp. MF-2. RSC Advances, 13(11), 7524–7534. https://doi.org/10.1039/D2RA07455A
Yang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315
Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. In Trends in Ecology and Evolution (Vol. 11, Issue 9). https://doi.org/10.1016/0169-5347(96)10041-0
Yao, Y., Tang, H., Su, F., & Xu, P. (2015). Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Scientific Reports, 5. https://doi.org/10.1038/srep08642
Zagorac, D., Muller, H., Ruehl, S., Zagorac, J., & Rehme, S. (2019). Recent developments in the Inorganic Crystal Structure Database: Theoretical crystal structure data and related features. Journal of Applied Crystallography, 52. https://doi.org/10.1107/S160057671900997X
Zhan, Q., Yu, X., Zhang, S., Xu, Y., Pan, Z., & Qian, C. (2020). Study on improving the consolidation properties of microbial cementitious material by promoting spore germination ratio. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.119036
Zhang, C., Li, F., Li, X., Li, L., & Liu, L. (2018). The Roles of Mg over the Precipitation of Carbonate and Morphological Formation in the Presence of Arthrobacter sp. Strain MF-2. Https://Doi.Org/10.1080/01490451.2017.1421727, 35(7), 545–554. https://doi.org/10.1080/01490451.2017.1421727
Zhang, C., Li, X., Lyu, J., & Li, F. (2020). Comparison of carbonate precipitation induced by Curvibacter sp. HJ-1 and Arthrobacter sp. MF-2: Further insight into the biomineralization process. Journal of Structural Biology, 212(2), 107609. https://doi.org/10.1016/J.JSB.2020.107609
Zhang, J. L., Wu, R. S., Li, Y. M., Zhong, J. Y., Deng, X., Liu, B., Han, N. X., & Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Applied Microbiology and Biotechnology, 100(15). https://doi.org/10.1007/s00253-016-7382-2
Zhang, J., Zhao, C., Zhou, A., Yang, C., Zhao, L., & Li, Z. (2019). Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Construction and Building Materials, 224. https://doi.org/10.1016/j.conbuildmat.2019.07.129
Zhang, Y., Guo, H. X., & Cheng, X. H. (2014). Influences of calcium sources on microbially induced carbonate precipitation in porous media. Materials Research Innovations, 18. https://doi.org/10.1179/1432891714Z.000000000384
Zhao, X., Wang, M., Wang, H., Tang, D., Huang, J., & Sun, Y. (2019). Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. International Journal of Environmental Research and Public Health, 16(2). https://doi.org/10.3390/ijerph16020268
Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666
American Society for Testing and Materials (ASTM). (2021). ASTM C359: Standard Test Method for Early Stiffening of Hydraulic-Cement (Mortar Method). Annual Book of ASTM Standards, 04(01), 1–4.
Arora, D., Gupta, P., Jaglan, S., Roullier, C., Grovel, O., & Bertrand, S. (2020). Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. In Biotechnology Advances (Vol. 40). https://doi.org/10.1016/j.biotechadv.2020.107521
Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722
ASTM. (2017). ASTM C778 Standard Specification for Standard Sand. ASTM (American Society for Testing and Materials), C.
Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, (2006). https://doi.org/https://doi.org/10.1520/D2166-06
ASTM I. (2005). Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar - C87-05. In ASTM International (Vol. 04, Issue Reapproved).
ASTM International. (2002). ASTM C109 / C109M - 2002. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Annual Book of ASTM Standards, 04.
Azadi, M., Ghayoomi, M., Shamskia, N., & Kalantari, H. (2017). Physical and mechanical properties of reconstructed bio-cemented sand. Soils and Foundations, 57(5). https://doi.org/10.1016/j.sandf.2017.08.002
Bansal, R., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology and Biotechnology, 43(11). https://doi.org/10.1007/s10295-016-1835-6
Cardoso, R., Pedreira, R., Duarte, S. O. D., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271. https://doi.org/10.1016/j.enggeo.2020.105612
DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2). https://doi.org/10.1016/j.ecoleng.2008.12.029
Dhami, N. K., Alsubhi, W. R., Watkin, E., & Mukherjee, A. (2017). Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Frontiers in Microbiology, 8(JUL). https://doi.org/10.3389/fmicb.2017.01267
Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1). https://doi.org/10.1016/j.bgtech.2023.100002
Gabor, E. M., De Vries, E. J., & Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology, 44(2). https://doi.org/10.1016/S0168-6496(02)00462-2
Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155
Han, R., Xu, S., Zhang, J., Liu, Y., & Zhou, A. (2022). Insights into the effects of microbial consortia-enhanced recycled concrete aggregates on crack self-healing in concrete. Construction and Building Materials, 343. https://doi.org/10.1016/j.conbuildmat.2022.128138
Harnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748
Hussain, A. Z., Tom, A., Sasi, C. K., Joseph, J., & Joseph, S. (2016). Microbial Concrete and Influence of Microbes on Properties of Concrete. International Journal of Science and Research (IJSR), 5(12).
Imhoff, J. F. (2016). Natural products from marine fungi - Still an underrepresented resource. Marine Drugs, 14(1). https://doi.org/10.3390/md14010019
Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151
Keerthana, K., & Kishen, J. M. C. (2020). Micromechanics of fracture and failure in concrete under monotonic and fatigue loadings. Mechanics of Materials, 148. https://doi.org/10.1016/j.mechmat.2020.103490
Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008
Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8
Konstantinou, C., Biscontin, G., Jiang, N. J., & Soga, K. (2021). Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. Journal of Rock Mechanics and Geotechnical Engineering, 13(3). https://doi.org/10.1016/j.jrmge.2021.01.010
Krishnapriya, S., Venkatesh Babu, D. L., & G., P. A. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/https://doi.org/10.1016/j.micres.2015.03.009
Landa-Marbán, D., Tveit, S., Kumar, K., & Gasda, S. E. (2021). Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 106, 103256. https://doi.org/10.1016/J.IJGGC.2021.103256
Li, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0
Liang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422
Luo, M., & Qian, C. X. (2016). Performance of Two Bacteria-Based Additives Used for Self-Healing Concrete. Journal of Materials in Civil Engineering, 28(12). https://doi.org/10.1061/(asce)mt.1943-5533.0001673
Ma, X., Zhou, Q., Qiu, W., Mei, J., & Xie, J. (2021). An active gelatin coating containing eugenol and vacuum delays the decay of chinese seabass (Lateolabrax maculatus) fillets during cold storage: A microbiome perspective. Coatings, 11(2). https://doi.org/10.3390/coatings11020147
Miftah, A., Tirkolaei, H. K., & Bilsel, H. (2020). Biocementation of calcareous beach sand using enzymatic calcium carbonate precipitation. Crystals, 10(10). https://doi.org/10.3390/cryst10100888
Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158X
Montaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0
Monteiro, N. B. R., Moita Neto, J. M., & da Silva, E. A. (2021). Environmental assessment in concrete industries. Journal of Cleaner Production, 327. https://doi.org/10.1016/j.jclepro.2021.129516
Nai, C., & Meyer, V. (2018). From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. In Trends in Microbiology (Vol. 26, Issue 6). https://doi.org/10.1016/j.tim.2017.11.004
Nonsocua-Triviño, K. (2022). Cambios en la abundancia de cultivos mixtos de bacterias ureolíticas que precipitan carbonato de calcio. . Universidad Nacional de Colombia .
Okwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143–1148. https://doi.org/10.1016/j.chemosphere.2010.09.066
Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)
Paerl, H. W., & Pinckney, J. L. (1996). A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 31(3). https://doi.org/10.1007/BF00171569
Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015
Rizwan, S. A., Khan, H., Bier, T. A., & Adnan, F. (2017). Use of Effective Micro-organisms (EM) technology and self-compacting concrete (SCC) technology improved the response of cementitious systems. Construction and Building Materials, 152, 642–650. https://doi.org/10.1016/j.conbuildmat.2017.05.102
Shah, S. G., & Kishen, J. M. C. (2010). Nonlinear fracture properties of concrete-concrete interfaces. Mechanics of Materials, 42(10). https://doi.org/10.1016/j.mechmat.2010.08.002
Shirakawa, M. A., Kaminishikawahara, K. K., John, V. M., Kahn, H., & Futai, M. M. (2011). Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 65(11). https://doi.org/10.1016/j.matlet.2011.02.032
Soysal, A., Milla, J., King, G. M., Hassan, M., & Rupnow, T. (2020). Evaluating the Self-Healing Efficiency of Hydrogel-Encapsulated Bacteria in Concrete. Transportation Research Record, 2674(6), 113–123. https://doi.org/10.1177/0361198120917973
Statements, B., & Mass, D. (2008). ASTM Standard C348 - Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, i(C).
Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(99)00082-6
Su, Y., Feng, J., Jin, P., & Qian, C. (2019). Influence of bacterial self-healing agent on early age performance of cement-based materials. Construction and Building Materials, 218. https://doi.org/10.1016/j.conbuildmat.2019.05.077
Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9
Tobler, D. J., Maclachlan, E., & Phoenix, V. R. (2012). Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecological Engineering, 42. https://doi.org/10.1016/j.ecoleng.2012.02.027
Tourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3morphology and polymorphism. Chemical Geology, 262(3–4), 138–146. https://doi.org/10.1016/j.chemgeo.2009.01.006
Trilokesh, C., Harish, B. S., & Uppuluri, K. B. (2023). The antibiofilm potential of a heteropolysaccharide produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. Preparative Biochemistry and Biotechnology. https://doi.org/10.1080/10826068.2023.2209886
Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5). https://doi.org/10.1080/01490450701436505
Yang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315
Zhang, J., Zhou, A., Liu, Y., Zhao, B., Luan, Y., Wang, S., Yue, X., & Li, Z. (2017). Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15177-z
Zhu, S., Hu, X., Zhao, Y., Fan, Y., Wu, M., Cheng, W., Wang, P., & Wang, S. (2020). Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04815-4
Abou-Zeid, Mohamed, David W. Fowler, Edward G. Nawy, & John H. Allen. (2001). Control of Cracking in Concrete Structures. ACI 224R-01,Reported by ACI Committee 224, October, 1–8. https://doi.org/0097-8515
Achal, V., Mukerjee, A., & Sudhakara Reddy, M. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061
Akoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).
Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). (2002). Astm C78/C78M - 02: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)ASTM International. USA, 04.02.
