Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.

...

Autores:
Rodríguez Obediente, Kewin Jair
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84062
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84062
https://repositorio.unal.edu.co/
Palabra clave:
Cultivo in vitro
Inmunología
Antígenos
In vitro culture
Immunology
Antigens
Selección purificante
Epítopos B
Epítopos T
Péptidos quiméricos
Inmunogenicidad
Plasmodium yoelii
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e36021eddb6a566f8324c13415a6a436
oai_identifier_str oai:repositorio.unal.edu.co:unal/84062
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
dc.title.translated.eng.fl_str_mv Evaluation of the immune response stimulated by peptides with high binding capacity to H2-IEd molecules in a murine model.
title Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
spellingShingle Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
Cultivo in vitro
Inmunología
Antígenos
In vitro culture
Immunology
Antigens
Selección purificante
Epítopos B
Epítopos T
Péptidos quiméricos
Inmunogenicidad
Plasmodium yoelii
title_short Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
title_full Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
title_fullStr Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
title_full_unstemmed Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
title_sort Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.
dc.creator.fl_str_mv Rodríguez Obediente, Kewin Jair
dc.contributor.advisor.none.fl_str_mv Díaz Arévalo, Diana
dc.contributor.author.none.fl_str_mv Rodríguez Obediente, Kewin Jair
dc.contributor.projectleader.none.fl_str_mv Manuel Alfonso Patarroyo Gutierrez
dc.contributor.researchgroup.spa.fl_str_mv Biología Molecular e Inmunología
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-6181-9154
dc.subject.lemb.spa.fl_str_mv Cultivo in vitro
Inmunología
Antígenos
topic Cultivo in vitro
Inmunología
Antígenos
In vitro culture
Immunology
Antigens
Selección purificante
Epítopos B
Epítopos T
Péptidos quiméricos
Inmunogenicidad
Plasmodium yoelii
dc.subject.lemb.eng.fl_str_mv In vitro culture
Immunology
Antigens
dc.subject.proposal.spa.fl_str_mv Selección purificante
Epítopos B
Epítopos T
Péptidos quiméricos
Inmunogenicidad
Plasmodium yoelii
description ...
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-23T18:28:00Z
dc.date.available.none.fl_str_mv 2023-06-23T18:28:00Z
dc.date.issued.none.fl_str_mv 2023
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84062
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84062
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv WHO. World malaria report 2021. World Health Organization; 2021.
Dutta S, Tewari A, Balaji C, Verma R, Moitra A, Yadav M, et al. Strain-transcending neutralization of malaria parasite by antibodies against Plasmodium falciparum enolase. J Malaria journal. 2018;17(1):304.
WHO. World malaria report 2018. World Health Organization; 2018.
De Groot AS. Immunomics: discovering new targets for vaccines and therapeutics. J Drug discovery today. 2006;11(5-6):203-9.
Hill AV. Vaccines against malaria. J Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1579):2806-14.
Mahmoudi S, Keshavarz H. Malaria Vaccine Development: The Need for Novel Approaches: A Review Article. J Iranian journal of parasitology. 2018;13(1):1.
Casares S, Brumeanu T-D, Richie TL. The RTS, S malaria vaccine. J The Lancet. 2010;28(31):4880-94.
Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. J New England Journal of Medicine. 2008;359(24):2521-32.
Olotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. J New England Journal of Medicine. 2013;368(12):1111-20.
Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. The Lancet. 2021;397(10287):1809-18.
Mueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. J Vaccine. 2015;33(52):7489-95.
Posteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W, et al. The link between genetic variation and variability in vaccine responses: systematic review and meta-analyses. J Vaccine. 2014;32(15):1661-9.
Li Z-K, Nie J-J, Li J, Zhuang H. The effect of HLA on immunological response to hepatitis B vaccine in healthy people: a meta-analysis. J Vaccine. 2013;31(40):4355-61.
Ovsyannikova IG, Pankratz VS, Vierkant RA, Pajewski NM, Quinn CP, Kaslow RA, et al. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. J Infection immunity. 2013;81(7):2584-91.
Moss AJ, Gaughran FP, Karasu A, Gilbert AS, Mann AJ, Gelder CM, et al. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. J PLoS One. 2013;8(8):e71376.
Nielsen C, Vekemans J, Lievens M, Kester K, Regules J, Ockenhouse C. RTS, S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. J Vaccine. 2018;36(12):1637-42.
Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell. 2013;153(4):785-96.
Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. J Accounts of chemical research. 2008;41(3):377-86.
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. J PLoS One. 2015;10(4):e0123249.
Céspedes N, Arévalo-Herrera M, Felger I, Reed S, Kajava AV, Corradin G, et al. Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. J Vaccine. 2013;31(42):4923-30.
Silva-Flannery LM, Cabrera-Mora M, Jiang J, Moreno A. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine. J Microbes infection. 2009;11(1):83-91.
Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 60: Elsevier; 1995. p. 105-49.
Nardelli B, Tam JP. The MAP system. Vaccine Design: Springer; 1995. p. 803-19.
Marussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. J International immunology. 1997;9(12):1817-24.
Herrington DA, Clyde DF, Losonsky G, Cortesia M, Murphy JR, Davis J, et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. J Nature. 1987;328(6127):257.
Tetteh KK, Polley SD. Progress and challenges towards the development of malaria vaccines. J BioDrugs. 2007;21(6):357-73.
Malkin E, Dubovsky F, Moree M. Progress towards the development of malaria vaccines. J Trends in parasitology. 2006;22(7):292-5.
Gilbert SC, Plebanski M, Gupta S, Morris J, Cox M, Aidoo M, et al. Association of malaria parasite population structure, HLA, and immunological antagonism. J Philosophical Transactions of the Royal Society B: Biological Sciences. 1998;279(5354):1173-7.
Sabet LP, Taheri T, Memarnejadian A, Azad TM, Asgari F, Rahimnia R, et al. Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and NS5B HCV epitopes in BALB/c mice. 2014;14(10).
Jackson D, Purcell A, Fitzmaurice C, Zeng W, Hart DJCdt. The central role played by peptides in the immune response and the design of peptide-based vaccines against infectious diseases and cancer. 2002;3(2):175-96.
Rodrigues-da-Silva RN, Correa-Moreira D, Soares IF, de-Luca PM, Totino PRR, Morgado FN, et al. Immunogenicity of synthetic peptide constructs based on PvMSP9E795-A808, a linear B-cell epitope of the P. vivax Merozoite Surface Protein-9. 2019;37(2):306-13.
Cease KB, Berkower I, York-Jolley J, Berzofsky JJjoEM. T cell clones specific for an amphipathic alpha-helical region of sperm whale myoglobin show differing fine specificities for synthetic peptides. A multiview/single structure interpretation of immunodominance. 1986;164(5):1779-84.
Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. 2018;36(45):6703-10.
Deans JA, Alderson T, Thomas A, Mitchell G, Lennox E, Cohen S. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. J Clinical experimental immunology. 1982;49(2):297.
Thomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S. The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. J Molecular biochemical parasitology. 1984;13(2):187-99.
Mitchell G, Thomas A, Margos G, Dluzewski A, Bannister L. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. J Infection immunity. 2004;72(1):154-8.
Silvie O, Franetich J-F, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Journal of Biological Chemistry. 2004;279(10):9490-6.
Fraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. J Molecular biochemical parasitology. 2001;117(1):49-59.
Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. J Nature. 2011;473(7348):463.
SIVIGILA. Boletín Epidemiológico Semanal (SEMANA 40). INSTITUTO NACIONAL DE SALUD - COLOMBIA 2022.
Killick-Kendrick R. Parasitic protozoa of the blood of rodents: I: The life-cycle and zoogeography of Plasmodium berghei nigeriensis subsp. nov. J Annals of Tropical Medicine Parasitology 1973;67(3):261-77.
Landau I, Michel J, Adam J-P, Boulard Y. The life cycle of Plasmodium vinckei lentum subsp. nov. in the laboratory; comments on the nomenclature of the murine malaria parasites. J Annals of Tropical Medicine Parasitology. 1970;64(3):315-23.
Klein E. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. J International journal of antimicrobial agents. 2013;41(4):311-7.
Killick-Kendrick R. Parasitic protozoa of the blood of rodents: a revision of Plasmodium berghei. J Parasitology. 1974;69(2):225-37.
Beale G, Carter R, Walliker D, Killick-Kendrick R, Peters W. Rodent malaria. Genetics: Academic Press London; 1978. p. 213-45.
Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. J BMC biology. 2014;12(1):86.
Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. J Nature Reviews Immunology. 2008;8(8):607.
Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. J Nature Reviews Immunology. 2010;10(6):403
Crotzer VL, Blum JS. Autophagy and adaptive immunity. J Immunology. 2010;131(1):9-17.
Denzin LK, Fallas JL, Prendes M, Yi W. Right place, right time, right peptide: DO keeps DM focused. J Immunological reviews. 2005;207(1):279-92.
Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. J Nature Reviews Immunology. 2011;11(12):823.
Nardin E, Zavala F, Nussenzweig V, Nussenzweig R. Pre-erythrocytic malaria vaccine: mechanisms of protective immunity and human vaccine trials. Parassitologia. 1999;41(1-3):397-402.
Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Frontiers in microbiology. 2014;5:586.
Consortium MS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401:921-3.
Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Advances in parasitology. 81: Elsevier; 2013. p. 77-131.
Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. J Nature immunology. 2008;9(7):725.
Singh SP, Mishra BN. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Human immunology. 2016;77(3):295-306.
Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. J Nucleic acids research. 2004;32(5):1792-7.
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. J Molecular biology evolution 2017;34(12):3299-302.
Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. J Proceedings of the National Academy of Sciences. 1998;95(7):3708-13.
Jukes TH, Cantor CR. Evolution of protein molecules. J Mammalian protein metabolism. 1969;3(21):132.
Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. J Molecular biology evolution. 2006;23(10):1891-901.
Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. J Bioinformatics. 2010;26(19):2455-7.
Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. J Molecular biology evolution. 2005;22(5):1208-22.
Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. Detecting individual sites subject to episodic diversifying selection. J PLoS genetics. 2012;8(7):e1002764.
Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. J Molecular biology evolution. 2013;30(5):1196-205.
Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. J Infection, Genetics Evolution 2015;33:182-8.
Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.
Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of American Chemical Society. 1963;85:2149 - 54.
Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.
Nillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Zeitschrift für Parasitenkunde. 1981;64(3):279-84.
Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research. 2018;46(W1):W296-W303.
Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA. Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One. 2017;12(8):e0183198.
Salomon‐Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013;3(2):198-210.
Case DA, Cheatham III TE, Darden T, Gohlke H, Luo R, Merz Jr KM, et al. The Amber biomolecular simulation programs. Journal of computational chemistry. 2005;26(16):1668-88.
Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research Immunology. 2020;19(6):2304-15.
Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.
Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory computation. 2014;10(10):4745-58.
Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.
Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.
Cuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).
Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.
Curtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides. 2014;53:210-7.
Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally acquired humoral immunity against Plasmodium falciparum malaria. Frontiers in immunology. 2020;11:594653.
Rogers KJ, Vijay R, Butler NS. Anti-malarial humoral immunity: the long and short of it. Microbes Infection immunity. 2021;23(4-5):104807.
Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, et al. Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proceedings of the National Academy of Sciences. 2014;111(28):10311-6.
Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.
Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Im mune P rotection-I nducing P rotein S tructure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PloS one. 2015;10(4):e0123249.
Stephens R, Langhorne J. Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS pathogens. 2010;6(11):e1001208.
Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906).
Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2015;18:11-20.
Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasites & vectors. 2017;10(1):1-11.
Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the evolution and function of Plasmodium vivax reticulocyte binding surface antigen (pvrbsa). Frontiers in genetics. 2018;9:372.
Ricaurte-Contreras LA, Lovera A, Moreno-Pérez DA, Bohórquez MD, Suárez CF, Gutiérrez-Vásquez E, et al. Two 20-Residue-Long Peptides Derived from Plasmodium vivax Merozoite Surface Protein 10 EGF-Like Domains Are Involved in Binding to Human Reticulocytes. International journal of molecular sciences. 2021;22(4):1609.
Chua CY, Lee PC, Lau TY. Analysis of polymorphisms and selective pressures on ama1 gene in Plasmodium knowlesi isolates from Sabah, Malaysia. Journal of genetics. 2017;96(4):653-63.
Dias S, Somarathna M, Manamperi A, Escalante AA, Gunasekera AM, Udagama PV. Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine. 2011;29(43):7491-504.
Fraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol Biochem Parasitol. 2001;117(1):49-59.
Dutta S, Haynes JD, Barbosa A, Ware LA, Snavely JD, Moch JK, et al. Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. J Infection immunity. 2005;73(4):2116-22.
Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Scientific reports. 2017;7(1):1-13.
Urquiza M, Suarez JE, Cardenas C, Lopez R, Puentes A, Chavez F, et al. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. Vaccine. 2000;19(4-5):508-13.
Chaianantakul N, Sungkapong T, Supatip J, Kingsang P, Kamlaithong S, Suwanakitti N. Antimalarial effect of cell penetrating peptides derived from the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Peptides. 2020;131:170372.
Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo: predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología. 2010;29(1):7-19.
Willimsky G, Beier C, Immisch L, Papafotiou G, Scheuplein V, Goede A, et al. In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo. Elife. 2021;10:e62019.
Caro-Aguilar I, Lapp S, Pohl J, Galinski MR, Moreno A. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes infection. 2005;7(13):1324-37.
Caro-Aguilar I, Rodríguez A, Calvo-Calle JM, Guzmán F, De la Vega P, Patarroyo ME, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infection immunity. 2002;70(7):3479-92.
Lin S-I, Huang M-H, Chang Y-W, Chen I-H, Roffler S, Chen B-M, et al. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice. Cancer Letters. 2016;377(2):126-33
Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. Journal of Biological Chemistry. 2017;292(51):21170-9.
Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320-43.
White W, Evans C, Taylor D. Antimalarial antibodies of the immunoglobulin G2a isotype modulate parasitemias in mice infected with Plasmodium yoelii. Infection immunity. 1991;59(10):3547-54.
Grey HM, Hirst JW, Cohn M. A new mouse immunoglobulin: IgG3. The Journal of experimental medicine. 1971;133(2):289-304.
Berenzon D, Schwenk RJ, Letellier L, Guebre-Xabier M, Williams J, Krzych U. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. The Journal of Immunology. 2003;171(4):2024-34.
Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, et al. Protection against a malaria challenge by sporozoite inoculation. New England Journal of Medicine. 2009;361(5):468-77.
Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical Vaccine Immunology. 2002;9(6):1145-52.
Jacobs P, Radzioch D, Stevenson MM. In vivo regulation of nitric oxide production by tumor necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage malaria in mice. Infection Immunity 1996;64(1):44-9.
Lacerda-Queiroz N, Riteau N, Eastman RT, Bock KW, Orandle MS, Moore IN, et al. Mechanism of splenic cell death and host mortality in a Plasmodium yoelii malaria model. Scientific reports. 2017;7(1):1-12.
Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.
Kaumaya PT, Foy KC. Peptide vaccines and peptidomimetics targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future oncology. 2012;8(8):961-87.
Kaumaya PT, Kobs‐Conrad S, Seo YH, Lee H, Vanbuskirk AM, Feng N, et al. Peptide vaccines incorporating a ‘promiscuous’ T‐cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity. Journal of Molecular Recognition. 1993;6(2):81-94.
Lu Y, Li Z, Teng H, Xu H, Qi S, He Ja, et al. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases. Scientific reports. 2015;5(1):1-11.
Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Informatics in medicine unlocked. 2021;24:100578.
Ghaffari-Nazari H, Tavakkol-Afshari J, Jaafari MR, Tahaghoghi-Hajghorbani S, Masoumi E, Jalali SA. Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PloS one. 2015;10(11):e0142563.
Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunologic research. 1998;18(2):79-92.
Ahlborg N, Ling IT, Holder AA, Riley EMJI. Linkage of exogenous T-cell epitopes to the 19-kilodalton region of Plasmodium yoelii merozoite surface protein 1 (MSP119) can enhance protective immunity against malaria and modulate the immunoglobulin subclass response to MSP119. Infection immunity. 2000;68(4):2102-9.
Graham CM, Barnett BC, Hartlmayr I, Burt DS, Faulkes R, Skehel JJ, et al. The structural requirements for class II (I‐Ad)‐restricted T cell recognition of influenza hemagglutinin: B cell epitopes define T cell epitopes. European journal of immunology. 1989;19(3):523-8.
Jang Y-S, Mikszta JA, Kim BS. T cell epitope recognition involved in the low-responsiveness to a region of hen egg lysozyme (46–61) in C57BL/6 mice. Molecular immunology. 1994;31(11):803-12.
Buus S, Colon S, Smith C, Freed JH, Miles C, Grey HM. Interaction between a" processed" ovalbumin peptide and Ia molecules. Proceedings of the National Academy of Sciences. 1986;83(11):3968-71.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84062/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84062/2/1124036814.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/84062/3/1124036814.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
1ee89014164dbd67c8bf27bcb236c2fe
3cfcea36aab1a241c803284808b363dd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090222792605696
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Díaz Arévalo, Diana4b9a1ebb1633a8c2defe6148569778fcRodríguez Obediente, Kewin Jair37bb1f00483c3f3e38356be032a1bf8bManuel Alfonso Patarroyo GutierrezBiología Molecular e Inmunologíahttps://orcid.org/0000-0002-6181-91542023-06-23T18:28:00Z2023-06-23T18:28:00Z2023https://repositorio.unal.edu.co/handle/unal/84062Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/...La complejidad biológica de Plasmodium vivax ha restringido el desarrollo del cultivo in vitro para la caracterización de antígenos involucrados en la invasión a eritrocitos y su relevancia inmunológica. El modelo murino se propone como una alternativa en la búsqueda de candidatos terapéuticos, ya que, Plasmodium yoelii utiliza proteínas homólogas para los mecanismos de invasión. La proteína AMA-1 es vital para el proceso de invasión del parásito al eritrocito, considerándose una importante diana para el control de la infección. El presente estudio, como prueba de concepto, se centró en la caracterización de la respuesta inmune estimulada por constructos peptídicos compuestos por epítopos B de la proteína PyAMA-1 y epítopos T optimizados in silico para el anclaje a moléculas H2-IEd, probados en ratones BALB/c. Para la selección de epítopos B antimaláricos, se realizó un análisis de restricción funcional por fuerzas evolutivas in silico. Encontramos que pyama1 presenta dos regiones altamente conservadas entre las especies (>70%) bajo selección negativa. Se evaluaron catorce péptidos sintéticos que cubrían el total de ambas regiones conservadas, identificando 5 péptidos de PyAMA-1 con alta unión específica (HABP, del inglés High Activity Binding Peptide) a eritrocitos murinos. Mediante ensayos in vitro se evaluó el perfil funcional de los HABPs, sugiriendo que los péptidos 42681 y 42904 fueron capaces de inhibir la invasión y restringir el desarrollo intraeritrocítico de P. yoelii y, además, mostraron capacidad antigénica frente a sueros obtenidos de ratones infectados experimentalmente. Mediante un análisis bioinformático robusto, se realizó el diseño y optimización de los epítopos B seleccionados, a través de la articulación de un epítopo T completamente artificial y se evaluó su unión in vitro a moléculas H2-IEd. Los epítopos quiméricos B-T 43643 y 43644 presentaron perfiles