Analysis of crossover designs with repeated measurements using generalized estimating equations

ilustraciones, gráficas

Autores:
Cruz Gutiérrez, Nelson Alirio
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84334
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84334
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis funcional
Teoría de la estimación
Functional analysis
Estimation theory
Carry-over effect
Crossover design
Generalized estimating equations
Poisson distribution
Overdispersion count data
Kronecker correlation
Splines estimation
Efecto de arrastre
Diseño cruzado
Ecuaciones de estimación generalizadas
Distribución de Poisson
Datos de conteo de sobredispersión
Correlación de Kronecker
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e3a2d0b64cfd6f62614f13c87bf910c6
oai_identifier_str oai:repositorio.unal.edu.co:unal/84334
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Analysis of crossover designs with repeated measurements using generalized estimating equations
dc.title.translated.spa.fl_str_mv Análisis de diseños crossover con medidas repetidas usando ecuaciones de estimación generalizadas
title Analysis of crossover designs with repeated measurements using generalized estimating equations
spellingShingle Analysis of crossover designs with repeated measurements using generalized estimating equations
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis funcional
Teoría de la estimación
Functional analysis
Estimation theory
Carry-over effect
Crossover design
Generalized estimating equations
Poisson distribution
Overdispersion count data
Kronecker correlation
Splines estimation
Efecto de arrastre
Diseño cruzado
Ecuaciones de estimación generalizadas
Distribución de Poisson
Datos de conteo de sobredispersión
Correlación de Kronecker
title_short Analysis of crossover designs with repeated measurements using generalized estimating equations
title_full Analysis of crossover designs with repeated measurements using generalized estimating equations
title_fullStr Analysis of crossover designs with repeated measurements using generalized estimating equations
title_full_unstemmed Analysis of crossover designs with repeated measurements using generalized estimating equations
title_sort Analysis of crossover designs with repeated measurements using generalized estimating equations
dc.creator.fl_str_mv Cruz Gutiérrez, Nelson Alirio
dc.contributor.advisor.none.fl_str_mv Melo Martínez, Oscar Orlando
Martínez Niño, Carlos Alberto
dc.contributor.author.none.fl_str_mv Cruz Gutiérrez, Nelson Alirio
dc.contributor.researchgroup.spa.fl_str_mv Estadística Aplicada en Investigación Experimental, Industria y Biotecnología
dc.contributor.orcid.spa.fl_str_mv Cruz, N.A. [0000000273705111]
dc.contributor.cvlac.spa.fl_str_mv Cruz, Nelson Alirio [0001562620]
dc.contributor.googlescholar.spa.fl_str_mv Cruz Gutierrez, N.A. [N.A. Cruz]
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Análisis funcional
Teoría de la estimación
Functional analysis
Estimation theory
Carry-over effect
Crossover design
Generalized estimating equations
Poisson distribution
Overdispersion count data
Kronecker correlation
Splines estimation
Efecto de arrastre
Diseño cruzado
Ecuaciones de estimación generalizadas
Distribución de Poisson
Datos de conteo de sobredispersión
Correlación de Kronecker
dc.subject.lemb.spa.fl_str_mv Análisis funcional
Teoría de la estimación
dc.subject.lemb.eng.fl_str_mv Functional analysis
Estimation theory
dc.subject.proposal.eng.fl_str_mv Carry-over effect
Crossover design
Generalized estimating equations
Poisson distribution
Overdispersion count data
Kronecker correlation
Splines estimation
dc.subject.proposal.spa.fl_str_mv Efecto de arrastre
Diseño cruzado
Ecuaciones de estimación generalizadas
Distribución de Poisson
Datos de conteo de sobredispersión
Correlación de Kronecker
description ilustraciones, gráficas
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-07-27T20:37:51Z
dc.date.available.none.fl_str_mv 2023-07-27T20:37:51Z
dc.date.issued.none.fl_str_mv 2023-07-25
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84334
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84334
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Agresti, A. (2002). Categorical Data Analysis Second Edition. Wiley Series in Probability and Statistics, New Jersey.
Amatya, A. and Demirtas, H. (2017). PoisNor: An R package for generation of multivariate data with Poisson and normal marginals. Communications in Statistics-Simulation and Computation, 46(3):2241–2253.
Bailey, R. A., Cameron, P. J., Filipiak, K., Kunert, J., and Markiewicz, A. (2017). On optimality and construction of circular repeated-measurements designs. Statistica Sinica, 27:1–22.
Basu, S. and Santra, S. (2010). A joint model for incomplete data in crossover trials. Journal of Statistical Planning and Inference, 140(10):2839–2845.
Biabani, M., Farrell, M., Zoghi, M., Egan, G., and Jaberzadeh, S. (2018). Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 29(4):463–473
Boik, R. J. (1991). Scheff´es mixed model for multivariate repeated measures: a relative efficiency evaluation. Communications in Statistics-Theory and Methods, 20(4):1233–1255.
