Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia
ilustraciones, diagramas, fotografías
- Autores:
-
Sarmiento Abello, Juan Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86071
- Palabra clave:
- 530 - Física::537 - Electricidad y electrónica
PLASTICOS
PARTICULAS-DETERMINACION DEL TAMAÑO
Plastics
Particle size determination
Microplástico
Metodología
Aprendizaje automático
Lengua electrónica
Selectividad
Contaminantes
Inteligencia artificial
Microplastic
Methodology
Machine learning
Electronic language
Selectivity
Contaminants
Artificial intelligence
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_e2cdb8d9772cf2a4d510ffd662096562 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86071 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
dc.title.translated.eng.fl_str_mv |
Development of a system for the detection and identification of microplastics in bodies of water using impedance spectroscopy |
title |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
spellingShingle |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia 530 - Física::537 - Electricidad y electrónica PLASTICOS PARTICULAS-DETERMINACION DEL TAMAÑO Plastics Particle size determination Microplástico Metodología Aprendizaje automático Lengua electrónica Selectividad Contaminantes Inteligencia artificial Microplastic Methodology Machine learning Electronic language Selectivity Contaminants Artificial intelligence |
title_short |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
title_full |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
title_fullStr |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
title_full_unstemmed |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
title_sort |
Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia |
dc.creator.fl_str_mv |
Sarmiento Abello, Juan Daniel |
dc.contributor.advisor.none.fl_str_mv |
Tibaduiza Burgos, Diego Alexander Anaya Vejar, Maribel |
dc.contributor.author.none.fl_str_mv |
Sarmiento Abello, Juan Daniel |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de investigación en ingeniería electrónica (GMUN) Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun) |
dc.contributor.orcid.spa.fl_str_mv |
Sarmiento Abello, Juan Daniel [0009000562043123] |
dc.contributor.googlescholar.spa.fl_str_mv |
Sarmiento Abello, Juan Daniel [mHOhLy8AAAAJ&hl] |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::537 - Electricidad y electrónica |
topic |
530 - Física::537 - Electricidad y electrónica PLASTICOS PARTICULAS-DETERMINACION DEL TAMAÑO Plastics Particle size determination Microplástico Metodología Aprendizaje automático Lengua electrónica Selectividad Contaminantes Inteligencia artificial Microplastic Methodology Machine learning Electronic language Selectivity Contaminants Artificial intelligence |
dc.subject.lemb.spa.fl_str_mv |
PLASTICOS PARTICULAS-DETERMINACION DEL TAMAÑO |
dc.subject.lemb.eng.fl_str_mv |
Plastics Particle size determination |
dc.subject.proposal.spa.fl_str_mv |
Microplástico Metodología Aprendizaje automático Lengua electrónica Selectividad Contaminantes Inteligencia artificial |
dc.subject.proposal.eng.fl_str_mv |
Microplastic Methodology Machine learning Electronic language Selectivity Contaminants Artificial intelligence |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-05-14T14:56:39Z |
dc.date.available.none.fl_str_mv |
2024-05-14T14:56:39Z |
dc.date.issued.none.fl_str_mv |
2024-05-10 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Model Software Workflow |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86071 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86071 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
[1] PalmSens, “Sensor cable with banana connectors for use with mux8-r2 - palmsens.” [2] PalmSens, “Mux8-r2 multiplexer - palmsens.” [3] L. Stratmann, “Open circuit potential measurements with a mux8-r2 optimal usage of the mux8-r2’s input buffers open circuit potential measurements with a mux8-r2,” 2019. [4] MathWorks, “Conceptos clave de support vector machine (svm) - matlab simulink.” [5] J. López-Vázquez, R. Rodil, M. J. Trujillo-Rodrı́guez, J. B. Quintana, R. Cela, and M. Miró, “Mimicking human ingestion of microplastics: Oral bioaccessibility tests of bisphenol a and phthalate esters under fed and fasted states,” Science of The Total Environment, vol. 826, p. 154027, 6 2022. [6] C. J. Silva, A. L. Silva, C. Gravato, and J. L. Pestana, “Ingestion of small-sized and irre- gularly shaped polyethylene microplastics affect chironomus riparius life-history traits,” Science of The Total Environment, vol. 672, pp. 862–868, 7 2019. [7] M. Kosuth, S. A. Mason, and E. V. Wattenberg, “Anthropogenic contamination of tap water, beer, and