Discretización de las Ecuaciones de Maxwell y Yang-Mills

El cálculo exterior discreto tiene una gran utilidad en los cálculos que se hacen en algunas teorías que, en principio, son difíciles de efectuar. Pasar de un modelo continuo a un modelo discreto tiene sus ventajas al momento de la comprensión de los sucesos y al momento de la experimentación en la...

Full description

Autores:
Hernández Julio, Livan Josep
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/87031
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/87031
https://repositorio.unal.edu.co/
Palabra clave:
510 - Matemáticas::514 - Topología
510 - Matemáticas::516 - Geometría
Ecuaciones de Maxwell
Ecuaciones de Yang-Mills
Ecuaciones de la recta
Teoría de ecuaciones
Teoría cuántica
Discretización
Holonomía
Transporte paralelo
Operador estrella de Hodge
Conexión
Yang-Mills
Holonomy
Hodge star operator
connection
parallel transport
discretization
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e36cc8237a3d6b38923d12e6b036a509
oai_identifier_str oai:repositorio.unal.edu.co:unal/87031
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Discretización de las Ecuaciones de Maxwell y Yang-Mills
dc.title.translated.eng.fl_str_mv Discretization of the Maxwell and Yang-Mills Equations
title Discretización de las Ecuaciones de Maxwell y Yang-Mills
spellingShingle Discretización de las Ecuaciones de Maxwell y Yang-Mills
510 - Matemáticas::514 - Topología
510 - Matemáticas::516 - Geometría
Ecuaciones de Maxwell
Ecuaciones de Yang-Mills
Ecuaciones de la recta
Teoría de ecuaciones
Teoría cuántica
Discretización
Holonomía
Transporte paralelo
Operador estrella de Hodge
Conexión
Yang-Mills
Holonomy
Hodge star operator
connection
parallel transport
discretization
title_short Discretización de las Ecuaciones de Maxwell y Yang-Mills
title_full Discretización de las Ecuaciones de Maxwell y Yang-Mills
title_fullStr Discretización de las Ecuaciones de Maxwell y Yang-Mills
title_full_unstemmed Discretización de las Ecuaciones de Maxwell y Yang-Mills
title_sort Discretización de las Ecuaciones de Maxwell y Yang-Mills
dc.creator.fl_str_mv Hernández Julio, Livan Josep
dc.contributor.advisor.none.fl_str_mv Quintero Vélez, Alexander
dc.contributor.author.none.fl_str_mv Hernández Julio, Livan Josep
dc.subject.ddc.spa.fl_str_mv 510 - Matemáticas::514 - Topología
510 - Matemáticas::516 - Geometría
topic 510 - Matemáticas::514 - Topología
510 - Matemáticas::516 - Geometría
Ecuaciones de Maxwell
Ecuaciones de Yang-Mills
Ecuaciones de la recta
Teoría de ecuaciones
Teoría cuántica
Discretización
Holonomía
Transporte paralelo
Operador estrella de Hodge
Conexión
Yang-Mills
Holonomy
Hodge star operator
connection
parallel transport
discretization
dc.subject.lemb.none.fl_str_mv Ecuaciones de Maxwell
Ecuaciones de Yang-Mills
Ecuaciones de la recta
Teoría de ecuaciones
Teoría cuántica
dc.subject.proposal.spa.fl_str_mv Discretización
Holonomía
Transporte paralelo
Operador estrella de Hodge
Conexión
dc.subject.proposal.none.fl_str_mv Yang-Mills
dc.subject.proposal.eng.fl_str_mv Holonomy
Hodge star operator
connection
parallel transport
discretization
description El cálculo exterior discreto tiene una gran utilidad en los cálculos que se hacen en algunas teorías que, en principio, son difíciles de efectuar. Pasar de un modelo continuo a un modelo discreto tiene sus ventajas al momento de la comprensión de los sucesos y al momento de la experimentación en la física para corroborar ciertas deducciones teóricas. Pero, ¿cómo conectamos el mundo continuo con el mundo discreto? Para ello definiremos dos funciones importantes: el mapeo de De Rham y el mapeo de Whitney. Estas funciones conectan los objetos más importantes para hacer cálculo en cada teoría, las formas (continuas y discretas). Además en el cálculo exterior discreto tenemos operadores que son análogos a los del cálculo exterior continuo, tal como el producto exterior (el cual no se definirá aquí en la teoría del capítulo 2), el operador estrella de hodge y un producto interno. Por otro lado, encontrar un buen modelo discreto para aplicar todas estas ideas es la tarea importante y clave de este trabajo. Aquí hemos optado por hacer un discretización al plano de forma de un látice. Creamos un análogo de un producto exterior, un análogo del teorema de Stokes, un análogo de la derivada exterior, un análogo del operador estrella de Hodge y un producto interno interesante para concluir dicha discretización conectando con las ecuaciones de Yang-Mills, nuestro principal enfoque. (Tomado de la fuente)
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-10-23T15:51:12Z
dc.date.available.none.fl_str_mv 2024-10-23T15:51:12Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/87031
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/87031
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Lattice quantum field theory of the Dirac and gauge fields: selected topics. World Scientific, 2020
Two dimensional lattice gauge theory based on a quantum group. En: Communications in mathematical physics 170 (1995), p. 669–698
Discrete exterior calculus. En: arXiv preprint math/0508341 (2005)
Multidimensional analysis and discrete models. CRC Press, 1995
An introduction to lattice gauge theory and spin systems. En: Reviews of Modern Physics 51 (1979), Nr. 4, p. 659
Lattice gauge theories: an introduction. World Scientific Publishing Company, 2012
Two Dimensional Lattice Gauge Theory with and without Fermion Content. (2016)
Discrete model of Yang-Mills equations in Minkowski space. En: arXiv preprint math-ph/0410047 (2004)
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 59 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Sede Medellín