Bunch, J. R. and Hopcroft, J. E. (1974). Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation, 28(125):231–236.
Carey., V. J. (2019). gee: Generalized Estimation Equation Solver. R package version 4.13-20.
Chalikias, M. and Kounias, S. (2012). Extension and necessity of Cheng and Wu conditions. Journal of Statistical Planning and Inference, 142(7):1794–1800.
Chalikias, M. S. (2017). Two treatment repeated measurement designs with uncorrelated observations: A compact review. Journal of Advanced Statistics, 2(1):27.
Chard, A. N., Trinies, V., Edmonds, C. J., Sogore, A., and Freeman, M. C. (2019). The impact of water consumption on hydration and cognition among schoolchildren: Methods and results from a crossover trial in rural Mali. PloS one, 14(1):e0210568.
Chasiotis, V. (2021). On optimality and construction of two-treatment circular cross-over designs. Communications in Statistics-Theory and Methods, 10(1):1–10.
Chasiotis, V. and Kounias, S. (2021). Optimal two treatment circular repeated measurements designs up to four periods. Communications in Statistics-Theory and Methods, 50(20):4867–4878.
Cordeiro, G. M. (2004). On Pearson’s residuals in generalized linear models. Statistics & Probability letters, 66(3):213–219.
Cordeiro, G. M. and McCullagh, P. (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):629–643.
Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2):248–265.
Cruz, N. A., L´opez P´erez, L. A., and Melo, O. O. (2023a). Analysis of cross-over experiments with count data in the presence of carry-over effects. Statistica Neerlandica.
Cruz, N. A., Melo, O. O., and Martinez, C. A. (2023b). A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures. Statistical Papers.
Cruz, N. A., Melo, O. O., and Martinez, C. A. (2023c). Semiparametric generalized estimating equations for repeated measurements in cross-over designs. Statistical Methods in Medical Research, 32(5):1033–1050. PMID: 36919447.
Curtin, F. (2017). Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Research Synthesis Methods, 8(3):312–320.
Da Silva, A. A., do Carmo, J. M., Li, X.,Wang, Z., Mouton, A. J., and Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Canadian Journal of Cardiology, 36(5):671–682.
Davies, R. (1980). Algorithm as 155: The distribution of a linear combination of chi-2 random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(3):323–333.
Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, San Diego.
Diaz, F. J., Berg, M. J., Krebill, R., Welty, T., Gidal, B. E., Alloway, R., and Privitera, M. (2013). Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, twoformulation and six-period, three-sequence, three-formulation designs. Clinical pharmacokinetics, 52(12):1033–1043.
Dubois, A., Lavielle, M., Gsteiger, S., Pigeolet, E., and Mentr´e, F. (2011). Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Statistics in medicine, 30(21):2582–2600.
Duchesne, P. and Micheaux, L. (2010). Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data Analysis, 54:858–862.
Fanelli, E., Di Monaco, S., Pappaccogli, M., Eula, E., Fasano, C., Bertello, C., Veglio, F., and Rabbia, F. (2021). Comparison of nurse attended and unattended automated office blood pressure with conventional measurement techniques in clinical practice. Journal of Human Hypertension, 36(9):01–06.
Farebrother, R. (1984). Algorithm AS 204: The distribution of a positive linear combination of chi- squared random variables. Journal of the Royal Statistical Society, Series C (Applied Statistics), 33(3):332–339.
Forbes, A. B., Akram, M., Pilcher, D., Cooper, J., and Bellomo, R. (2015). Cluster randomised crossover trials with binary data and unbalanced cluster sizes: Application to studies of near-universal interventions in intensive care. Clinical Trials, 12(1):34–44.
Grayling, M. J., Mander, A. P., and Wason, J. M. (2018). Blinded and unblinded sample size reestimation in crossover trials balanced for period. Biometrical Journal, 60(5):917–933.
Hao, C., von Rosen, D., and von Rosen, T. (2015). Explicit influence analysis in twotreatment balanced crossover models. Mathematical Methods of Statistics, 24(1):16–36.
Hardin, J. W. and Hilbe, J. (2003). Generalized Estimating Equations. Chapman & Hall, Boca Raton.
Harville, D. A. (1997). Matrix algebra from a statistician’s perspective, volume 1. Springer, New York.
He, X., Zhu, Z.-Y., and Fung, W.-K. (2002). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 89(3):579–590.
Hinkelmann, K. and Kempthorne, O. (2005). Design and Analysis of Experiments, volume Volume 2 of Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York.
Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426.
Jaime, G. (2019). Uso de un residuo de papel como suplemento para vacas lecheras. Tesis de maestr´ıa, Universidad Nacional de Colombia, Sede Bogota.
Jankar, J. and Mandal, A. (2021). Optimal crossover designs for generalized linear models: An application to work environment experiment. Statistics and Applications, 19(1):319– 336.