sea salt,” PLOS ONE, vol. 13, p. e0194970, 4 2018. [8] D. Yang, H. Shi, L. Li, J. Li, K. Jabeen, and P. Kolandhasamy, “Microplastic pollution in table salts from china,” Environmental science technology, vol. 49, pp. 13622–13627, 10 2015. [9] R. C. Thompson, Y. Olson, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. John, D. McGonigle, and A. E. Russell, “Lost at sea: Where is all the plastic?,” Science, vol. 304, p. 838, 5 2004. [10] S. M. Praveena, S. N. M. Shaifuddin, and S. Akizuki, “Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from malaysia,” Marine Pollution Bulletin, vol. 136, pp. 135–140, 11 2018. [11] I. E. Napper and R. C. Thompson, “Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions,” Marine Pollution Bulletin, vol. 112, pp. 39–45, 11 2016. [12] B. C. Colson and A. P. Michel, “Flow-through quantification of microplastics using impedance spectroscopy,” ACS Sensors, vol. 6, pp. 238–244, 1 2021. 13] A. M. S. A. Manel del Valle, “Sensores electroquı́micos: introducción a los quimiosen- sores y biosensores ... - salvador alegret, manel del valle, arben merkoçi - google libros.” [14] B. Mostafiz, S. A. Bigdeli, K. Banan, H. Afsharara, D. Hatamabadi, P. Mousavi, C. M. Hussain, R. Keçili, and F. Ghorbani-Bidkorbeh, “Molecularly imprinted polymer-carbon paste electrode (mip-cpe)-based sensors for the sensitive detection of organic and inorga- nic environmental pollutants: A review,” Trends in Environmental Analytical Chemistry, vol. 32, p. e00144, 12 2021. [15] X. V. Chen and P. Bühlmann, “Ion-selective potentiometric sensors with silicone sensing membranes: A review,” Current Opinion in Electrochemistry, vol. 32, p. 100896, 4 2022. [16] A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sensing and Bio-Sensing Research, vol. 41, p. 100571, 8 2023. [17] A. Bole, A. Wall, and A. Norris, “Basic radar principles,” Radar and ARPA Manual, pp. 1–28, 1 2014. [18] D. A. Tibaduiza, L. E. Mujica, M. Anaya, and J. Rodellar, Combined and I Indices Based on Principal Component Analysis for Damage Detection and Localization. 2011. [19] R. P. Areny, “Sensores y acondicionadores de señal,” p. 480, 2004. [20] M. Scampicchio, D. Ballabio, A. Arecchi, S. M. Cosio, and S. Mannino, “Amperometric electronic tongue for food analysis,” 9 2008. [21] N. Jaffrezic-Renault and S. V. Dzyadevych, “Conductometric microbiosensors for envi- ronmental monitoring,” Sensors 2008, Vol. 8, Pages 2569-2588, vol. 8, pp. 2569–2588, 4 2008. [22] L. Escuder-Gilabert and M. Peris, “Review: Highlights in recent applications of electro- nic tongues in food analysis,” Analytica Chimica Acta, vol. 665, pp. 15–25, 4 2010. [23] G. Orlandi, R. Calvini, G. Foca, L. Pigani, G. V. Simone, and A. Ulrici, “Data fusion of electronic eye and electronic tongue signals to monitor grape ripening,” Talanta, vol. 195, pp. 181–189, 4 2019. [24] C. D. Natale, R. Paolesse, A. Macagnano, A. Mantini, A. D’Amico, A. Legin, L. Lvova, A. Rudnitskaya, and Y. Vlasov, “Electronic nose and electronic tongue integration for improved classification of clinical and food samples,” Sensors and Actuators B: Chemi- cal, vol. 64, pp. 15–21, 6 2000. [25] Y. Tahara and K. Toko, “Electronic tongues-a review,” IEEE SENSORS JOURNAL, vol. 13, p. 3001, 2013. [26] P. Ivarsson, Y. Kikkawa, F. Winquist, C. Krantz-Rülcker, N.-E. Höjer, K. Hayashi, K. Toko, and I. Lundström, “Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor,” 2001. [27] F. Winquist, P. Wide, and I. Lundström, “An electronic tongue based on voltammetry,” Analytica Chimica Acta, vol. 357, pp. 21–31, 12 1997. [28] C. Söderström, F. Winquist, and C. Krantz-Rülcker, “Recognition of six microbial spe- cies with an electronic tongue,” Sensors and Actuators B: Chemical, vol. 89, pp. 248–255, 4 2003. [29] M. Palit, B. Tudu, N. Bhattacharyya, A. Dutta, P. K. Dutta, A. Jana, R. Bandyopadh- yay, and A. Chatterjee, “Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea,” Analytica Chimica Acta, vol. 675, pp. 8–15, 8 2010. [30] J. Wang, L. Zhu, W. Zhang, and Z. Wei, “Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins,” Analytica Chimica Acta, vol. 1050, pp. 60–70, 3 2019. [31] X. Cetó, S. Pérez, and B. Prieto-Simón, “Fundamentals and application of voltamme- tric electronic tongues in quantitative analysis,” TrAC Trends in Analytical Chemistry, vol. 157, p. 116765, 12 2022. [32] L. Nuñez, X. Cetó, M. I. Pividori, M. V. Zanoni, and M. del Valle, “Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters,” Microchemical Journal, vol. 110, pp. 273–279, 9 2013. [33] L. G. Dias, A. Fernandes, A. C. Veloso, A. A. Machado, J. A. Pereira, and A. M. Peres, “Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue,” Food Chemistry, vol. 160, pp. 