Barreiro, D. S., Oliveira, R. N. S., & Pauleta, S. R. (2023). Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. In Coordination Chemistry Reviews (Vol. 485). https://doi.org/10.1016/j.ccr.2023.215114
Barton, L. L., & Northup, D. E. (2011). Microbes at Work in Nature: Biomineralization and Microbial Weathering. In Microbial Ecology. https://doi.org/10.1002/9781118015841.ch11
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4). https://doi.org/10.1111/j.1472-4669.2007.00117.x
Bryant, R. S., & Burchfield, T. E. (1989). Review of microbial technology for improving oil recovery. SPE Reservoir Engineering (Society of Petroleum Engineers), 4(2). https://doi.org/10.2118/16646-pa
Buitrago Hurtado, G., Villamil Porras, W. A., Vargas Sepúlveda, D. J., Otálvaro Alvarez, A., & Flórez, G. Y. (2013). Evaluating the effect of the number of generations in IBUN 91.2.98 leuconostoc mesenteroides cultures on enzyme extract production. Ingenieria e Investigacion, 33(1). https://doi.org/10.15446/ing.investig.v33n1.37669
Cabalar, A. F., & Canakci, H. (2011). Direct shear tests on sand treated with xanthan gum. Proceedings of the Institution of Civil Engineers: Ground Improvement, 164(2). https://doi.org/10.1680/grim.800041
Chang, I., & Cho, G. C. (2019). Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica, 14(2). https://doi.org/10.1007/s11440-018-0641-x
Chang, I., Im, J., & Cho, G. C. (2016a). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475
Chang, I., Im, J., & Cho, G. C. (2016b). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. In Sustainability (Switzerland) (Vol. 8, Issue 3). https://doi.org/10.3390/su8030251
Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385
Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(OCT), 1–13. https://doi.org/10.3389/fmicb.2013.00314
Díaz-Montes, E. (2021). Dextran: Sources, Structures, and Properties. Polysaccharides, 2(3). https://doi.org/10.3390/polysaccharides2030033
Ercole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13(1). https://doi.org/10.1017/S1431927607070122
Erdmann, N., & Strieth, D. (2022). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World Journal of Microbiology and Biotechnology 2022 39:2, 39(2), 1–18. https://doi.org/10.1007/S11274-022-03499-8
Flórez Guzman, G. Y., Hurtado, G. B., & Ospina, S. A. (2018). New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2.98 based on binding product and dextranase hydrolysis. Journal of Biotechnology, 265. https://doi.org/10.1016/j.jbiotec.2017.10.019
Gross, R., & Scholz, C. (2001). Biopolymers from Polysaccharides and Agroproteins. https://doi.org/10.1021/bk-2001-0786.fw001
Gupta, S. G., Rathi, C., & Kapur, S. (2013). Biologically Induced Self Healing Concrete: A Futuristic Solution for Crack Repair. International Journal of Applied Sciences and Biotechnology. https://doi.org/10.3126/ijasbt.v1i3.8582
Ham, S.-M., Chang, I., Noh, D.-H., Kwon, T.-H., & Muhunthan, B. (2018). Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation. Journal of Geotechnical and Geoenvironmental Engineering, 144(7). https://doi.org/10.1061/(asce)gt.1943-5606.0001900
Huling, S. G., Bledsoe, B. E., & White, M. V. (1991). The Feasibility of Utilizing Hydrogen Peroxide as a Source of Oxygen in Bioremediation. In In Situ Bioreclamation. https://doi.org/10.1016/b978-0-7506-9301-1.50010-x
NTC 3356 CONCRETOS. MORTERO PREMEZCLADO PARA MAMPOSTERÍA, 1 (2000).
Işik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002
Jain, S., & Arnepalli, D. N. (2019). Biochemically Induced Carbonate Precipitation in Aerobic and Anaerobic Environments by Sporosarcina pasteurii. Geomicrobiology Journal, 36(5), 443–451. https://doi.org/10.1080/01490451.2019.1569180
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5). https://doi.org/10.1111/j.1541-4337.2010.00126.x
Jiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96–104. https://doi.org/10.1016/j.ecoleng.2016.01.073
Kazzaz, J. A., Xu, J., Palaia, T. A., Mantell, L., Fein, A. M., & Horowitz, S. (1996). Cellular oxygen toxicity: Oxidant injury without apoptosis. Journal of Biological Chemistry, 271(25). https://doi.org/10.1074/jbc.271.25.15182
Khachatoorian, R., Petrisor, I. G., Kwan, C. C., & Yen, T. F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38(1–2). https://doi.org/10.1016/S0920-4105(03)00019-6
Kim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468
Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8
Kim, H., Son, H. M., Seo, J., & Lee, H. K. (2021). Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 274. https://doi.org/10.1016/j.conbuildmat.2020.122094
Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009
Kwon, T. H., & Ajo-Franklin, J. B. (2013). High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media. Geophysics, 78(6). https://doi.org/10.1190/GEO2012-0392.1
Kwon, Y. M., Ham, S. M., Kwon, T. H., Cho, G. C., & Chang, I. (2020). Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Geotechnique Letters, 10(2). https://doi.org/10.1680/jgele.19.00106
Le Métayer-Levrel, G., Castanier, S., Orial, G., Loubière, J. F., & Perthuisot, J. P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126(1–4). https://doi.org/10.1016/S0037-0738(99)00029-9
Li, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0
Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050
Liu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. In Science of the Total Environment (Vol. 860). https://doi.org/10.1016/j.scitotenv.2022.160439
Ma, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-z
Mitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019a). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10), 2147–2161. https://doi.org/10.5194/bg-16-2147-2019
Mitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019b). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10). https://doi.org/10.5194/bg-16-2147-2019
M-MMP-2-02-004-04. (2003). Parte 2. Materiales para estructuras, Título 02. Materiales para Concreto Hidráulico. In MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES.
Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879
N-CMT-2-02-001. (2011). Parte 2. Materiales para estructuras, Título 02. Materiales para concreto hidráulico. In CMT. CARACTERÍSTICAS DE LOS MATERIALES
Ng, W., Lee, M., & Hii, S. (2012). An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement. International Journal of Civil and Environmental Engineering, 6(2).
Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007a). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)
Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007b). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)
Pardieck, D. L., Bouwer, E. J., & Stone, A. T. (1992). Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. In Journal of Contaminant Hydrology (Vol. 9, Issue 3). https://doi.org/10.1016/0169-7722(92)90006-Z
Pini, R., Canarutto, S., & Vigna Guidi, G. (1994). Soil microaggregation as influenced by uncharged organic conditioners. Communications in Soil Science and Plant Analysis, 25(11–12). https://doi.org/10.1080/00103629409369183
Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281
Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182
Seifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5
Seifan, M., Samani, A. K., & Berenjian, A. (2017). A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatalysis and Agricultural Biotechnology, 12. https://doi.org/10.1016/j.bcab.2017.10.021
Seifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8
Song, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133229
Tan, L., Reeksting, B., Justo-Reinoso, I., Ferrandiz-Mas, V., Heath, A., Gebhard, S., & Paine, K. (2023). The effect of oxygen and water on the provision of crack closure in bacteria-based self-healing cementitious composites. Cement and Concrete Composites, 142, 105201. https://doi.org/10.1016/J.CEMCONCOMP.2023.105201
Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9
Tiano, P., Cantisani, E., Sutherland, I., & Paget, J. M. (2006). Biomediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage, 7(1). https://doi.org/10.1016/j.culher.2005.10.003
Tsai, T. T., Kao, C. M., Surampalli, R. Y., & Chien, H. Y. (2009). Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study. Journal of Environmental Engineering, 135(9). https://doi.org/10.1061/(asce)ee.1943-7870.0000049
Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
van Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L., & van Geel-Schutten, I. G. H. (2006). Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 70(1). https://doi.org/10.1128/mmbr.70.1.157-176.2006
Vogt, C., Alfreider, A., Lorbeer, H., Hoffmann, D., Wuensche, L., & Babel, W. (2004). Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. Journal of Contaminant Hydrology, 68(1–2). https://doi.org/10.1016/S0169-7722(03)00092-5
Yi, H., Zheng, T., Jia, Z., Su, T., & Wang, C. (2021). Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. Journal of Crystal Growth, 564, 126113. https://doi.org/10.1016/J.JCRYSGRO.2021.126113
Zhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9). https://doi.org/10.1007/s12665-023-10899-y
Bibi, S., Oualha, M., Ashfaq, M. Y., Suleiman, M. T., & Zouari, N. (2018). Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 8(11). https://doi.org/10.1039/c7ra12758h
Chang, I., Im, J., & Cho, G. C. (2016). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475
Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385
Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107. https://doi.org/10.1016/j.procbio.2021.05.001
Durga, C. S. S., Ruben, N., Chand, M. S. R., & Venkatesh, C. (2019). Evaluation of mechanical parameters of bacterial concrete. Annales de Chimie: Science Des Materiaux, 43(6). https://doi.org/10.18280/acsm.430606
Ghosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10). https://doi.org/10.1016/j.cemconres.2005.03.005
Hansson, C. M., Mammoliti, L., & Hope, B. B. (1998). Corrosion inhibitors in concrete - Part I: The principles. Cement and Concrete Research, 28(12). https://doi.org/10.1016/S0008-8846(98)00142-2
Harnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748
Karthik, C., & Rama Mohan Rao, P. (2016). Properties of bacterial-based self-healing concrete - A review. In International Journal of ChemTech Research (Vol. 9, Issue 2).
Kashif Ur Rehman, S., Mahmood, F., Jameel, M., Riaz, N., Javed, M. F., Salmi, A., & Awad, Y. A. (2022). A Biomineralization, Mechanical and Durability Features of Bacteria-Based Self-Healing Concrete—A State of the Art Review. In Crystals (Vol. 12, Issue 9). https://doi.org/10.3390/cryst12091222
Kim, T. K., & Park, J. S. (2021). Experimental evaluation of the durability of concrete repair materials. Applied Sciences (Switzerland), 11(5). https://doi.org/10.3390/app11052303
Leonhardt, F. (1988). Cracks and Crack Control in Concrete Structures. PCI Journal, 33(4). https://doi.org/10.15554/pcij.07011988.124.145
Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050
Litina, C., Bumanis, G., Anglani, G., Dudek, M., Maddalena, R., Amenta, M., Papaioannou, S., Pérez, G., Calvo, J. L. G., Asensio, E., Cobos, R. B., Pinto, F. T., Augonis, A., Davies, R., Guerrero, A., Moreno, M. S., Stryszewska, T., Karatasios, I., Tulliani, J. M., … Al‐tabbaa, A. (2021). Evaluation of methodologies for assessing self‐healing performance of concrete with mineral expansive agents: An interlaboratory study. Materials, 14(8). https://doi.org/10.3390/ma14082024
Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)
Otieno, M. B., Alexander, M. G., & Beushausen, H. D. (2010). Corrosion in cracked and uncracked concrete - influence of crack width, concrete quality and crack reopening. Magazine of Concrete Research, 62(6). https://doi.org/10.1680/macr.2010.62.6.393
Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281
Rao, M. V. S., Reddy, V. S., Hafsa, M., Veena, P., & Anusha, P. (2013). Bioengineered concrete - A sustainable self-healing construction material. Research Journal of Engineering Sciences, 2(6).
Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182
Safiuddin, M., Kaish, A. B. M. A., Woon, C. O., & Raman, S. N. (2018). Early-age cracking in concrete: Causes, consequences, remedialmeasures, and recommendations. In Applied Sciences (Switzerland) (Vol. 8, Issue 10). https://doi.org/10.3390/app8101730
Sarkar, G., & Suthindhiran, K. (2020). Identification of urease producing Virgibacillus sp. UR1 from marine sediments. Indian Journal of Biotechnology, 19(1).
Sikder, A., & Saha, P. (2019). Effect of bacteria on performance of concrete/mortar: A review. In International Journal of Recent Technology and Engineering (Vol. 7, Issue 6C2, pp. 12–17). Blue Eyes Intelligence Engineering and Sciences Publication
Susilowati, P. E., Ardianti, D., Kartini, S., Sudiana, I. N., & Zaeni, A. (2021). Isolation of Ureolytic Bacteria of Soft Coral and Their Potential in Microbially Induced Calcite Precipitation (MICP). Journal of Physics: Conference Series, 1899(1), 012003. https://doi.org/10.1088/1742-6596/1899/1/012003
Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080
Yoon, H. S., Lee, J. Y., Yang, K. H., & Park, S. H. (2022). Evaluation of the Crack Healing Efficiency of Mortar Incorporating Self-healing Pellets based on Cementitious Materials. Journal of the Architectural Institute of Korea, 38(4). https://doi.org/10.5659/JAIK.2022.38.4.207
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 272 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Biotecnología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85319/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85319/2/1018430894.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85319/3/1018430894.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
390b37ec1fdaba0d379e42acde61fbe4
e6640a9257678596fe1a082c8054954e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089379354771456
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2de Brito Brandão, Pedro Filipe9ec73d77d555a4dff5e0457f24f26aefLizarazo Marriaga, Juan Manuel848bf0fb0ca1a5b59e5247b2bcf522d3600Tamayo Figueroa, Diana Paola8a6c9d7e65dfa274073ca50b081c249f600Grupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente GerminaAnálisis, Diseño y Materiales Gieshttps://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00000056902024-01-16T02:14:27Z2024-01-16T02:14:27Z2023-11-21https://repositorio.unal.edu.co/handle/unal/85319Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.coilustraciones, diagramas, fotografíasLa reparación de grietas en estructuras de construcción es un desafío común, donde la precipitación de calcita inducida microbiológicamente es una técnica prometedora. Allí, se emplean bacterias ureolíticas que alcalinizan el microambiente celular generando precipitación de calcita en las grietas, sellándolas. Esta investigación evaluó la reparación de grietas en materiales base cemento empleando cultivos bacterianos ureolíticos axénicos y mixtos mediante el aislamiento y caracterización de 49 microorganismos, donde se seleccionaron 4 correspondientes a los géneros Arthrobacter, Psychrobacillus, Glutamicibacter y Rhodococcus por su capacidad de precipitar el 99.7% (25 mM) de calcio en menos de 24 horas. Estas 4 bacterias fueron evaluadas en diferentes mezclas para establecer cultivos mixtos, donde el cultivo mixto con mayor actividad correspondió a la mezcla R. qingshengii S1 + A. crystallopoietes M4C20 + P. psycrodurans S17. Se determinó la estrategia de aplicación sobre el concreto, frecuencia y componentes del medio de cultivo, evidenciando que a mayor frecuencia de aplicación del microorganismo de manera directa sobre las grietas y empleando un biopolímero de dextrano (BILAC) se mejoró la eficiencia de la reparación acortando los tiempos iniciales en más del 50%. Finalmente, comparado con dos tratamientos comerciales, las probetas de mortero reparadas biotecnológicamente alcanzaron 5 veces más resistencia demostrando el potencial de aplicación de esta biotecnología en este campo. Para este estudio, el cultivo axénico de G. arilaitiensis M3C3 presentó mayor eficiencia que los cultivos mixtos, siendo este el primer reporte del uso de este microorganismo para la reparación de grietas en materiales base cemento empleando un biopolímero de dextrano. (Texto tomado de la fuente).Crack repair in building structures is a common challenge where microbiologically induced calcite precipitation (MICP) is a promising technique. In this process, ureolytic bacteria are used to alkalize the cellular microenvironment generating calcite precipitation in the cracks, sealing them. This study evaluated the crack reparation in cement-based materials using axenic and mixed ureolytic bacterial cultures by isolating and characterizing 49 strains, where 4 correspond to the genera Arthrobacter, Psychrobacillus, Glutamicibacter and Rhodococcus. These strains were selected for their ability to precipitate 99.7%. (25 mM) of calcium in less than 24 hours. These 4 bacteria were evaluated in different mixtures to establish mixed cultures, where the mixed culture with the highest activity corresponded to R. qingshengii S1 + A. crystallopoietes M4C20 + P. psycrodurans S17. The application strategy, frequency and components of the culture medium were determined, evidencing that the higher the frequency of application of the microorganism directly on the cracks and using a dextran biopolymer BILAC, improves the efficiency of the repair, shortening the initial times by more than 50%. Finally, compared with two commercial treatments, the biotechnologically repaired specimens reached 5 times more resistance, demonstrating the potential application of this biotechnology in this field. For this study, the axenic culture of G. arilaitiensis M3C3 presented greater efficiency than mixed cultures, being this the first report on the use of this microorganism for the repair of cracks in cement-based materials using a dextran biopolymer.DoctoradoDoctor en BiotecnologíaMicrobiología ambiental y aplicadaxxiii, 272 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en BiotecnologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá690 - Construcción de edificios::693 - Construcción en tipos específicos de materiales y propósitos específicosUreasaBacteriaPrecipitación de Calcita Inducida MicrobiológicamenteMateriales base cementoGrietasUreaseMicrobial induced calcite precipitationCracksCement based materialsMateriales de construcciónBiotecnologíaMicroorganismoBuilding materialsBiotechnologyMicroorganismsReparación de grietas en materiales base cemento empleando cultivos bacterianos axénicos y mixtosRepair of cracks in cement-based materials using axenic and mixed bacterial culturesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbadi, S., Azouri, D., Pupko, T., & Mayrose, I. (2019). Model selection may not be a mandatory step for phylogeny reconstruction. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08822-wAchal, V., Pan, X., & Özyurt, N. (2011). Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecological Engineering, 37(4). https://doi.org/10.1016/j.ecoleng.2010.11.009ACI Committee 222. (2001). Protection of Metals in Concrete Against Corrosion. Aci 222R-01.Akoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).Allaire, J. J. (2015). RStudio: Integrated development environment for R. The Journal of Wildlife Management, 75(8).Appanna, V. D., Anderson, S. L., & Skakoon, T. (1997). Biogenesis of calcite: A biochemical model. Microbiological Research, 152(4), 341–343. https://doi.org/10.1016/S0944-5013(97)80049-3Armstrong, K. A. (1983). Molecular Cloning: A Laboratory Manual . T. Maniatis , E. F. Fritsch , J. Sambrook . The Quarterly Review of Biology, 58(2). https://doi.org/10.1086/413230Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001a). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3Bang, S. S., Galinat, J. K., & Ramakrishnan, V. (2001b). Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme and Microbial Technology, 28(4), 404–409. https://doi.org/10.1016/S0141-0229(00)00348-3Bang, S. S., & Ramakrishnan, V. (2001). Microbiologically-enhanced crack remediation (MECR). Proceedings of the International Symposium on Industrial Application of Microbial Genomes. Daegu, Korea.Bassam, B. J., Caetano-Anollés, G., & Gresshoff, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Analytical Biochemistry, 196(1). https://doi.org/10.1016/0003-2697(91)90120-IBhattacharya, A., Naik, S. N., & Khare, S. K. (2018). Harnessing the bio-mineralization ability of urease producing Serratia marcescens and Enterobacter cloacae EMB19 for remediation of heavy metal cadmium (II). Journal of Environmental Management, 215, 143–152. https://doi.org/10.1016/j.jenvman.2018.03.055Brandão, P. F., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Applied Microbiology and Biotechnology, 58(1). https://doi.org/10.1007/s00253-001-0855-xDe Muynck, W., Cox, K., Belie, N. De, & Verstraete, W. (2008). Bacterial carbonate precipitation as an alternative surface treatment for concrete. Construction and Building Materials, 22(5), 875–885. https://doi.org/10.1016/j.conbuildmat.2006.12.011De Muynck, W., Debrouwer, D., De Belie, N., & Verstraete, W. (2008). Bacterial carbonate precipitation improves the durability of cementitious materials. Cement and Concrete Research, 38(7), 1005–1014. https://doi.org/10.1016/j.cemconres.2008.03.005Dick, J., De Windt, W., De Graef, B., Saveyn, H., Van Der Meeren, P., De Belie, N., & Verstraete, W. (2006). Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation. https://doi.org/10.1007/s10532-005-9006-xEmerson, K., Russo, R. C., Lund, R. E., & Thurston, R. V. (1975). Aqueous Ammonia Equilibrium Calculations: Effect of pH and Temperature. Journal of the Fisheries Research Board of Canada, 32(12). https://doi.org/10.1139/f75-274Farajnia, A., Shafaat, A., Farajnia, S., Sartipipour, M., & Khodadadi Tirkolaei, H. (2022). The efficiency of ureolytic bacteria isolated from historical adobe structures in the production of bio-bricks. Construction and Building Materials, 317, 125868. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125868Feng, W. W., Wang, T. T., Bai, J. L., Ding, P., Xing, K., Jiang, J. H., Peng, X., & Qin, S. (2017). Glutamicibacter halophytocola sp. nov., an endophytic actinomycete isolated from the roots of a coastal halophyte, Limonium sinense. International Journal of Systematic and Evolutionary Microbiology, 67(5). https://doi.org/10.1099/ijsem.0.001775Garg, R., Garg, R., & Eddy, N. O. (2022). Microbial induced calcite precipitation for self-healing of concrete: a review. Journal of Sustainable Cement-Based Materials, 1–14. https://doi.org/10.1080/21650373.2022.2054477Gomez, M. G., Graddy, C. M. R., DeJong, J. T., & Nelson, D. C. (2019). Biogeochemical Changes During Bio-cementation Mediated by Stimulated and Augmented Ureolytic Microorganisms. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-47973-0Gorospe, C. M., Han, S. H., Kim, S. G., Park, J. Y., Kang, C. H., Jeong, J. H., & So, J. S. (2013). Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering, 18(5). https://doi.org/10.1007/s12257-013-0030-0Hall, T. A. (1999). BIOEDIT: A USER-FRIENDLY BIOLOGICAL SEQUENCE ALIGNMENT EDITOR AND ANALYSIS PROGRAM FOR WINDOWS 95/98/ NT.Hou, X. G., Kawamura, Y., Sultana, F., Shu, S., Hirose, K., Goto, K., & Ezaki, T. (1998). Description of Arthrobacter creatinolyticus sp. nov., isolated from human urine. International Journal of Systematic Bacteriology, 48(2). https://doi.org/10.1099/00207713-48-2-423Iamchaturapatr, J., Piriyakul, K., Ketklin, T., Di Emidio, G., & Petcherdchoo, A. (2021). Sandy Soil Improvement Using MICP-Based Urease Enzymatic Acceleration Method Monitored by Real-Time System. Advances in Materials Science and Engineering, 2021, 6905802. https://doi.org/10.1155/2021/6905802Janda, J. M., & Abbott, S. L. (2007). 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: Pluses, perils, and pitfalls. In Journal of Clinical Microbiology (Vol. 45, Issue 9). https://doi.org/10.1128/JCM.01228-07Johnson, J. S., Spakowicz, D. J., Hong, B. Y., Petersen, L. M., Demkowicz, P., Chen, L., Leopold, S. R., Hanson, B. M., Agresta, H. O., Gerstein, M., Sodergren, E., & Weinstock, G. M. (2019). Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-13036-1Kalfon, A., Larget-Thiéry, I., Charles, J. F., & de Barjac, H. (1983). Growth, sporulation and larvicidal activity of Bacillus sphaericus. European Journal of Applied Microbiology and Biotechnology, 18(3). https://doi.org/10.1007/BF00498040Kandeler, E., & Gerber, H. (1988). Short-term assay of soil urease activity using colorimetric determination of ammonium. Biology and Fertility of Soils, 6(1). https://doi.org/10.1007/BF00257924Kato, C., Li, L., Tamaoka, J., & Horikoshi, K. (1997). Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles, 1(3), 117–123. https://doi.org/10.1007/s007920050024Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151Kim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008Kim, H. K., Park, S. J., Han, J. I., & Lee, H. K. (2013). Microbially mediated calcium carbonate precipitation on normal and lightweight concrete. Construction and Building Materials, 38. https://doi.org/10.1016/j.conbuildmat.2012.07.040Kim, W., Traiwan, J., Park, M. H., Jung, M. Y., Oh, S. J., Yoon, J. H., & Sukhoom, A. (2012). Chungangia koreensis gen. nov., sp. nov., isolated from marine sediment. International Journal of Systematic and Evolutionary Microbiology, 62(8). https://doi.org/10.1099/ijs.0.028837-0Koch. (2002). Corrosion costs and preventive strategies in the United States. US Federal Highway Administration. Materials Performance, 41(7 (cost of corrosion supplement)).Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096Lane, D. J. (1991). 16S/23S rRNA Sequencing. Nucleic Acid Techniques in Bacterial Systematics.Lauchnor, E. G., Topp, D. M., Parker, A. E., & Gerlach, R. (2015). Whole cell kinetics of ureolysis by Sporosarcina pasteurii. Journal of Applied Microbiology, 118(6), 1321–1332. https://doi.org/10.1111/jam.12804Li, M., Wen, K., Li, Y., & Zhu, L. (2018). Impact of Oxygen Availability on Microbially Induced Calcite Precipitation (MICP) Treatment. Geomicrobiology Journal, 35(1), 15–22. https://doi.org/10.1080/01490451.2017.1303553Liang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422Lozano-Ruíz, J. M. (2018). Evaluación del efecto de soluciones de urea y sales de calcio sobre la resistencia a la compresión del mortero hidráulico, compuestos necesarios en el proceso de precipitación de calcita inducida por microorganismos. Universidad Nacional de colombia.Luhar, S., Luhar, I., & Shaikh, F. U. (2022). A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. In Journal of Composites Science (Vol. 6, Issue 1). https://doi.org/10.3390/jcs6010023Ma, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-zMacFaddin, J. F. (2003). Pruebas bioquímicas para la identificación de bacterias de importancia clínica (3a ed.). Médica Panamericana.Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158XMonnet, C., Loux, V., Gibrat, J. F., Spinnler, E., Barbe, V., Vacherie, B., Gavory, F., Gourbeyre, E., Siguier, P., Chandler, M., Elleuch, R., Irlinger, F., & Vallaeys, T. (2010). The Arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS ONE, 5(11). https://doi.org/10.1371/journal.pone.0015489Montaño-Salazar, S. M. (2013). Aislamiento de bacterias formadoras de calcita presentes en muestras e concreto de Colombia. Universidad Nacional de colombia.Montaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0Nain, N., Surabhi, R., Yathish, N. V., Krishnamurthy, V., Deepa, T., & Tharannum, S. (2019). Enhancement in strength parameters of concrete by application of Bacillus bacteria. Construction and Building Materials, 202. https://doi.org/10.1016/j.conbuildmat.2019.01.059Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879Nuaklong, P., Jongvivatsakul, P., Phanupornprapong, V., Intarasoontron, J., Shahzadi, H., Pungrasmi, W., Thaiboonrod, S., & Likitlersuang, S. (2023). Self-repairing of shrinkage crack in mortar containing microencapsulated bacterial spores. Journal of Materials Research and Technology, 23, 3441–3454. https://doi.org/10.1016/J.JMRT.2023.02.010Omoregie, A. I., Khoshdelnezamiha, G., Senian, N., Ong, D. E. L., & Nissom, P. M. (2017). Experimental optimisation of various cultural conditions on urease activity for isolated Sporosarcina pasteurii strains and evaluation of their biocement potentials. Ecological Engineering, 109. https://doi.org/10.1016/j.ecoleng.2017.09.012Omoregie, A. I., Senian, N., Li, P. Y., Hei, N. L., Leong, D. O. E., Ginjom, I. R. H., & Nissom, P. M. (2016). Ureolytic bacteria isolated from Sarawak limestone caves show high urease enzyme activity comparable to that of Sporosarcina pasteurii (DSM 33). Malaysian Journal of Microbiology, 12(6).Onal Okyay, T., & Frigi Rodrigues, D. (2013). High throughput colorimetric assay for rapid urease activity quantification. Journal of Microbiological Methods, 95(3), 324–326. https://doi.org/10.1016/J.MIMET.2013.09.018Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015Peker, N., Garcia-Croes, S., Dijkhuizen, B., Wiersma, H. H., Van Zanten, E., Wisselink, G., Friedrich, A. W., Kooistra-Smid, M., Sinha, B., Rossen, J. W. A., & Couto, N. (2019). A comparison of three different bioinformatics analyses of the 16S-23S rRNA encoding region for bacterial identification. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00620Pungrasmi, W., Intarasoontron, J., Jongvivatsakul, P., & Likitlersuang, S. (2019). Evaluation of Microencapsulation Techniques for MICP Bacterial Spores Applied in Self-Healing Concrete. Scientific Reports. https://doi.org/10.1038/s41598-019-49002-6Reddy, B. M. S., & Revathi, D. (2019). An experimental study on effect of Bacillus sphaericus bacteria in crack filling and strength enhancement of concrete. Materials Today: Proceedings. https://doi.org/10.1016/J.MATPR.2019.08.135Rohmah, E., Febria, F. A., & Tjong, D. H. (2021). Isolation, screening and characterization of ureolytic bacteria from cave ornament. Pakistan Journal of Biological Sciences, 24(9). https://doi.org/10.3923/pjbs.2021.939.943Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019a). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018Ruan, S., Qiu, J., Weng, Y., Yang, Y., Yang, E.