Jankar, J., Mandal, A., and Yang, J. (2020). Optimal crossover designs for generalized linear models. Journal of Statistical Theory and Practice, 14(2):1–27.
Jones, B. and Kenward, M. G. (2015). Design and Analysis of Cross-Over Trials Third Edition. Chapman & Hall/CRC, Boca Raton.
Jorgensen, B. (1997). The Theory of Dispersion Models. Chapman & Hall, London.
Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A., and Loeys, T. (2015). Within-subject mediation analysis in AB/BA crossover designs. The international journal of biostatistics, 11(1):1–22.
Kenward, M. G. and Jones, B. (1987). A log-linear model for binary cross-over data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36:192–204.
Kenward, M. G. and Roger, J. H. (2009). The use of baseline covariates in crossover studies. Biostatistics, 11(1):1–17.
Kitchenham, B., Madeyski, L., Curtin, F., et al. (2018). Corrections to effect size variances for continuous outcomes of cross-over clinical trials. Statistics in medicine, 37(2):320–323.
Kokonendji, C., Dossou-Gbete, S., and Demetrio, C. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Dem´etrio. Statistics and Operations Research Transactions, 28:201–214.
Krzy´sko, M. and Skorzybut, M. (2009). Discriminant analysis of multivariate repeated measures data with a kronecker product structured covariance matrices. Statistical papers, 50(4):817–835.
Lancaster, H. (1965). The helmert matrices. The American Mathematical Monthly, 72(1):4– 12.
Layard, M. and Arvesen, J. (1978). Analysis of Poisson data in crossover experimental designs. Biometrics, pages 421–428.
Lehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science & Business Media.
Leorato, S. and Mezzetti, M. (2016). Spatial panel data model with error dependence: A bayesian separable covariance approach. Bayesian Analysis, 11(4):1035–1069.
Li, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2018). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in Medicine
Li, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2019). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in medicine, 38(4):636–649.
Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1):13–22.
Lin, X. and Carroll, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association, 96(455):1045– 1056.
Lindsey, J. and Jones, B. (1997). Treatment–patient interactions for diagnostics of cross-over trials. Statistics in medicine, 16(17):1955–1964.
Liu, F. and Li, Q. (2016). A bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Statistical Methods in Medical Research, 25(5):2180–2192.
Liu, H., Tang, Y., and Zhang, H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics and Data Analysis, 53:853–856.
Longford, N. (1998). Count data and treatment heterogeneity in 2× 2 crossover trials. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(2):217–229.
Lui, K.-J. (2015). Test equality between three treatments under an incomplete block crossover design. Journal of biopharmaceutical statistics, 25(4):795–811.
Lui, K.-J. (2016). Notes on estimation in Poisson frequency data under an incomplete block crossover design. Statistical Methodology, 32:53–62.
Madeyski, L. and Kitchenham, B. (2018). Effect sizes and their variance for AB/BA crossover design studies. Empirical Software Engineering, 23(4):1982–2017.
Mathai, A. M. (1982). Storage capacity of a dam with Gamma type inputs. Annals of the Institute of Statistical Mathematics, 34(3)A:591–597.
McDaniel, L. S., Henderson, N. C., and Rathouz, P. J. (2013). Fast pure R implementation of GEE: application of the Matrix package. The R Journal, 5:181–187.
Melo, O., L´opez, L., and Melo, S. (2007). Dise˜no de experimentos, M´etodos y aplicaciones. Universidad Nacional de Colombia, Sede Bogot´a, Bogot´a.
Moschopoulos, P. G. and Canada, W. B. (1984). The distribution function of a linear combination of chi-squares. Computers and Mathematics with Applications, 10:383–386.
Ning, B., Wang, X., Yu, Y., Waqar, A. B., Yu, Q., Koike, T., Shiomi, M., Liu, E., Wang, Y., and Fan, J. (2015). High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in watanabe heritable hyperlipidemic rabbits. Nutrition & metabolism, 12(1):1–11.
Oh, H. S., Ko, S.-g., and Oh, M.-S. (2003). A bayesian approach to assessing population bioequivalence in a 2 2 2 crossover design. Journal of Applied Statistics, 30(8):881–891.
Pan, W. (2001a). Akaike’s information criterion in generalized estimating equations. Biometrics, 57:120–125.
Pan, W. (2001b). On the robust variance estimator in generalised estimating equations. Biometrika, 88(3):901–906.
Patterson, H. D. (1951). Change-over trials. Journal of the Royal Statistical Society. Series B (Methodological), 13:256–271.
Pitchforth, J., Nelson-White, E., van den Helder, M., and Oosting, W. (2020). The work environment pilot: An experiment to determine the optimal office design for a technology company. PloS one, 15(5):e0232943.