de unión superiores a 50% a moléculas de MHC murino. Además, nuestros constructos potenciaron la respuesta humoral en ratones BALB/c, comparados con los péptidos nativos, y a su vez, mostraron anticuerpos IgG1 e IgG2 en sueros. Estas quimeras peptídicas fueron capaces de inducir una respuesta proliferativa y la diferenciación de células T de memoria CD4+ CD44+ CD62L+, generando una producción coordinada de TNFα, como mediador de la eliminación del parásito durante la infección temprana de P. yoelii. Este trabajo propone la quimerización de epítopos B y epítopos T como una estrategia para el diseño de candidatos peptídicos inmunogénicos para el desarrollo de una vacuna sintética multiepítopo – multiestadio contra la malaria. (Texto tomado de la fuente)ilustraciones, fotografías a colorThe biological complexity of Plasmodium vivax has limited developing an in vitro culture for the characterization of antigens involved in erythrocyte invasion and their immunological relevance. The murine model is proposed as an alternative in the search for therapeutic candidates since Plasmodium yoelii uses homologous proteins for invasion. The AMA-1 protein is vital for the parasite invasion of the erythrocyte and is considered an important target for malaria control. The present study, as a proof of concept, focused on the characterization of the immune response stimulated by peptide constructs made of B epitopes of the PyAMA-1 protein and T epitopes optimized in silico for anchoring to H2-IEd molecules, tested in BALB/c mice. For the selection of antimalarial B epitopes, an in silico evolutionary force functional constraint analysis was performed. We found that pyama1 exhibits two highly conserved regions among species (>70%) under negative selection. Fourteen synthetic peptides covering both conserved regions were evaluated, identifying 5 PyAMA-1 peptides displaying high specific binding (High Activity Binding Peptides or HABPs) to murine erythrocytes. In vitro assays evaluated the functional profile of the HABPs, suggesting that peptides 42681 and 42904 were able to inhibit invasion and restrict intraerythrocytic development of P. yoelii and, in addition, showed antigenic capacity when tested with sera obtained from experimentally infected mice. By means of a robust bioinformatics analysis, the design and optimization of the selected B epitopes was achieved by linking them to a completely artificial T epitope and assessing their in vitro binding to H2-IEd molecules. The chimeric B-T epitopes 43643 and 43644 showed binding profiles higher than 50% to murine MHC molecules. Furthermore, our constructs enhanced the humoral response in BALB/c mice compared to native peptides, and increased IgG1 and IgG2a antibodies in sera. These peptide chimeras were able to induce a proliferative response and differentiation of CD4+ CD44+ CD62L+ memory T cells, generating a coordinated production of TNFα, as a mediator of parasite clearance during early P. yoelii infection. This work proposes the chimerization of B epitopes and T epitopes as a strategy for designing immunogenic peptide candidates for the development of a synthetic multi-epitope - multi-stage malaria vaccine.MaestríaMagíster en Ciencias - MicrobiologíaInmunología celular y molecular87 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - MicrobiologíaFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.Evaluation of the immune response stimulated by peptides with high binding capacity to H2-IEd molecules in a murine model.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMWHO. World malaria report 2021. World Health Organization; 2021.Dutta S, Tewari A, Balaji C, Verma R, Moitra A, Yadav M, et al. Strain-transcending neutralization of malaria parasite by antibodies against Plasmodium falciparum enolase. J Malaria journal. 2018;17(1):304.WHO. World malaria report 2018. World Health Organization; 2018.De Groot AS. Immunomics: discovering new targets for vaccines and therapeutics. J Drug discovery today. 2006;11(5-6):203-9.Hill AV. Vaccines against malaria. J Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1579):2806-14.Mahmoudi S, Keshavarz H. Malaria Vaccine Development: The Need for Novel Approaches: A Review Article. J Iranian journal of parasitology. 2018;13(1):1.Casares S, Brumeanu T-D, Richie TL. The RTS, S malaria vaccine. J The Lancet. 2010;28(31):4880-94.Bejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. J New England Journal of Medicine. 2008;359(24):2521-32.Olotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. J New England Journal of Medicine. 2013;368(12):1111-20.Datoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. The Lancet. 2021;397(10287):1809-18.Mueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. J Vaccine. 2015;33(52):7489-95.Posteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W, et al. The link between genetic variation and variability in vaccine responses: systematic review and meta-analyses. J Vaccine. 2014;32(15):1661-9.Li Z-K, Nie J-J, Li J, Zhuang H. The effect of HLA on immunological response to hepatitis B vaccine in healthy people: a meta-analysis. J Vaccine. 2013;31(40):4355-61.Ovsyannikova IG, Pankratz VS, Vierkant RA, Pajewski NM, Quinn CP, Kaslow RA, et al. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. J Infection immunity. 