-H., Chu, J., & Unluer, C. (2019b). The use of microbial induced carbonate precipitation in healing cracks within reactive magnesia cement-based blends. Cement and Concrete Research, 115, 176–188. https://doi.org/10.1016/J.CEMCONRES.2018.10.018Santos, R. G., Hurtado, R., Gomes, L. G. R., Profeta, R., Rifici, C., Attili, A. R., Spier, S. J., Giuseppe, M., Morais-Rodrigues, F., Gomide, A. C. P., Brenig, B., Gala-García, A., Cuteri, V., Castro, T. L. de P., Ghosh, P., Seyffert, N., & Azevedo, V. (2020). Complete genome analysis of Glutamicibacter creatinolyticus from mare abscess and comparative genomics provide insight of diversity and adaptation for Glutamicibacter. Gene, 741. https://doi.org/10.1016/j.gene.2020.144566Schwantes-Cezario, N., Medeiros, L. P., De Oliveira, A. G., Nakazato, G., Katsuko Takayama Kobayashi, R., & Toralles, B. M. (2017). Bioprecipitation of calcium carbonate induced by Bacillus subtilis isolated in Brazil. International Biodeterioration and Biodegradation, 123, 200–205. https://doi.org/10.1016/j.ibiod.2017.06.021Schwieger, F., & Tebbe, C. C. (1998). A new approach to utilize PCR-single-strand-conformation polymorphism for 16S rRNA gene-based microbial community analysis. Applied and Environmental Microbiology, 64(12). https://doi.org/10.1128/aem.64.12.4870-4876.1998Seifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5Seifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8Shaheen, N., Jalil, A., Adnan, F., & Arsalan Khushnood, R. (2021). Isolation of alkaliphilic calcifying bacteria and their feasibility for enhanced CaCO3 precipitation in bio-based cementitious composites. Microbial Biotechnology, 14(3), 1044–1059. https://doi.org/10.1111/1751-7915.13752Shen, Z., Han, J., Wang, Y., Sahin, O., & Zhang, Q. (2013). The Contribution of ArsB to Arsenic Resistance in Campylobacter jejuni. PLoS ONE, 8(3). https://doi.org/10.1371/journal.pone.0058894Siala, R., Hammemi, I., Sellimi, S., Vallaeys, T., Kamoun, A. S., & Nasri, M. (2015). <i>Arthrobacter arilaitensis</i> Re117 as a Source of Solvent-Stable Proteases: Production, Characteristics, Potential Application in the Deproteinization of Shrimp Wastes and Evaluation in Liquid Laundry Commercial Detergents. Advances in Bioscience and Biotechnology, 06(02). https://doi.org/10.4236/abb.2015.62011Suchard, M. A., Lemey, P., Baele, G., Ayres, D. L., Drummond, A. J., & Rambaut, A. (2018). Bayesian phylogenetic and phylodynamic data integration using BEAST 1.10. Virus Evolution, 4(1). https://doi.org/10.1093/ve/vey016Sun, X., Miao, L., Tong, T., & Wang, C. (2019). Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotechnica, 14(3). https://doi.org/10.1007/s11440-018-0758-ySutthiwong, N., & Dufossé, L. (2014). Production of carotenoids by Arthrobacter arilaitensis strains isolated from smear-ripened cheeses. FEMS Microbiology Letters, 360(2). https://doi.org/10.1111/1574-6968.12603Tamaki, H., Wright, C. L., Li, X., Lin, Q., Hwang, C., Wang, S., Thimmapuram, J., Kamagata, Y., & Liu, W. T. (2011). Analysis of 16S rRNA amplicon sequencing options on the roche/454 next-generation titanium sequencing platform. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0025263Tamayo-Figueroa, Diana Paola; Brandão, Pedro; Lizarazo Marriaga, Juan Manuel (2023), “diffractograms of crystals precipitated by the ureolytic activity of isolated bacteria that carry out MICP from cement-based materials in Colombia”, Mendeley Data, V1, doi: 10.17632/cr6p7x6ycp.1Tan, Y., Xie, X., Wu, S., Wu, T., Seifan, M., Samani, A. K., Hewitt, S., Berenjian, A., Wang, X., Tao, J., Bao, R., Tran, T., Tucker-Kulesza, S., Amarakoon, G. G. N. N., Kawasaki, S., Pasillas, J. N., Khodadadi, H., Martin, K., Bandini, P., … Whiffin, V. S. (2018). Microbial CaCO3 Precipitation for the Production of Biocement. In Murdor University Repository (Vols. 2018-March, Issue September).Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. In American Mathematical Society: Lectures on Mathematics in the Life Sciences (Vol. 17).Tepe, M., Arslan, Ş., Koralay, T., & Mercan Doğan, N. (2019). Precipitation and characterization of CaCO3 of Bacillus amyloliquefaciens U17 strain producing urease and carbonic anhydrase. Turkish Journal of Biology, 43(3). https://doi.org/10.3906/biy-1901-56Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22). https://doi.org/10.1093/nar/22.22.4673Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015a). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560Vahabi, A., Ramezanianpour, A. A., Sharafi, H., Zahiri, H. S., Vali, H., & Noghabi, K. A. (2015b). Calcium carbonate precipitation by strain Bacillus licheniformis AK01, newly isolated from loamy soil: A promising alternative for sealing cement-based materials. Journal of Basic Microbiology, 55(1), 105–111. https://doi.org/10.1002/jobm.201300560Wang, J., Jonkers, H. M., Boon, N., & De Belie, N. (2017). Bacillus sphaericus LMG 22257 is physiologically suitable for self-healing concrete. Applied Microbiology and Biotechnology, 101(12), 5101–5114. https://doi.org/10.1007/s00253-017-8260-2Xu, J., Du, Y., Jiang, Z., & She, A. (2015). Effects of calcium source on biochemical properties of microbial CaCo3 precipitation. Frontiers in Microbiology, 6(DEC). https://doi.org/10.3389/fmicb.2015.01366Yang, G., Li, F., Zhang, W., Guo, X., & Zhang, S. (2023). Formation mechanism of disc-shaped calcite—a case study on Arthrobacter sp. MF-2. RSC Advances, 13(11), 7524–7534. https://doi.org/10.1039/D2RA07455AYang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. In Trends in Ecology and Evolution (Vol. 11, Issue 9). https://doi.org/10.1016/0169-5347(96)10041-0Yao, Y., Tang, H., Su, F., & Xu, P. (2015). Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Scientific Reports, 5. https://doi.org/10.1038/srep08642Zagorac, D., Muller, H., Ruehl, S., Zagorac, J., & Rehme, S. (2019). Recent developments in the Inorganic Crystal Structure Database: Theoretical crystal structure data and related features. Journal of Applied Crystallography, 52. https://doi.org/10.1107/S160057671900997XZhan, Q., Yu, X., Zhang, S., Xu, Y., Pan, Z., & Qian, C. (2020). Study on improving the consolidation properties of microbial cementitious material by promoting spore germination ratio. Construction and Building Materials, 252. https://doi.org/10.1016/j.conbuildmat.2020.119036Zhang, C., Li, F., Li, X., Li, L., & Liu, L. (2018). The Roles of Mg over the Precipitation of Carbonate and Morphological Formation in the Presence of Arthrobacter sp. Strain MF-2. Https://Doi.Org/10.1080/01490451.2017.1421727, 35(7), 545–554. https://doi.org/10.1080/01490451.2017.1421727Zhang, C., Li, X., Lyu, J., & Li, F. (2020). Comparison of carbonate precipitation induced by Curvibacter sp. HJ-1 and Arthrobacter sp. MF-2: Further insight into the biomineralization process. Journal of Structural Biology, 212(2), 107609. https://doi.org/10.1016/J.JSB.2020.107609Zhang, J. L., Wu, R. S., Li, Y. M., Zhong, J. Y., Deng, X., Liu, B., Han, N. X., & Xing, F. (2016). Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Applied Microbiology and Biotechnology, 100(15). https://doi.org/10.1007/s00253-016-7382-2Zhang, J., Zhao, C., Zhou, A., Yang, C., Zhao, L., & Li, Z. (2019). Aragonite formation induced by open cultures of microbial consortia to heal cracks in concrete: Insights into healing mechanisms and crystal polymorphs. Construction and Building Materials, 224. https://doi.org/10.1016/j.conbuildmat.2019.07.129Zhang, Y., Guo, H. X., & Cheng, X. H. (2014). Influences of calcium sources on microbially induced carbonate precipitation in porous media. Materials Research Innovations, 18. https://doi.org/10.1179/1432891714Z.000000000384Zhao, X., Wang, M., Wang, H., Tang, D., Huang, J., & Sun, Y. (2019). Study on the remediation of Cd pollution by the biomineralization of urease-producing bacteria. International Journal of Environmental Research and Public Health, 16(2). https://doi.org/10.3390/ijerph16020268Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666American Society for Testing and Materials (ASTM). (2021). ASTM C359: Standard Test Method for Early Stiffening of Hydraulic-Cement (Mortar Method). Annual Book of ASTM Standards, 04(01), 1–4.Arora, D., Gupta, P., Jaglan, S., Roullier, C., Grovel, O., & Bertrand, S. (2020). Expanding the chemical diversity through microorganisms co-culture: Current status and outlook. In Biotechnology Advances (Vol. 40). https://doi.org/10.1016/j.biotechadv.2020.107521Arpajirakul, S., Pungrasmi, W., & Likitlersuang, S. (2021). Efficiency of microbially-induced calcite precipitation in natural clays for ground improvement. Construction and Building Materials, 282, 122722. https://doi.org/10.1016/J.CONBUILDMAT.2021.122722ASTM. (2017). ASTM C778 Standard Specification for Standard Sand. ASTM (American Society for Testing and Materials), C.Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, (2006). https://doi.org/https://doi.org/10.1520/D2166-06ASTM I. (2005). Standard Test Method for Effect of Organic Impurities in Fine Aggregate on Strength of Mortar - C87-05. In ASTM International (Vol. 04, Issue Reapproved).ASTM International. (2002). ASTM C109 / C109M - 2002. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50 mm] Cube Specimens). Annual Book of ASTM Standards, 04.Azadi, M., Ghayoomi, M., Shamskia, N., & Kalantari, H. (2017). Physical and mechanical properties of reconstructed bio-cemented sand. Soils and Foundations, 57(5). https://doi.org/10.1016/j.sandf.2017.08.002Bansal, R., Dhami, N. K., Mukherjee, A., & Reddy, M. S. (2016). Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment. Journal of Industrial Microbiology and Biotechnology, 43(11). https://doi.org/10.1007/s10295-016-1835-6Cardoso, R., Pedreira, R., Duarte, S. O. D., & Monteiro, G. A. (2020). About calcium carbonate precipitation on sand biocementation. Engineering Geology, 271. https://doi.org/10.1016/j.enggeo.2020.105612DeJong, J. T., Mortensen, B. M., Martinez, B. C., & Nelson, D. C. (2010). Bio-mediated soil improvement. Ecological Engineering, 36(2). https://doi.org/10.1016/j.ecoleng.2008.12.029Dhami, N. K., Alsubhi, W. R., Watkin, E., & Mukherjee, A. (2017). Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Frontiers in Microbiology, 8(JUL). https://doi.org/10.3389/fmicb.2017.01267Fu, T., Saracho, A. C., & Haigh, S. K. (2023). Microbially induced carbonate precipitation (MICP) for soil strengthening: A comprehensive review. Biogeotechnics, 1(1). https://doi.org/10.1016/j.bgtech.2023.100002Gabor, E. M., De Vries, E. J., & Janssen, D. B. (2003). Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiology Ecology, 44(2). https://doi.org/10.1016/S0168-6496(02)00462-2Hammes, F., & Verstraete, W. (2002). Key roles of pH and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1(1), 3–7. https://doi.org/10.1023/A:1015135629155Han, R., Xu, S., Zhang, J., Liu, Y., & Zhou, A. (2022). Insights into the effects of microbial consortia-enhanced recycled concrete aggregates on crack self-healing in concrete. Construction and Building Materials, 343. https://doi.org/10.1016/j.conbuildmat.2022.128138Harnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748Hussain, A. Z., Tom, A., Sasi, C. K., Joseph, J., & Joseph, S. (2016). Microbial Concrete and Influence of Microbes on Properties of Concrete. International Journal of Science and Research (IJSR), 5(12).Imhoff, J. F. (2016). Natural products from marine fungi - Still an underrepresented resource. Marine Drugs, 14(1). https://doi.org/10.3390/md14010019Kaur, N. P., Majhi, S., Dhami, N. K., & Mukherjee, A. (2020). Healing fine cracks in concrete with bacterial cement for an advanced non-destructive monitoring. Construction and Building Materials, 242. https://doi.org/10.1016/j.conbuildmat.2020.118151Keerthana, K., & Kishen, J. M. C. (2020). Micromechanics of fracture and failure in concrete under monotonic and fatigue loadings. Mechanics of Materials, 148. https://doi.org/10.1016/j.mechmat.2020.103490Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology, 26(3). https://doi.org/10.4014/jmb.1511.11008Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8Konstantinou, C., Biscontin, G., Jiang, N. J., & Soga, K. (2021). Application of microbially induced carbonate precipitation to form bio-cemented artificial sandstone. Journal of Rock Mechanics and Geotechnical Engineering, 13(3). https://doi.org/10.1016/j.jrmge.2021.01.010Krishnapriya, S., Venkatesh Babu, D. L., & G., P. A. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research, 174, 48–55. https://doi.org/https://doi.org/10.1016/j.micres.2015.03.009Landa-Marbán, D., Tveit, S., Kumar, K., & Gasda, S. E. (2021). Practical approaches to study microbially induced calcite precipitation at the field scale. International Journal of Greenhouse Gas Control, 106, 103256. https://doi.org/10.1016/J.IJGGC.2021.103256Li, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0Liang, H., Liu, Y., Tian, B., Li, Z., & Ou, H. (2022). A sustainable production of biocement via microbially induced calcium carbonate precipitation. International Biodeterioration & Biodegradation, 172, 105422. https://doi.org/10.1016/J.IBIOD.2022.105422Luo, M., & Qian, C. X. (2016). Performance of Two Bacteria-Based Additives Used for Self-Healing Concrete. Journal of Materials in Civil Engineering, 28(12). https://doi.org/10.1061/(asce)mt.1943-5533.0001673Ma, X., Zhou, Q., Qiu, W., Mei, J., & Xie, J. (2021). An active gelatin coating containing eugenol and vacuum delays the decay of chinese seabass (Lateolabrax maculatus) fillets during cold storage: A microbiome perspective. Coatings, 11(2). https://doi.org/10.3390/coatings11020147Miftah, A., Tirkolaei, H. K., & Bilsel, H. (2020). Biocementation of calcareous beach sand using enzymatic calcium carbonate precipitation. Crystals, 10(10). https://doi.org/10.3390/cryst10100888Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Journal of Hygiene. https://doi.org/10.1017/S002217240001158XMontaño-Salazar, S. M., Lizarazo-Marriaga, J., & Brandão, P. F. B. (2018). Isolation and Potential Biocementation of Calcite Precipitation Inducing Bacteria from Colombian Buildings. Current Microbiology, 75(3), 256–265. https://doi.org/10.1007/s00284-017-1373-0Monteiro, N. B. R., Moita Neto, J. M., & da Silva, E. A. (2021). Environmental assessment in concrete industries. Journal of Cleaner Production, 327. https://doi.org/10.1016/j.jclepro.2021.129516Nai, C., & Meyer, V. (2018). From Axenic to Mixed Cultures: Technological Advances Accelerating a Paradigm Shift in Microbiology. In Trends in Microbiology (Vol. 26, Issue 6). https://doi.org/10.1016/j.tim.2017.11.004Nonsocua-Triviño, K. (2022). Cambios en la abundancia de cultivos mixtos de bacterias ureolíticas que precipitan carbonato de calcio. . Universidad Nacional de Colombia .Okwadha, G. D. O., & Li, J. (2010). Optimum conditions for microbial carbonate precipitation. Chemosphere, 81(9), 1143–1148. https://doi.org/10.1016/j.chemosphere.2010.09.066Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)Paerl, H. W., & Pinckney, J. L. (1996). A mini-review of microbial consortia: Their roles in aquatic production and biogeochemical cycling. Microbial Ecology, 31(3). https://doi.org/10.1007/BF00171569Park, S. J., Park, Y. M., Chun, W. Y., Kim, W. J., & Ghim, S. Y. (2010). Calcite-forming bacteria for compressive strength improvement in mortar. Journal of Microbiology and Biotechnology, 20(4), 782–788. https://doi.org/10.4014/jmb.0911.11015Rizwan, S. A., Khan, H., Bier, T. A., & Adnan, F. (2017). Use of Effective Micro-organisms (EM) technology and self-compacting concrete (SCC) technology improved the response of cementitious systems. Construction and Building Materials, 152, 642–650. https://doi.org/10.1016/j.conbuildmat.2017.05.102Shah, S. G., & Kishen, J. M. C. (2010). Nonlinear fracture properties of concrete-concrete interfaces. Mechanics of Materials, 42(10). https://doi.org/10.1016/j.mechmat.2010.08.002Shirakawa, M. A., Kaminishikawahara, K. K., John, V. M., Kahn, H., & Futai, M. M. (2011). Sand bioconsolidation through the precipitation of calcium carbonate by two ureolytic bacteria. Materials Letters, 65(11). https://doi.org/10.1016/j.matlet.2011.02.032Soysal, A., Milla, J., King, G. M., Hassan, M., & Rupnow, T. (2020). Evaluating the Self-Healing Efficiency of Hydrogel-Encapsulated Bacteria in Concrete. Transportation Research Record, 2674(6), 113–123. https://doi.org/10.1177/0361198120917973Statements, B., & Mass, D. (2008). ASTM Standard C348 - Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars. ASTM International, i(C).Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(99)00082-6Su, Y., Feng, J., Jin, P., & Qian, C. (2019). Influence of bacterial self-healing agent on early age performance of cement-based materials. Construction and Building Materials, 218. https://doi.org/10.1016/j.conbuildmat.2019.05.077Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9Tobler, D. J., Maclachlan, E., & Phoenix, V. R. (2012). Microbially mediated plugging of porous media and the impact of differing injection strategies. Ecological Engineering, 42. https://doi.org/10.1016/j.ecoleng.2012.02.027Tourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3morphology and polymorphism. Chemical Geology, 262(3–4), 138–146. https://doi.org/10.1016/j.chemgeo.2009.01.006Trilokesh, C., Harish, B. S., & Uppuluri, K. B. (2023). The antibiofilm potential of a heteropolysaccharide produced and characterized from the isolated marine bacterium Glutamicibacter nicotianae BPM30. Preparative Biochemistry and Biotechnology. https://doi.org/10.1080/10826068.2023.2209886Whiffin, V. S., van Paassen, L. A., & Harkes, M. P. (2007). Microbial carbonate precipitation as a soil improvement technique. Geomicrobiology Journal, 24(5). https://doi.org/10.1080/01490450701436505Yang, Y., Chu, J., Cao, B., Liu, H., & Cheng, L. (2020). Biocementation of soil using non-sterile enriched urease-producing bacteria from activated sludge. Journal of Cleaner Production, 262. https://doi.org/10.1016/j.jclepro.2020.121315Zhang, J., Zhou, A., Liu, Y., Zhao, B., Luan, Y., Wang, S., Yue, X., & Li, Z. (2017). Microbial network of the carbonate precipitation process induced by microbial consortia and the potential application to crack healing in concrete. Scientific Reports, 7(1). https://doi.org/10.1038/s41598-017-15177-zZhu, S., Hu, X., Zhao, Y., Fan, Y., Wu, M., Cheng, W., Wang, P., & Wang, S. (2020). Coal Dust Consolidation Using Calcium Carbonate Precipitation Induced by Treatment with Mixed Cultures of Urease-Producing Bacteria. Water, Air, and Soil Pollution, 231(8). https://doi.org/10.1007/s11270-020-04815-4Abou-Zeid, Mohamed, David W. Fowler, Edward G. Nawy, & John H. Allen. (2001). Control of Cracking in Concrete Structures. ACI 224R-01,Reported by ACI Committee 224, October, 1–8. https://doi.org/0097-8515Achal, V., Mukerjee, A., & Sudhakara Reddy, M. (2013). Biogenic treatment improves the durability and remediates the cracks of concrete structures. Construction and Building Materials, 48, 1–5. https://doi.org/10.1016/j.conbuildmat.2013.06.061Akoğuz, H., Çelik, S., & Bariş, Ö. (2019). THE EFFECTS OF DIFFERENT SOURCES OF CALCIUM IN IMPROVEMENT OF SOILS BY MICROBIALLY INDUCED CALCITE PRECIPITATION (MICP). In Sigma J Eng & Nat Sci (Vol. 37, Issue 3).Al Qabany, A., Soga, K., & Santamarina, C. (2012). Factors Affecting Efficiency of Microbially Induced Calcite Precipitation. Journal of Geotechnical and Geoenvironmental Engineering, 138(8). https://doi.org/10.1061/(asce)gt.1943-5606.0000666AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). (2002). Astm C78/C78M - 02: Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)ASTM International. USA, 04.02.Barreiro, D. S., Oliveira, R. N. S., & Pauleta, S. R. (2023). Bacterial peroxidases – Multivalent enzymes that enable the use of hydrogen peroxide for microaerobic and anaerobic proliferation. In Coordination Chemistry Reviews (Vol. 485). https://doi.org/10.1016/j.ccr.2023.215114Barton, L. L., & Northup, D. E. (2011). Microbes at Work in Nature: Biomineralization and Microbial Weathering. In Microbial Ecology. https://doi.org/10.1002/9781118015841.ch11Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology, 5(4). https://doi.org/10.1111/j.1472-4669.2007.00117.xBryant, R. S., & Burchfield, T. E. (1989). Review of microbial technology for improving oil recovery. SPE Reservoir Engineering (Society of Petroleum Engineers), 4(2). https://doi.org/10.2118/16646-paBuitrago Hurtado, G., Villamil Porras, W. A., Vargas Sepúlveda, D. J., Otálvaro Alvarez, A., & Flórez, G. Y. (2013). Evaluating the effect of the number of generations in IBUN 91.2.98 leuconostoc mesenteroides cultures on enzyme extract production. Ingenieria e Investigacion, 33(1). https://doi.org/10.15446/ing.investig.v33n1.37669Cabalar, A. F., & Canakci, H. (2011). Direct shear tests on sand treated with xanthan gum. Proceedings of the Institution of Civil Engineers: Ground Improvement, 164(2). https://doi.org/10.1680/grim.800041Chang, I., & Cho, G. C. (2019). Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay. Acta Geotechnica, 14(2). https://doi.org/10.1007/s11440-018-0641-xChang, I., Im, J., & Cho, G. C. (2016a). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475Chang, I., Im, J., & Cho, G. C. (2016b). Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. In Sustainability (Switzerland) (Vol. 8, Issue 3). https://doi.org/10.3390/su8030251Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385Dhami, N. K., Reddy, M. S., & Mukherjee, M. S. (2013). Biomineralization of calcium carbonates and their engineered applications: A review. Frontiers in Microbiology, 4(OCT), 1–13. https://doi.org/10.3389/fmicb.2013.00314Díaz-Montes, E. (2021). Dextran: Sources, Structures, and Properties. Polysaccharides, 2(3). https://doi.org/10.3390/polysaccharides2030033Ercole, C., Cacchio, P., Botta, A. L., Centi, V., & Lepidi, A. (2007). Bacterially induced mineralization of calcium carbonate: The role of exopolysaccharides and capsular polysaccharides. Microscopy and Microanalysis, 13(1). https://doi.org/10.1017/S1431927607070122Erdmann, N., & Strieth, D. (2022). Influencing factors on ureolytic microbiologically induced calcium carbonate precipitation for biocementation. World Journal of Microbiology and Biotechnology 2022 39:2, 39(2), 1–18. https://doi.org/10.1007/S11274-022-03499-8Flórez Guzman, G. Y., Hurtado, G. B., & Ospina, S. A. (2018). New dextransucrase purification process of the enzyme produced by Leuconostoc mesenteroides IBUN 91.2.98 based on binding product and dextranase hydrolysis. Journal of Biotechnology, 265. https://doi.org/10.1016/j.jbiotec.2017.10.019Gross, R., & Scholz, C. (2001). Biopolymers from Polysaccharides and Agroproteins. https://doi.org/10.1021/bk-2001-0786.fw001Gupta, S. G., Rathi, C., & Kapur, S. (2013). Biologically Induced Self Healing Concrete: A Futuristic Solution for Crack Repair. International Journal of Applied Sciences and Biotechnology. https://doi.org/10.3126/ijasbt.v1i3.8582Ham, S.-M., Chang, I., Noh, D.-H., Kwon, T.-H., & Muhunthan, B. (2018). Improvement of Surface Erosion Resistance of Sand by Microbial Biopolymer Formation. Journal of Geotechnical and Geoenvironmental Engineering, 144(7). https://doi.org/10.1061/(asce)gt.1943-5606.0001900Huling, S. G., Bledsoe, B. E., & White, M. V. (1991). The Feasibility of Utilizing Hydrogen Peroxide as a Source of Oxygen in Bioremediation. In In Situ Bioreclamation. https://doi.org/10.1016/b978-0-7506-9301-1.50010-xNTC 3356 CONCRETOS. MORTERO PREMEZCLADO PARA MAMPOSTERÍA, 1 (2000).Işik, M., Altaş, L., Özcan, S., Şimşek, I., Aĝdaĝ, O. N., & Alaş, A. (2012). Effect of urea concentration on microbial Ca precipitation. Journal of Industrial and Engineering Chemistry, 18(6), 1908–1911. https://doi.org/10.1016/j.jiec.2012.05.002Jain, S., & Arnepalli, D. N. (2019). Biochemically Induced Carbonate Precipitation in Aerobic and Anaerobic Environments by Sporosarcina pasteurii. Geomicrobiology Journal, 36(5), 443–451. https://doi.org/10.1080/01490451.2019.1569180Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-Lactic Acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5). https://doi.org/10.1111/j.1541-4337.2010.00126.xJiang, N. J., Yoshioka, H., Yamamoto, K., & Soga, K. (2016). Ureolytic activities of a urease-producing bacterium and purified urease enzyme in the anoxic condition: Implication for subseafloor sand production control by microbially induced carbonate precipitation (MICP). Ecological Engineering, 90, 96–104. https://doi.org/10.1016/j.ecoleng.2016.01.073Kazzaz, J. A., Xu, J., Palaia, T. A., Mantell, L., Fein, A. M., & Horowitz, S. (1996). Cellular oxygen toxicity: Oxidant injury without apoptosis. Journal of Biological Chemistry, 271(25). https://doi.org/10.1074/jbc.271.25.15182Khachatoorian, R., Petrisor, I. G., Kwan, C. C., & Yen, T. F. (2003). Biopolymer plugging effect: Laboratory-pressurized pumping flow studies. Journal of Petroleum Science and Engineering, 38(1–2). https://doi.org/10.1016/S0920-4105(03)00019-6Kim, G., & Youn, H. (2016). Microbially induced calcite precipitation employing environmental isolates. Materials. https://doi.org/10.3390/ma9060468Kim, H. J., Shin, B., Lee, Y. S., & Park, W. (2017). Modulation of calcium carbonate precipitation by exopolysaccharide in Bacillus sp. JH7. Applied Microbiology and Biotechnology, 101(16). https://doi.org/10.1007/s00253-017-8372-8Kim, H., Son, H. M., Seo, J., & Lee, H. K. (2021). Recent advances in microbial viability and self-healing performance in bacterial-based cementitious materials: A review. Construction and Building Materials, 274. https://doi.org/10.1016/j.conbuildmat.2020.122094Krajewska, B. (2018). Urease-aided calcium carbonate mineralization for engineering applications: A review. Journal of Advanced Research, 13, 59–67. https://doi.org/https://doi.org/10.1016/j.jare.2017.10.009Kwon, T. H., & Ajo-Franklin, J. B. (2013). High-frequency seismic response during permeability reduction due to biopolymer clogging in unconsolidated porous media. Geophysics, 78(6). https://doi.org/10.1190/GEO2012-0392.1Kwon, Y. M., Ham, S. M., Kwon, T. H., Cho, G. C., & Chang, I. (2020). Surface-erosion behaviour of biopolymer-treated soils assessed by EFA. Geotechnique Letters, 10(2). https://doi.org/10.1680/jgele.19.00106Le Métayer-Levrel, G., Castanier, S., Orial, G., Loubière, J. F., & Perthuisot, J. P. (1999). Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sedimentary Geology, 126(1–4). https://doi.org/10.1016/S0037-0738(99)00029-9Li, F., Hu, X., Li, J., Sun, X., Luo, C., Zhang, X., Li, H., Lu, J., Li, Y., & Bao, M. (2023). Purification, Structural Characterization, Antioxidant and Emulsifying Capabilities of Exopolysaccharide Produced by Rhodococcus qingshengii QDR4-2. Journal of Polymers and the Environment, 31(1), 64–80. https://doi.org/10.1007/s10924-022-02604-0Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050Liu, Y., Ali, A., Su, J. F., Li, K., Hu, R. Z., & Wang, Z. (2023). Microbial-induced calcium carbonate precipitation: Influencing factors, nucleation pathways, and application in waste water remediation. In Science of the Total Environment (Vol. 860). https://doi.org/10.1016/j.scitotenv.2022.160439Ma, L., Pang, A.-P., Luo, Y., Lu, X., & Lin, F. (2020). Beneficial factors for biomineralization by ureolytic bacterium Sporosarcina pasteurii. Microbial Cell Factories, 19(1), 12. https://doi.org/10.1186/s12934-020-1281-zMitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019a). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10), 2147–2161. https://doi.org/10.5194/bg-16-2147-2019Mitchell, A. C., Espinosa-Ortiz, E. J., Parks, S. L., Phillips, A. J., Cunningham, A. B., & Gerlach, R. (2019b). Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences, 16(10). https://doi.org/10.5194/bg-16-2147-2019M-MMP-2-02-004-04. (2003). Parte 2. Materiales para estructuras, Título 02. Materiales para Concreto Hidráulico. In MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES.Nasser, A. A., Sorour, N. M., Saafan, M. A., & Abbas, R. N. (2022). Microbially-Induced-Calcite-Precipitation (MICP): A biotechnological approach to enhance the durability of concrete using Bacillus pasteurii and Bacillus sphaericus. Heliyon, 8(7), e09879. https://doi.org/10.1016/J.HELIYON.2022.E09879N-CMT-2-02-001. (2011). Parte 2. Materiales para estructuras, Título 02. Materiales para concreto hidráulico. In CMT. CARACTERÍSTICAS DE LOS MATERIALESNg, W., Lee, M., & Hii, S. (2012). An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement. International Journal of Civil and Environmental Engineering, 6(2).Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007a). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007b). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)Pardieck, D. L., Bouwer, E. J., & Stone, A. T. (1992). Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. In Journal of Contaminant Hydrology (Vol. 9, Issue 3). https://doi.org/10.1016/0169-7722(92)90006-ZPini, R., Canarutto, S., & Vigna Guidi, G. (1994). Soil microaggregation as influenced by uncharged organic conditioners. Communications in Soil Science and Plant Analysis, 25(11–12). https://doi.org/10.1080/00103629409369183Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182Seifan, M., & Berenjian, A. (2019). Microbially induced calcium carbonate precipitation: a widespread phenomenon in the biological world. In Applied Microbiology and Biotechnology (Vol. 103, Issue 12). https://doi.org/10.1007/s00253-019-09861-5Seifan, M., Samani, A. K., & Berenjian, A. (2017). A novel approach to accelerate bacterially induced calcium carbonate precipitation using oxygen releasing compounds (ORCs). Biocatalysis and Agricultural Biotechnology, 12. https://doi.org/10.1016/j.bcab.2017.10.021Seifan Mostafa and Samani, A. K. and B. A. (2017). New insights into the role of pH and aeration in the bacterial production of calcium carbonate (CaCO3). Applied Microbiology and Biotechnology, 101(8), 3131–3142. https://doi.org/10.1007/s00253-017-8109-8Song, M., Ju, T., Meng, Y., Han, S., Lin, L., & Jiang, J. (2022). A review on the applications of microbially induced calcium carbonate precipitation in solid waste treatment and soil remediation. Chemosphere, 290, 133229. https://doi.org/10.1016/J.CHEMOSPHERE.2021.133229Tan, L., Reeksting, B., Justo-Reinoso, I., Ferrandiz-Mas, V., Heath, A., Gebhard, S., & Paine, K. (2023). The effect of oxygen and water on the provision of crack closure in bacteria-based self-healing cementitious composites. Cement and Concrete Composites, 142, 105201. https://doi.org/10.1016/J.CEMCONCOMP.2023.105201Tang, C. S., Yin, L. yang, Jiang, N. jun, Zhu, C., Zeng, H., Li, H., & Shi, B. (2020). Factors affecting the performance of microbial-induced carbonate precipitation (MICP) treated soil: a review. Environmental Earth Sciences, 79(5). https://doi.org/10.1007/s12665-020-8840-9Tiano, P., Cantisani, E., Sutherland, I., & Paget, J. M. (2006). Biomediated reinforcement of weathered calcareous stones. Journal of Cultural Heritage, 7(1). https://doi.org/10.1016/j.culher.2005.10.003Tsai, T. T., Kao, C. M., Surampalli, R. Y., & Chien, H. Y. (2009). Enhanced Bioremediation of Fuel-Oil Contaminated Soils: Laboratory Feasibility Study. Journal of Environmental Engineering, 135(9). https://doi.org/10.1061/(asce)ee.1943-7870.0000049Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080van Hijum, S. A. F. T., Kralj, S., Ozimek, L. K., Dijkhuizen, L., & van Geel-Schutten, I. G. H. (2006). Structure-Function Relationships of Glucansucrase and Fructansucrase Enzymes from Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 70(1). https://doi.org/10.1128/mmbr.70.1.157-176.2006Vogt, C., Alfreider, A., Lorbeer, H., Hoffmann, D., Wuensche, L., & Babel, W. (2004). Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. Journal of Contaminant Hydrology, 68(1–2). https://doi.org/10.1016/S0169-7722(03)00092-5Yi, H., Zheng, T., Jia, Z., Su, T., & Wang, C. (2021). Study on the influencing factors and mechanism of calcium carbonate precipitation induced by urease bacteria. Journal of Crystal Growth, 564, 126113. https://doi.org/10.1016/J.JCRYSGRO.2021.126113Zhang, K., Tang, C. S., Jiang, N. J., Pan, X. H., Liu, B., Wang, Y. J., & Shi, B. (2023). Microbial induced carbonate precipitation (MICP) technology: a review on the fundamentals and engineering applications. Environmental Earth Sciences, 82(9). https://doi.org/10.1007/s12665-023-10899-yBibi, S., Oualha, M., Ashfaq, M. Y., Suleiman, M. T., & Zouari, N. (2018). Isolation, differentiation and biodiversity of ureolytic bacteria of Qatari soil and their potential in microbially induced calcite precipitation (MICP) for soil stabilization. RSC Advances, 8(11). https://doi.org/10.1039/c7ra12758hChang, I., Im, J., & Cho, G. C. (2016). Geotechnical engineering behaviors of gellan gum biopolymer treated sand. Canadian Geotechnical Journal, 53(10). https://doi.org/10.1139/cgj-2015-0475Chang, I., Lee, M., Tran, A. T. P., Lee, S., Kwon, Y. M., Im, J., & Cho, G. C. (2020). Review on biopolymer-based soil treatment (BPST) technology in geotechnical engineering practices. In Transportation Geotechnics (Vol. 24). https://doi.org/10.1016/j.trgeo.2020.100385Chen, B., Sun, W., Sun, X., Cui, C., Lai, J., Wang, Y., & Feng, J. (2021). Crack sealing evaluation of self-healing mortar with Sporosarcina pasteurii: Influence of bacterial concentration and air-entraining agent. Process Biochemistry, 107. https://doi.org/10.1016/j.procbio.2021.05.001Durga, C. S. S., Ruben, N., Chand, M. S. R., & Venkatesh, C. (2019). Evaluation of mechanical parameters of bacterial concrete. Annales de Chimie: Science Des Materiaux, 43(6). https://doi.org/10.18280/acsm.430606Ghosh, P., Mandal, S., Chattopadhyay, B. D., & Pal, S. (2005). Use of microorganism to improve the strength of cement mortar. Cement and Concrete Research, 35(10). https://doi.org/10.1016/j.cemconres.2005.03.005Hansson, C. M., Mammoliti, L., & Hope, B. B. (1998). Corrosion inhibitors in concrete - Part I: The principles. Cement and Concrete Research, 28(12). https://doi.org/10.1016/S0008-8846(98)00142-2Harnpicharnchai, P., Mayteeworakoon, S., Kitikhun, S., Chunhametha, S., Likhitrattanapisal, S., Eurwilaichitr, L., & Ingsriswang, S. (2022). High level of calcium carbonate precipitation achieved by mixed culture containing ureolytic and nonureolytic bacterial strains. Letters in Applied Microbiology, 75(4). https://doi.org/10.1111/lam.13748Karthik, C., & Rama Mohan Rao, P. (2016). Properties of bacterial-based self-healing concrete - A review. In International Journal of ChemTech Research (Vol. 9, Issue 2).Kashif Ur Rehman, S., Mahmood, F., Jameel, M., Riaz, N., Javed, M. F., Salmi, A., & Awad, Y. A. (2022). A Biomineralization, Mechanical and Durability Features of Bacteria-Based Self-Healing Concrete—A State of the Art Review. In Crystals (Vol. 12, Issue 9). https://doi.org/10.3390/cryst12091222Kim, T. K., & Park, J. S. (2021). Experimental evaluation of the durability of concrete repair materials. Applied Sciences (Switzerland), 11(5). https://doi.org/10.3390/app11052303Leonhardt, F. (1988). Cracks and Crack Control in Concrete Structures. PCI Journal, 33(4). https://doi.org/10.15554/pcij.07011988.124.145Liendo, F., Arduino, M., Deorsola, F. A., & Bensaid, S. (2022). Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technology, 398, 117050. https://doi.org/10.1016/J.POWTEC.2021.117050Litina, C., Bumanis, G., Anglani, G., Dudek, M., Maddalena, R., Amenta, M., Papaioannou, S., Pérez, G., Calvo, J. L. G., Asensio, E., Cobos, R. B., Pinto, F. T., Augonis, A., Davies, R., Guerrero, A., Moreno, M. S., Stryszewska, T., Karatasios, I., Tulliani, J. M., … Al‐tabbaa, A. (2021). Evaluation of methodologies for assessing self‐healing performance of concrete with mineral expansive agents: An interlaboratory study. Materials, 14(8). https://doi.org/10.3390/ma14082024Orts, W. J., Roa-Espinosa, A., Sojka, R. E., Glenn, G. M., Imam, S. H., Erlacher, K., & Pedersen, J. S. (2007). Use of Synthetic Polymers and Biopolymers for Soil Stabilization in Agricultural, Construction, and Military Applications. Journal of Materials in Civil Engineering, 19(1). https://doi.org/10.1061/(asce)0899-1561(2007)19:1(58)Otieno, M. B., Alexander, M. G., & Beushausen, H. D. (2010). Corrosion in cracked and uncracked concrete - influence of crack width, concrete quality and crack reopening. Magazine of Concrete Research, 62(6). https://doi.org/10.1680/macr.2010.62.6.393Rahman, M. M., Hora, R. N., Ahenkorah, I., Beecham, S., Karim, M. R., & Iqbal, A. (2020). State-of-the-Art Review of Microbial-Induced Calcite Precipitation and Its Sustainability in Engineering Applications. Sustainability, 12(15), 6281. https://doi.org/10.3390/su12156281Rao, M. V. S., Reddy, V. S., Hafsa, M., Veena, P., & Anusha, P. (2013). Bioengineered concrete - A sustainable self-healing construction material. Research Journal of Engineering Sciences, 2(6).Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. Ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization Conservation of Ornamental Stone by Myxococcus xanthus- Induced Carbonate Biomineralization. Appiled and Environmental Microbiology, 69(4), 2182–2193. https://doi.org/10.1128/AEM.69.4.2182Safiuddin, M., Kaish, A. B. M. A., Woon, C. O., & Raman, S. N. (2018). Early-age cracking in concrete: Causes, consequences, remedialmeasures, and recommendations. In Applied Sciences (Switzerland) (Vol. 8, Issue 10). https://doi.org/10.3390/app8101730Sarkar, G., & Suthindhiran, K. (2020). Identification of urease producing Virgibacillus sp. UR1 from marine sediments. Indian Journal of Biotechnology, 19(1).Sikder, A., & Saha, P. (2019). Effect of bacteria on performance of concrete/mortar: A review. In International Journal of Recent Technology and Engineering (Vol. 7, Issue 6C2, pp. 12–17). Blue Eyes Intelligence Engineering and Sciences PublicationSusilowati, P. E., Ardianti, D., Kartini, S., Sudiana, I. N., & Zaeni, A. (2021). Isolation of Ureolytic Bacteria of Soft Coral and Their Potential in Microbially Induced Calcite Precipitation (MICP). Journal of Physics: Conference Series, 1899(1), 012003. https://doi.org/10.1088/1742-6596/1899/1/012003Tziviloglou, E., Wiktor, V., Jonkers, H. M., & Schlangen, E. (2016). Bacteria-based self-healing concrete to increase liquid tightness of cracks. Construction and Building Materials, 122, 118–125. https://doi.org/10.1016/j.conbuildmat.2016.06.080Yoon, H. S., Lee, J. Y., Yang, K. H., & Park, S. H. (2022). Evaluation of the Crack Healing Efficiency of Mortar Incorporating Self-healing Pellets based on Cementitious Materials. Journal of the Architectural Institute of Korea, 38(4). https://doi.org/10.5659/JAIK.2022.38.4.207Precipitación de carbonatos inducida por microorganismos nativos de Colombia: su aprovechamiento y valoración en biomateriales y en la remediación de elementos tóxicosMinisterio de CienciasInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85319/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018430894.2023.pdf1018430894.2023.pdfTesis de Doctorado en Biotecnologíaapplication/pdf9359501https://repositorio.unal.edu.co/bitstream/unal/85319/2/1018430894.2023.pdf390b37ec1fdaba0d379e42acde61fbe4MD52THUMBNAIL1018430894.2023.pdf.jpg1018430894.2023.pdf.jpgGenerated Thumbnailimage/jpeg5013https://repositorio.unal.edu.co/bitstream/unal/85319/3/1018430894.2023.pdf.jpge6640a9257678596fe1a082c8054954eMD53unal/85319oai:repositorio.unal.edu.co:unal/853192024-08-21 23:13:07.467Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=