R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
Ratkowsky, D., Alldredge, R., and Evans, M. (1992). Cross-over Experiments. Statistics A Series of Textbooks and Monographs, Washington.
Rosenkranz, G. K. (2015). Analysis of cross-over studies with missing data. Statistical methods in medical research, 24(4):420–433.
Rotnitzky, A. and Jewell, N. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for clustered data. Biometrika, 77:485–497.
Roy, A. and Khattree, R. (2005). On implementation of a test for kronecker product covariance structure for multivariate repeated measures data. Statistical Methodology, 2(4):297– 306.
Shkedy, Z., Molenberghs, G., Craenendonck, H. V., Steckler, T., and Bijnens, L. (2005). A hierarchical Binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. Journal of biopharmaceutical statistics, 15(2):225–239.
Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B (Methodological), 50(3):413–436.
Srivastava, M. S., von Rosen, T., and Von Rosen, D. (2008). Models with a kronecker product covariance structure: estimation and testing. Mathematical Methods of Statistics, 17(4):357–370
Stergiou, G. S., Zourbaki, A. S., Skeva, I. I., and Mountokalakis, T. D. (1998). White coat effect detected using self-monitoring of blood pressure at home: comparison with ambulatory blood pressure. American Journal of Hypertension, 11(7):820–827.
Stoklosa, J. and Warton, D. I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics, 27(1):245–253.
Tsuyuguchi, A. B., Paula, G. A., and Barros, M. (2020). Analysis of correlated Birnbaum– Saunders data based on estimating equations. TEST, 29(3):661–681.
Vegas, S., Apa, C., and Juristo, N. (2016). Crossover designs in software engineering experiments: Benefits and perils. IEEE Transactions on Software Engineering, 42(2):120–135.
Wang, X. and Chinchilli, V. M. (2021). Analysis of crossover designs with nonignorable dropout. Statistics in Medicine, 40(1):64–84.
Wild, C. and Yee, T. (1996). Additive extensions to generalized estimating equation methods. Journal of the Royal Statistical Society: Series B (Methodological), 58(4):711–725.
Yang, L. and Niu, X.-F. (2021). Semi-parametric models for longitudinal data analysis. Journal of Finance and Economics, 9(3):93–105.
Yu, L. and Peace, K. E. (2012). Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model. Computational Statistics & Data Analysis, 56(9):2675–2687.
Zhang, H., Yu, Q., Feng, C., Gunzler, D., Wu, P., and Tu, X. (2012). A new look at the difference between the gee and the glmm when modeling longitudinal count responses. Journal of Applied Statistics, 39(9):2067–2079.
dc.rights.spa.fl_str_mv Derechos reservados al autor, 2023
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
Derechos reservados al autor, 2023
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 147 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84334/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84334/4/1072719347.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84334/5/1072719347.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a3f8dcc7af0945688b0bc7c9faac0a86
f8f33c6433f580728db6f6dc0dee0758
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089669790400512
spelling Reconocimiento 4.0 InternacionalDerechos reservados al autor, 2023http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Melo Martínez, Oscar Orlando8c38749f8042c1ca56178277e80fbb04Martínez Niño, Carlos Alberto11d435600e21e527d05636cecad3f8faCruz Gutiérrez, Nelson Alirio58f9e0d628e1e09de25259a6fa1cc4dcEstadística Aplicada en Investigación Experimental, Industria y BiotecnologíaCruz, N.A. [0000000273705111]Cruz, Nelson Alirio [0001562620]Cruz Gutierrez, N.A. [N.A. Cruz]2023-07-27T20:37:51Z2023-07-27T20:37:51Z2023-07-25https://repositorio.unal.edu.co/handle/unal/84334Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasExperimental crossover designs are widely used in medicine, agriculture, and other areas of the biological sciences. Due to the characteristics of the crossover design, each experimental unit has longitudinal observations and the presence of drag effects on the response variable. Furthermore, in many scenarios it is not possible to have a washout period between applications of different treatments, which creates problems in estimating treatment effects without a proper model specification. As a solution to this problem, this thesis deals with crossover designs without a washout period and with repeated measures. First, a methodology is developed for the analysis of crossover designs when the response variable is a Poisson count. For the estimation, generalized estimation equations are used assuming that there is no washout period and that the experimental unit was observed once per period. Furthermore, this methodology is easily extended to any response variable that belongs to the exponential family. Then, the above methodology is extended to crossover designs with repeated measures within each period, that is, when an experimental unit is observed more than once in each period. For