2013;81(7):2584-91.Moss AJ, Gaughran FP, Karasu A, Gilbert AS, Mann AJ, Gelder CM, et al. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. J PLoS One. 2013;8(8):e71376.Nielsen C, Vekemans J, Lievens M, Kester K, Regules J, Ockenhouse C. RTS, S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. J Vaccine. 2018;36(12):1637-42.Tubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell. 2013;153(4):785-96.Patarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. J Accounts of chemical research. 2008;41(3):377-86.Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. J PLoS One. 2015;10(4):e0123249.Céspedes N, Arévalo-Herrera M, Felger I, Reed S, Kajava AV, Corradin G, et al. Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. J Vaccine. 2013;31(42):4923-30.Silva-Flannery LM, Cabrera-Mora M, Jiang J, Moreno A. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine. J Microbes infection. 2009;11(1):83-91.Nardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 60: Elsevier; 1995. p. 105-49.Nardelli B, Tam JP. The MAP system. Vaccine Design: Springer; 1995. p. 803-19.Marussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. J International immunology. 1997;9(12):1817-24.Herrington DA, Clyde DF, Losonsky G, Cortesia M, Murphy JR, Davis J, et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. J Nature. 1987;328(6127):257.Tetteh KK, Polley SD. Progress and challenges towards the development of malaria vaccines. J BioDrugs. 2007;21(6):357-73.Malkin E, Dubovsky F, Moree M. Progress towards the development of malaria vaccines. J Trends in parasitology. 2006;22(7):292-5.Gilbert SC, Plebanski M, Gupta S, Morris J, Cox M, Aidoo M, et al. Association of malaria parasite population structure, HLA, and immunological antagonism. J Philosophical Transactions of the Royal Society B: Biological Sciences. 1998;279(5354):1173-7.Sabet LP, Taheri T, Memarnejadian A, Azad TM, Asgari F, Rahimnia R, et al. Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and NS5B HCV epitopes in BALB/c mice. 2014;14(10).Jackson D, Purcell A, Fitzmaurice C, Zeng W, Hart DJCdt. The central role played by peptides in the immune response and the design of peptide-based vaccines against infectious diseases and cancer. 2002;3(2):175-96.Rodrigues-da-Silva RN, Correa-Moreira D, Soares IF, de-Luca PM, Totino PRR, Morgado FN, et al. Immunogenicity of synthetic peptide constructs based on PvMSP9E795-A808, a linear B-cell epitope of the P. vivax Merozoite Surface Protein-9. 2019;37(2):306-13.Cease KB, Berkower I, York-Jolley J, Berzofsky JJjoEM. T cell clones specific for an amphipathic alpha-helical region of sperm whale myoglobin show differing fine specificities for synthetic peptides. A multiview/single structure interpretation of immunodominance. 1986;164(5):1779-84.Avendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. 2018;36(45):6703-10.Deans JA, Alderson T, Thomas A, Mitchell G, Lennox E, Cohen S. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. J Clinical experimental immunology. 1982;49(2):297.Thomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S. The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. J Molecular biochemical parasitology. 1984;13(2):187-99.Mitchell G, Thomas A, Margos G, Dluzewski A, Bannister L. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. J Infection immunity. 2004;72(1):154-8.Silvie O, Franetich J-F, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Journal of Biological Chemistry. 2004;279(10):9490-6.Fraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. J Molecular biochemical parasitology. 2001;117(1):49-59.Rappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. J Nature. 2011;473(7348):463.SIVIGILA. Boletín Epidemiológico Semanal (SEMANA 40). INSTITUTO NACIONAL DE SALUD - COLOMBIA 2022.Killick-Kendrick R. Parasitic protozoa of the blood of rodents: I: The life-cycle and zoogeography of Plasmodium berghei nigeriensis subsp. nov. J Annals of Tropical Medicine Parasitology 1973;67(3):261-77.Landau I, Michel J, Adam J-P, Boulard Y. The life cycle of Plasmodium vinckei lentum subsp. nov. in the laboratory; comments on the nomenclature of the murine malaria parasites. J Annals of Tropical Medicine Parasitology. 1970;64(3):315-23.Klein E. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. J International journal of antimicrobial agents. 2013;41(4):311-7.Killick-Kendrick R. Parasitic protozoa of the blood of rodents: a revision of Plasmodium berghei. J Parasitology. 1974;69(2):225-37.Beale G, Carter R, Walliker D, Killick-Kendrick R, Peters W. Rodent malaria. Genetics: Academic Press London; 1978. p. 213-45.Otto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. J BMC biology. 2014;12(1):86.Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. J Nature Reviews Immunology. 2008;8(8):607.Kurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. J Nature Reviews Immunology. 2010;10(6):403Crotzer VL, Blum JS. Autophagy and adaptive immunity. J Immunology. 2010;131(1):9-17.Denzin LK, Fallas JL, Prendes M, Yi W. Right place, right time, right peptide: DO keeps DM focused. J Immunological reviews. 2005;207(1):279-92.Neefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. J Nature Reviews Immunology. 