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/87031/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/87031/2/1104873866.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/87031/3/1104873866.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
fbdcc26818f8dacdb497bfa452769e5e
cd3e4f5167b20ac46803e8a5e727edd7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089465602244608
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Quintero Vélez, Alexanderef7b285211024ca34a4305c09822e9bbHernández Julio, Livan Josepdb0d2c28ff8398c3fbe5dd9d35c235f72024-10-23T15:51:12Z2024-10-23T15:51:12Z2023https://repositorio.unal.edu.co/handle/unal/87031Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/El cálculo exterior discreto tiene una gran utilidad en los cálculos que se hacen en algunas teorías que, en principio, son difíciles de efectuar. Pasar de un modelo continuo a un modelo discreto tiene sus ventajas al momento de la comprensión de los sucesos y al momento de la experimentación en la física para corroborar ciertas deducciones teóricas. Pero, ¿cómo conectamos el mundo continuo con el mundo discreto? Para ello definiremos dos funciones importantes: el mapeo de De Rham y el mapeo de Whitney. Estas funciones conectan los objetos más importantes para hacer cálculo en cada teoría, las formas (continuas y discretas). Además en el cálculo exterior discreto tenemos operadores que son análogos a los del cálculo exterior continuo, tal como el producto exterior (el cual no se definirá aquí en la teoría del capítulo 2), el operador estrella de hodge y un producto interno. Por otro lado, encontrar un buen modelo discreto para aplicar todas estas ideas es la tarea importante y clave de este trabajo. Aquí hemos optado por hacer un discretización al plano de forma de un látice. Creamos un análogo de un producto exterior, un análogo del teorema de Stokes, un análogo de la derivada exterior, un análogo del operador estrella de Hodge y un producto interno interesante para concluir dicha discretización conectando con las ecuaciones de Yang-Mills, nuestro principal enfoque. (Tomado de la fuente)iscrete exterior calculus has great utility in calculations performed in certain theories that are, in principle, difficult to carry out. Transitioning from a continuous model to a discrete model has its advantages when it comes to understanding events and in experimental physics to corroborate certain theoretical deductions. But how do we connect the continuous approach with the discrete approach? To do this, we will define two important functions: the De Rham map and the Whitney map. These functions connect the most important objects for performing calculations in each theory, namely forms (both continuous and discrete). Additionally, in discrete exterior calculus, we have operators that are analogous to those in continuous exterior calculus, such as the exterior product (which will not be defined here in the theory of Chapter 2), the Hodge star operator, and an inner product. On the other hand, finding a good discrete model to apply all these ideas is the important and key task of this work. Here, we have chosen to discretize the plane in the form of a lattice. We create an analogue of the exterior product, an analogue of Stokes' theorem, an analogue of the exterior derivative, an analogue of the Hodge star operator, and an interesting inner product to conclude this discretization, connecting with Yang-Mills equations, our main focus.MaestríaMagíster en Ciencias - MatemáticasMatemáticas.Sede Medellín59 páginasapplication/pdfspaUniversidad Nacional de Colombia, Sede MedellínMedellín - Ciencias - Maestría en Ciencias - MatemáticasFacultad de CienciasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín510 - Matemáticas::514 - Topología510 - Matemáticas::516 - GeometríaEcuaciones de MaxwellEcuaciones de Yang-MillsEcuaciones de la rectaTeoría de ecuacionesTeoría cuánticaDiscretizaciónHolonomíaTransporte paraleloOperador estrella de HodgeConexiónYang-MillsHolonomyHodge star operatorconnectionparallel transportdiscretizationDiscretización de las Ecuaciones de Maxwell y Yang-MillsDiscretization of the Maxwell and Yang-Mills EquationsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaLattice quantum field theory of the Dirac and gauge fields: selected topics. World Scientific, 2020Two dimensional lattice gauge theory based on a quantum group. En: Communications in mathematical physics 170 (1995), p. 669–698Discrete exterior calculus. En: arXiv preprint math/0508341 (2005)Multidimensional analysis and discrete models. CRC Press, 1995An introduction to lattice gauge theory and spin systems. En: Reviews of Modern Physics 51 (1979), Nr. 4, p. 659Lattice gauge theories: an introduction. World Scientific Publishing Company, 2012Two Dimensional Lattice Gauge Theory with and without Fermion Content. (2016)Discrete model of Yang-Mills equations in Minkowski space. En: arXiv preprint math-ph/0410047 (2004)EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87031/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1104873866.2024.pdf1104873866.2024.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf497640https://repositorio.unal.edu.co/bitstream/unal/87031/2/1104873866.2024.pdffbdcc26818f8dacdb497bfa452769e5eMD52THUMBNAIL1104873866.2024.pdf.jpg1104873866.2024.pdf.jpgGenerated Thumbnailimage/jpeg4002https://repositorio.unal.edu.co/bitstream/unal/87031/3/1104873866.2024.pdf.jpgcd3e4f5167b20ac46803e8a5e727edd7MD53unal/87031oai:repositorio.unal.edu.co:unal/870312024-10-23 23:48:32.543Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=