this model, a family of correlation structures that takes into account the particularities of the design, that is, the correlation between and within the periods, is built. Finally, an extension of the generalized estimating equations is developed. It includes a parametric component to model treatment effects and a nonparametric component to model time effects and carry-over effects. The non-parametric component is estimated from splines inserted into the generalized estimation equations. Additionally, the codes for the application of the methodology in any crossover design in the R statistical software are given. The advantages of the proposed methodology are evidenced through simulation exercises and, theoretically, by exploring the asymptotic properties of the estimators obtained. The performance of the methodology is also compared with the usual methodologies on some real data from crossover designs. The methodology built in this thesis allows to analyze any crossover design as long as the observed response variable belongs to the exponential family, regardless of whether there is a washout period or not. It also allows modeling repeated measurements within each period and broadens the correlation structures used in the generalized estimation equations.Los diseños experimentales crossover se usan ampliamente en medicina, agricultura y otras áreas de las ciencias biológicas. Por las características del diseño crossover, cada unidad experimental tiene observaciones longitudinales y presencia de efectos de arrastre en la variable respuesta. Además, en muchos escenarios no es posible dejar un período de lavado entre aplicaciones de diferentes tratamientos, lo que genera problemas al estimar los efectos del tratamiento sin una especificación adecuada del modelo. Como solución a lo anterior, esta tesis trata sobre diseños crossover sin período de lavado y con medidas repetidas. En primer lugar, se desarrolla una metodología para el análisis de diseños crossover cuando la variable de respuesta es un conteo de Poisson. Para la estimación se utilizan ecuaciones de estimación generalizadas asumiendo que no existe período de lavado y que la unidad experimental fue observada una vez por período. Además, esta metodología es fácilmente extensible a cualquier variable de respuesta que pertenezca a la familia exponencial. En un segundo lugar, la metodología anterior se extiende a diseños cruzados con medidas repetidas dentro de cada período, es decir, cuando una unidad experimental es observada más de una vez en cada período. Para este modelo se construye una familia de estructuras de correlación que toman en cuenta las particularidades del diseño, es decir, la correlación entre y dentro de los periodos. En tercer lugar, se proporciona una extensión de las ecuaciones de estimación generalizadas que incluye un componente paramétrico para modelar los efectos del tratamiento y un componente no paramétrico para modelar los efectos del tiempo y los efectos carry-over. El componente no paramétrico se estima a partir de Splines insertados en las ecuaciones de estimación generalizadas. Adicionalmente, se dan los códigos para la aplicación de la metodología en cualquier diseño crossover en el software estadístico R. Las ventajas de la metodología propuesta se evidencian en ejercicios de simulación y explorando teóricamente las propiedades asintóticas de los estimadores obtenidos. También se compara el rendimiento de la metodología con las metodologías habituales sobre algunos datos reales de diseños cruzados. La metodología construida en esta tesis permite analizar cualquier diseño crossover siempre que la variable respuesta observada pertenezca a la familia exponencial, sin importar si hay periodo de lavado o no. Además, permite modelar medidas repetidas dentro de cada periodo y amplía las estructuras de correlación dentro de las ecuaciones de estimación generalizadas. (Texto tomado de la fuente)DoctoradoDoctor en Ciencias - Estadísticaxix, 147 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasAnálisis funcionalTeoría de la estimaciónFunctional analysisEstimation theoryCarry-over effectCrossover designGeneralized estimating equationsPoisson distributionOverdispersion count dataKronecker correlationSplines estimationEfecto de arrastreDiseño cruzadoEcuaciones de estimación generalizadasDistribución de PoissonDatos de conteo de sobredispersiónCorrelación de KroneckerAnalysis of crossover designs with repeated measurements using generalized estimating equationsAnálisis de diseños crossover con medidas repetidas usando ecuaciones de estimación generalizadasTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAgresti, A. (2002). Categorical Data Analysis Second Edition. Wiley Series in Probability and Statistics, New Jersey.Amatya, A. and Demirtas, H. (2017). PoisNor: An R package for generation of multivariate data with Poisson and normal marginals. Communications in Statistics-Simulation and Computation, 46(3):2241–2253.Bailey, R. A., Cameron, P. J., Filipiak, K., Kunert, J., and Markiewicz, A. (2017). On optimality and construction of circular repeated-measurements designs. Statistica Sinica, 27:1–22.Basu, S. and Santra, S. (2010). A joint model for incomplete data in crossover trials. Journal of Statistical Planning and Inference, 140(10):2839–2845.Biabani, M., Farrell, M., Zoghi, M., Egan, G., and Jaberzadeh, S. (2018). Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 29(4):463–473Boik, R. J. (1991). Scheff´es mixed model for multivariate repeated measures: a relative efficiency evaluation. Communications in Statistics-Theory and Methods, 20(4):1233–1255.Bunch, J. R. and Hopcroft, J. E. (1974). Triangular factorization and inversion by fast matrix multiplication. Mathematics of Computation, 28(125):231–236.Carey., V. J. (2019). gee: Generalized Estimation Equation Solver. R package version 4.13-20.Chalikias, M. and Kounias, S. (2012). Extension and necessity of Cheng and Wu conditions. Journal of Statistical Planning and Inference, 142(7):1794–1800.Chalikias, M. S. (2017). Two treatment repeated measurement designs with uncorrelated observations: A compact review. Journal of Advanced Statistics, 2(1):27.Chard, A. N., Trinies, V., Edmonds, C. J., Sogore, A., and Freeman, M. C. (2019). The impact of water consumption on hydration and cognition among schoolchildren: Methods and results from a crossover trial in rural Mali. PloS one, 14(1):e0210568.Chasiotis, V. (2021). On optimality and construction of two-treatment circular cross-over designs. Communications in Statistics-Theory and Methods, 10(1):1–10.Chasiotis, V. and Kounias, S. (2021). Optimal two treatment circular repeated measurements designs up to four periods. Communications in Statistics-Theory and Methods, 50(20):4867–4878.Cordeiro, G. M. (2004). On Pearson’s residuals in generalized linear models. Statistics & Probability letters, 66(3):213–219.Cordeiro, G. M. and McCullagh, P. (1991). Bias correction in generalized linear models. Journal of the Royal Statistical Society: Series B (Methodological), 53(3):629–643.Cox, D. R. and Snell, E. J. (1968). A general definition of residuals. Journal of the Royal Statistical Society: Series B (Methodological), 30(2):248–265.Cruz, N. A., L´opez P´erez, L. A., and Melo, O. O. (2023a). Analysis of cross-over experiments with count data in the presence of carry-over effects. Statistica Neerlandica.Cruz, N. A., Melo, O. O., and Martinez, C. A. (2023b). A correlation structure for the analysis of Gaussian and non-Gaussian responses in crossover experimental designs with repeated measures. Statistical Papers.Cruz, N. A., Melo, O. O., and Martinez, C. A. (2023c). Semiparametric generalized estimating equations for repeated measurements in cross-over designs. Statistical Methods in Medical Research, 32(5):1033–1050. PMID: 36919447.Curtin, F. (2017). Meta-analysis combining parallel and crossover trials using generalised estimating equation method. Research Synthesis Methods, 8(3):312–320.Da Silva, A. A., do Carmo, J. M., Li, X.,Wang, Z., Mouton, A. J., and Hall, J. E. (2020). Role of hyperinsulinemia and insulin resistance in hypertension: metabolic syndrome revisited. Canadian Journal of Cardiology, 36(5):671–682.Davies, R. (1980). Algorithm as 155: The distribution of a linear combination of chi-2 random variables. Journal of the Royal Statistical Society. Series C (Applied Statistics), 29(3):323–333.Davis, C. S. (2002). Statistical Methods for the Analysis of Repeated Measurements. Springer, San Diego.Diaz, F. J., Berg, M. J., Krebill, R., Welty, T., Gidal, B. E., Alloway, R., and Privitera, M. (2013). Random-effects linear modeling and sample size tables for two special crossover designs of average bioequivalence studies: the four-period, two-sequence, twoformulation and six-period, three-sequence, three-formulation designs. Clinical pharmacokinetics, 52(12):1033–1043.Dubois, A., Lavielle, M., Gsteiger, S., Pigeolet, E., and Mentr´e, F. (2011). Model-based analyses of bioequivalence crossover trials using the stochastic approximation expectation maximisation algorithm. Statistics in medicine, 30(21):2582–2600.Duchesne, P. and Micheaux, L. (2010). Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods. Computational Statistics and Data Analysis, 54:858–862.Fanelli, E., Di Monaco, S., Pappaccogli, M., Eula, E., Fasano, C., Bertello, C., Veglio, F., and Rabbia, F. (2021). Comparison of nurse attended and unattended automated office blood pressure with conventional measurement techniques in clinical practice. Journal of Human Hypertension, 36(9):01–06.Farebrother, R. (1984). Algorithm AS 204: The distribution of a positive linear combination of chi- squared random variables. Journal of the Royal Statistical Society, Series C (Applied Statistics), 33(3):332–339.Forbes, A. B., Akram, M., Pilcher, D., Cooper, J., and Bellomo, R. (2015). Cluster randomised crossover trials with binary data and unbalanced cluster sizes: Application to studies of near-universal interventions in intensive care. Clinical Trials, 12(1):34–44.Grayling, M. J., Mander, A. P., and Wason, J. M. (2018). Blinded and unblinded sample size reestimation in crossover trials balanced for period. Biometrical Journal, 60(5):917–933.Hao, C., von Rosen, D., and von Rosen, T. (2015). Explicit influence analysis in twotreatment balanced crossover models. Mathematical Methods of Statistics, 24(1):16–36.Hardin, J. W. and Hilbe, J. (2003). Generalized Estimating Equations. Chapman & Hall, Boca Raton.Harville, D. A. (1997). Matrix algebra from a statistician’s perspective, volume 1. Springer, New York.He, X., Zhu, Z.