2011;11(12):823.Nardin E, Zavala F, Nussenzweig V, Nussenzweig R. Pre-erythrocytic malaria vaccine: mechanisms of protective immunity and human vaccine trials. Parassitologia. 1999;41(1-3):397-402.Chia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Frontiers in microbiology. 2014;5:586.Consortium MS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401:921-3.Mueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Advances in parasitology. 81: Elsevier; 2013. p. 77-131.Langhorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. J Nature immunology. 2008;9(7):725.Singh SP, Mishra BN. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Human immunology. 2016;77(3):295-306.Abascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. J Nucleic acids research. 2004;32(5):1792-7.Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. J Molecular biology evolution 2017;34(12):3299-302.Zhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. J Proceedings of the National Academy of Sciences. 1998;95(7):3708-13.Jukes TH, Cantor CR. Evolution of protein molecules. J Mammalian protein metabolism. 1969;3(21):132.Kosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. J Molecular biology evolution. 2006;23(10):1891-901.Delport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. J Bioinformatics. 2010;26(19):2455-7.Kosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. J Molecular biology evolution. 2005;22(5):1208-22.Murrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. Detecting individual sites subject to episodic diversifying selection. J PLoS genetics. 2012;8(7):e1002764.Murrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. J Molecular biology evolution. 2013;30(5):1196-205.Garzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. J Infection, Genetics Evolution 2015;33:182-8.Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.Merrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of American Chemical Society. 1963;85:2149 - 54.Rabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.Nillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Zeitschrift für Parasitenkunde. 1981;64(3):279-84.Waterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research. 2018;46(W1):W296-W303.Vulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA. Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One. 2017;12(8):e0183198.Salomon‐Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013;3(2):198-210.Case DA, Cheatham III TE, Darden T, Gohlke H, Luo R, Merz Jr KM, et al. The Amber biomolecular simulation programs. Journal of computational chemistry. 2005;26(16):1668-88.Jensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research Immunology. 2020;19(6):2304-15.Giguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.Shen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory computation. 2014;10(10):4745-58.Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.Rodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.Cuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).Arevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.Curtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides. 2014;53:210-7.Gonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally acquired humoral immunity against Plasmodium falciparum malaria. Frontiers in immunology. 2020;11:594653.Rogers KJ, Vijay R, Butler NS. Anti-malarial humoral immunity: the long and short of it. Microbes Infection immunity. 2021;23(4-5):104807.Srinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, et al. Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proceedings of the National Academy of Sciences. 2014;111(28):10311-6.Reynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.Patarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Im mune P rotection-I nducing P rotein S tructure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PloS one. 2015;10(4):e0123249.Stephens R, Langhorne J. Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS pathogens. 2010;6(11):e1001208.Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906).Patarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2015;18:11-20.Baquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasites & vectors. 2017;10(1):1-11.Camargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the evolution and function of Plasmodium vivax reticulocyte binding surface antigen (pvrbsa). Frontiers in genetics. 2018;9:372.Ricaurte-Contreras LA, Lovera A, Moreno-Pérez DA, Bohórquez MD, Suárez CF, Gutiérrez-Vásquez E, et al. Two 20-Residue-Long Peptides Derived from Plasmodium vivax Merozoite Surface Protein 10 EGF-Like Domains Are Involved in Binding to Human Reticulocytes. International journal of molecular sciences. 2021;22(4):1609.Chua CY, Lee PC, Lau TY. Analysis of polymorphisms and selective pressures on ama1 gene in Plasmodium knowlesi isolates from Sabah, Malaysia. Journal of genetics. 2017;96(4):653-63.Dias S, Somarathna M, Manamperi A, Escalante AA, Gunasekera AM, Udagama PV. Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine. 2011;29(43):7491-504.Fraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol Biochem Parasitol. 2001;117(1):49-59.Dutta S, Haynes JD, Barbosa A, Ware LA, Snavely JD, Moch JK, et al. Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. J Infection immunity. 2005;73(4):2116-22.Arévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Scientific reports. 