-Y., and Fung, W.-K. (2002). Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika, 89(3):579–590.Hinkelmann, K. and Kempthorne, O. (2005). Design and Analysis of Experiments, volume Volume 2 of Wiley series in probability and mathematical statistics. Applied probability and statistics. Wiley, New York.Imhof, J. P. (1961). Computing the distribution of quadratic forms in normal variables. Biometrika, 48:419–426.Jaime, G. (2019). Uso de un residuo de papel como suplemento para vacas lecheras. Tesis de maestr´ıa, Universidad Nacional de Colombia, Sede Bogota.Jankar, J. and Mandal, A. (2021). Optimal crossover designs for generalized linear models: An application to work environment experiment. Statistics and Applications, 19(1):319– 336.Jankar, J., Mandal, A., and Yang, J. (2020). Optimal crossover designs for generalized linear models. Journal of Statistical Theory and Practice, 14(2):1–27.Jones, B. and Kenward, M. G. (2015). Design and Analysis of Cross-Over Trials Third Edition. Chapman & Hall/CRC, Boca Raton.Jorgensen, B. (1997). The Theory of Dispersion Models. Chapman & Hall, London.Josephy, H., Vansteelandt, S., Vanderhasselt, M.-A., and Loeys, T. (2015). Within-subject mediation analysis in AB/BA crossover designs. The international journal of biostatistics, 11(1):1–22.Kenward, M. G. and Jones, B. (1987). A log-linear model for binary cross-over data. Journal of the Royal Statistical Society. Series C (Applied Statistics), 36:192–204.Kenward, M. G. and Roger, J. H. (2009). The use of baseline covariates in crossover studies. Biostatistics, 11(1):1–17.Kitchenham, B., Madeyski, L., Curtin, F., et al. (2018). Corrections to effect size variances for continuous outcomes of cross-over clinical trials. Statistics in medicine, 37(2):320–323.Kokonendji, C., Dossou-Gbete, S., and Demetrio, C. (2004). Some discrete exponential dispersion models: Poisson-Tweedie and Hinde-Dem´etrio. Statistics and Operations Research Transactions, 28:201–214.Krzy´sko, M. and Skorzybut, M. (2009). Discriminant analysis of multivariate repeated measures data with a kronecker product structured covariance matrices. Statistical papers, 50(4):817–835.Lancaster, H. (1965). The helmert matrices. The American Mathematical Monthly, 72(1):4– 12.Layard, M. and Arvesen, J. (1978). Analysis of Poisson data in crossover experimental designs. Biometrics, pages 421–428.Lehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science & Business Media.Leorato, S. and Mezzetti, M. (2016). Spatial panel data model with error dependence: A bayesian separable covariance approach. Bayesian Analysis, 11(4):1035–1069.Li, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2018). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in MedicineLi, F., Forbes, A. B., Turner, E. L., and Preisser, J. S. (2019). Power and sample size requirements for gee analyses of cluster randomized crossover trials. Statistics in medicine, 38(4):636–649.Liang, K.-Y. and Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1):13–22.Lin, X. and Carroll, R. J. (2001). Semiparametric regression for clustered data using generalized estimating equations. Journal of the American Statistical Association, 96(455):1045– 1056.Lindsey, J. and Jones, B. (1997). Treatment–patient interactions for diagnostics of cross-over trials. Statistics in medicine, 16(17):1955–1964.Liu, F. and Li, Q. (2016). A bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials. Statistical Methods in Medical Research, 25(5):2180–2192.Liu, H., Tang, Y., and Zhang, H. (2009). A new chi-square approximation to the distribution of non-negative definite quadratic forms in non-central normal variables. Computational Statistics and Data Analysis, 53:853–856.Longford, N. (1998). Count data and treatment heterogeneity in 2× 2 crossover trials. Journal of the Royal Statistical Society: Series C (Applied Statistics), 47(2):217–229.Lui, K.-J. (2015). Test equality between three treatments under an incomplete block crossover design. Journal of biopharmaceutical statistics, 25(4):795–811.Lui, K.-J. (2016). Notes on estimation in Poisson frequency data under an incomplete block crossover design. Statistical Methodology, 32:53–62.Madeyski, L. and Kitchenham, B. (2018). Effect sizes and their variance for AB/BA crossover design studies. Empirical Software Engineering, 23(4):1982–2017.Mathai, A. M. (1982). Storage capacity of a dam with Gamma type inputs. Annals of the Institute of Statistical Mathematics, 34(3)A:591–597.McDaniel, L. S., Henderson, N. C., and Rathouz, P. J. (2013). Fast pure R implementation of GEE: application of the Matrix package. The R Journal, 5:181–187.Melo, O., L´opez, L., and Melo, S. (2007). Dise˜no de experimentos, M´etodos y aplicaciones. Universidad Nacional de Colombia, Sede Bogot´a, Bogot´a.Moschopoulos, P. G. and Canada, W. B. (1984). The distribution function of a linear combination of chi-squares. Computers and Mathematics with Applications, 10:383–386.Ning, B., Wang, X., Yu, Y., Waqar, A. B., Yu, Q., Koike, T., Shiomi, M., Liu, E., Wang, Y., and Fan, J. (2015). High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in watanabe heritable hyperlipidemic rabbits. Nutrition & metabolism, 12(1):1–11.Oh, H. S., Ko, S.-g., and Oh, M.-S. (2003). A bayesian approach to assessing population bioequivalence in a 2 2 2 crossover design. Journal of Applied Statistics, 30(8):881–891.Pan, W. (2001a). Akaike’s information criterion in generalized estimating equations. Biometrics, 57:120–125.Pan, W. (2001b). On the robust variance estimator in generalised estimating equations. Biometrika, 88(3):901–906.Patterson, H. D. (1951). Change-over trials. Journal of the Royal Statistical Society. Series B (Methodological), 13:256–271.Pitchforth, J., Nelson-White, E., van den Helder, M., and Oosting, W. (2020). The work environment pilot: An experiment to determine the optimal office design for a technology company. PloS one, 15(5):e0232943.R Core Team (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.R Core Team (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Ratkowsky, D., Alldredge, R., and Evans, M. (1992). Cross-over Experiments. Statistics A Series of Textbooks and Monographs, Washington.Rosenkranz, G. K. (2015). Analysis of cross-over studies with missing data. Statistical methods in medical research, 24(4):420–433.Rotnitzky, A. and Jewell, N. (1990). Hypothesis testing of regression parameters in semiparametric generalized linear models for clustered data. Biometrika, 77:485–497.Roy, A. and Khattree, R. (2005). On implementation of a test for kronecker product covariance structure for multivariate repeated measures data. Statistical Methodology, 2(4):297– 306.Shkedy, Z., Molenberghs, G., Craenendonck, H. V., Steckler, T., and Bijnens, L. (2005). A hierarchical Binomial-Poisson model for the analysis of a crossover design for correlated binary data when the number of trials is dose-dependent. Journal of biopharmaceutical statistics, 15(2):225–239.Speckman, P. (1988). Kernel smoothing in partial linear models. Journal of the Royal Statistical Society: Series B (Methodological), 50(3):413–436.Srivastava, M. S., von Rosen, T., and Von Rosen, D. (2008). Models with a kronecker product covariance structure: estimation and testing. Mathematical Methods of Statistics, 17(4):357–370Stergiou, G. S., Zourbaki, A. S., Skeva, I. I., and Mountokalakis, T. D. (1998). White coat effect detected using self-monitoring of blood pressure at home: comparison with ambulatory blood pressure. American Journal of Hypertension, 11(7):820–827.Stoklosa, J. and Warton, D. I. (2018). A generalized estimating equation approach to multivariate adaptive regression splines. Journal of Computational and Graphical Statistics, 27(1):245–253.Tsuyuguchi, A. B., Paula, G. A., and Barros, M. (2020). Analysis of correlated Birnbaum– Saunders data based on estimating equations. TEST, 29(3):661–681.Vegas, S., Apa, C., and Juristo, N. (2016). Crossover designs in software engineering experiments: Benefits and perils. IEEE Transactions on Software Engineering, 42(2):120–135.Wang, X. and Chinchilli, V. M. (2021). Analysis of crossover designs with nonignorable dropout. Statistics in Medicine, 40(1):64–84.Wild, C. and Yee, T. (1996). Additive extensions to generalized estimating equation methods. Journal of the Royal Statistical Society: Series B (Methodological), 58(4):711–725.Yang, L. and Niu, X.-F. (2021). Semi-parametric models for longitudinal data analysis. Journal of Finance and Economics, 9(3):93–105.Yu, L. and Peace, K. E. (2012). Spline nonparametric quasi-likelihood regression within the frame of the accelerated failure time model. Computational Statistics & Data Analysis, 56(9):2675–2687.Zhang, H., Yu, Q., Feng, C., Gunzler, D., Wu, P., and Tu, X. (2012). A new look at the difference between the gee and the glmm when modeling longitudinal count responses. Journal of Applied Statistics, 39(9):2067–2079.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84334/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1072719347.2023.pdf1072719347.2023.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1966429https://repositorio.unal.edu.co/bitstream/unal/84334/4/1072719347.2023.pdfa3f8dcc7af0945688b0bc7c9faac0a86MD54THUMBNAIL1072719347.2023.pdf.jpg1072719347.2023.pdf.jpgGenerated Thumbnailimage/jpeg4413https://repositorio.unal.edu.co/bitstream/unal/84334/5/1072719347.2023.pdf.jpgf8f33c6433f580728db6f6dc0dee0758MD55unal/84334oai:repositorio.unal.edu.co:unal/843342024-08-16 23:48:24.407Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=