2017;7(1):1-13.Urquiza M, Suarez JE, Cardenas C, Lopez R, Puentes A, Chavez F, et al. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. Vaccine. 2000;19(4-5):508-13.Chaianantakul N, Sungkapong T, Supatip J, Kingsang P, Kamlaithong S, Suwanakitti N. Antimalarial effect of cell penetrating peptides derived from the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Peptides. 2020;131:170372.Rodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo: predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología. 2010;29(1):7-19.Willimsky G, Beier C, Immisch L, Papafotiou G, Scheuplein V, Goede A, et al. In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo. Elife. 2021;10:e62019.Caro-Aguilar I, Lapp S, Pohl J, Galinski MR, Moreno A. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes infection. 2005;7(13):1324-37.Caro-Aguilar I, Rodríguez A, Calvo-Calle JM, Guzmán F, De la Vega P, Patarroyo ME, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infection immunity. 2002;70(7):3479-92.Lin S-I, Huang M-H, Chang Y-W, Chen I-H, Roffler S, Chen B-M, et al. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice. Cancer Letters. 2016;377(2):126-33Vigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. Journal of Biological Chemistry. 2017;292(51):21170-9.Di Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320-43.White W, Evans C, Taylor D. Antimalarial antibodies of the immunoglobulin G2a isotype modulate parasitemias in mice infected with Plasmodium yoelii. Infection immunity. 1991;59(10):3547-54.Grey HM, Hirst JW, Cohn M. A new mouse immunoglobulin: IgG3. The Journal of experimental medicine. 1971;133(2):289-304.Berenzon D, Schwenk RJ, Letellier L, Guebre-Xabier M, Williams J, Krzych U. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. The Journal of Immunology. 2003;171(4):2024-34.Roestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, et al. Protection against a malaria challenge by sporozoite inoculation. New England Journal of Medicine. 2009;361(5):468-77.Angulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical Vaccine Immunology. 2002;9(6):1145-52.Jacobs P, Radzioch D, Stevenson MM. In vivo regulation of nitric oxide production by tumor necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage malaria in mice. Infection Immunity 1996;64(1):44-9.Lacerda-Queiroz N, Riteau N, Eastman RT, Bock KW, Orandle MS, Moore IN, et al. Mechanism of splenic cell death and host mortality in a Plasmodium yoelii malaria model. Scientific reports. 2017;7(1):1-12.Wu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.Kaumaya PT, Foy KC. Peptide vaccines and peptidomimetics targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future oncology. 2012;8(8):961-87.Kaumaya PT, Kobs‐Conrad S, Seo YH, Lee H, Vanbuskirk AM, Feng N, et al. Peptide vaccines incorporating a ‘promiscuous’ T‐cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity. Journal of Molecular Recognition. 1993;6(2):81-94.Lu Y, Li Z, Teng H, Xu H, Qi S, He Ja, et al. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases. Scientific reports. 2015;5(1):1-11.Khan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Informatics in medicine unlocked. 2021;24:100578.Ghaffari-Nazari H, Tavakkol-Afshari J, Jaafari MR, Tahaghoghi-Hajghorbani S, Masoumi E, Jalali SA. Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PloS one. 2015;10(11):e0142563.Alexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunologic research. 1998;18(2):79-92.Ahlborg N, Ling IT, Holder AA, Riley EMJI. Linkage of exogenous T-cell epitopes to the 19-kilodalton region of Plasmodium yoelii merozoite surface protein 1 (MSP119) can enhance protective immunity against malaria and modulate the immunoglobulin subclass response to MSP119. Infection immunity. 2000;68(4):2102-9.Graham CM, Barnett BC, Hartlmayr I, Burt DS, Faulkes R, Skehel JJ, et al. The structural requirements for class II (I‐Ad)‐restricted T cell recognition of influenza hemagglutinin: B cell epitopes define T cell epitopes. European journal of immunology. 1989;19(3):523-8.Jang Y-S, Mikszta JA, Kim BS. T cell epitope recognition involved in the low-responsiveness to a region of hen egg lysozyme (46–61) in C57BL/6 mice. Molecular immunology. 1994;31(11):803-12.Buus S, Colon S, Smith C, Freed JH, Miles C, Grey HM. Interaction between a" processed" ovalbumin peptide and Ia molecules. Proceedings of the National Academy of Sciences. 1986;83(11):3968-71.Cultivo in vitroInmunologíaAntígenosIn vitro cultureImmunologyAntigensSelección purificanteEpítopos BEpítopos TPéptidos quiméricosInmunogenicidadPlasmodium yoeliiFundación Instituto de Inmunología de Colombia - FIDICInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84062/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1124036814.2023.pdf1124036814.2023.pdfTesis de Maestría en Ciencias - Microbiologíaapplication/pdf3383419https://repositorio.unal.edu.co/bitstream/unal/84062/2/1124036814.2023.pdf1ee89014164dbd67c8bf27bcb236c2feMD52THUMBNAIL1124036814.2023.pdf.jpg1124036814.2023.pdf.jpgGenerated Thumbnailimage/jpeg5778https://repositorio.unal.edu.co/bitstream/unal/84062/3/1124036814.2023.pdf.jpg3cfcea36aab1a241c803284808b363ddMD53unal/84062oai:repositorio.unal.edu.co:unal/840622023-08-09 23:04:06.739Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=