321–329, 10 2014. [34] X. Ceto, M. Gutierrez-Capitan, D. Calvo, and M. D. Valle, “Beer classification by means of a potentiometric electronic tongue,” Food Chemistry, vol. 141, pp. 2533–2540, 12 2013. [35] A. Mimendia, A. Legin, A. Merkoçi, and M. del Valle, “Use of sequential injection analysis to construct a potentiometric electronic tongue: Application to the multideter- mination of heavy metals,” Sensors and Actuators B: Chemical, vol. 146, pp. 420–426, 4 2010. [36] N. Major, K. Marković, M. Krpan, G. Šarić, M. Hruškar, and N. Vahčić, “Rapid honey characterization and botanical classification by an electronic tongue,” Talanta, vol. 85, pp. 569–574, 7 2011. [37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023. [37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023. [39] Y. Elamine, P. M. Inácio, B. Lyoussi, O. Anjos, L. M. Estevinho, M. da Graça Miguel, and H. L. Gomes, “Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination,” Sensors and Actuators B: Chemical, vol. 285, pp. 24–33, 4 2019. [40] A. Riul, A. M. Soto, S. V. Mello, S. Bone, D. M. Taylor, and L. H. Mattoso, “An electronic tongue using polypyrrole and polyaniline,” Synthetic Metals, vol. 132, pp. 109– 116, 1 2003. [41] Ángela González López, “Desarrollo de una lengua electrÓnica,” 2021. [42] A. Kutyla-Olesiuk, M. Nowacka, M. Wesoly, and P. Ciosek, “Evaluation of organolep- tic and texture properties of dried apples by hybrid electronic tongue,” Sensors and Actuators B: Chemical, vol. 187, pp. 234–240, 10 2013. [43] M. Zabadaj, I. Ufnalska, K. Chreptowicz, J. Mierzejewska, W. Wróblewski, and P. Ciosek-Skibińska, “Performance of hybrid electronic tongue and hplc coupled with chemometric analysis for the monitoring of yeast biotransformation,” Chemometrics and Intelligent Laboratory Systems, vol. 167, pp. 69–77, 8 2017. [44] A. Kutyla-Olesiuk, M. Zaborowski, P. Prokaryn, and P. Ciosek, “Monitoring of beer fermentation based on hybrid electronic tongue,” Bioelectrochemistry, vol. 87, pp. 104– 113, 10 2012. [45] M. Gutiérrez, C. Domingo, J. Vila-Planas, A. Ipatov, F. Capdevila, S. Demming, S. Büttgenbach, A. Llobera, and C. Jiménez-Jorquera, “Hybrid electronic tongue for the characterization and quantification of grape variety in red wines,” Sensors and Ac- tuators B: Chemical, vol. 156, pp. 695–702, 8 2011. [46] P. Ivarsson, C. Krantz-Rülcker, F. Winquist, and I. Lundström, “A voltammetric elec- tronic tongue,” Chemical Senses, vol. 30, pp. i258–i259, 1 2005. [47] Z. Zhang and Y. Takane, “Multidimensional scaling,” International Encyclopedia of Education, Third Edition, pp. 304–311, 1 2010. [48] A. Antoniadis, J. Bigot, and S. Lambert-Lacroix, “Peaks detection and alignment for mass spectrometry data,” Journal de la société française de statistique, vol. 151, pp. 17– 37, 2010. [49] M. Navarro-Reig, J. Jaumot, T. A. van Beek, G. Vivó-Truyols, and R. Tauler, “Chemo- metric analysis of comprehensive lc×lc-ms data: Resolution of triacylglycerol structural isomers in corn oil,” Talanta, vol. 160, pp. 624–635, 11 2016. [50] X. Cetó, F. Céspedes, and M. del Valle, “Comparison of methods for the processing of voltammetric electronic tongues data,” Microchimica Acta, vol. 180, pp. 319–330, 4 2013. [51] M. Sun, C. C. Liu, J. Yang, Z. Jin, and J. Yang, “A two-step framework for highly nonlinear data unfolding,” Neurocomputing, vol. 73, pp. 1801–1807, 6 2010. [52] J. A. Arancibia, A. C. Olivieri, D. B. Gil, A. E. Mansilla, I. Durán-Merás, and A. M. D. L. Peña, “Trilinear least-squares and unfolded-pls coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data,” Chemometrics and Intelligent Laboratory Systems, vol. 80, pp. 77–86, 1 2006. [53] M. del Valle, “Sensor arrays and electronic tongue systems,” International Journal of Electrochemistry, vol. 2012, pp. 1–11, 2012. [54] G. Liang, Z. He, J. Zhen, H. Tian, L. Ai, L. Pan, and W. Gong, “Development of the screen-printed electrodes: A mini review on the application for pesticide detection,” Environmental Technology Innovation, vol. 28, p. 102922, 11 2022. [55] BVT, “Ac1 electrochemical sensor.” [55] BVT, “Ac1 electrochemical sensor.” [56] V. Meiler, J. Pfeiffer, L. Bifano, C. Kandlbinder-Paret, and G. Fischerauer, “Approaches to detect microplastics in water using electrical impedance measurements and support vector machines,” IEEE Sensors Journal, vol. 23, pp. 4863–4872, 3 2023. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 80 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86071/4/1000331954.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86071/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86071/5/1000331954.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
706963fd0a2cc210e5167eb5bf9ceac5 eb34b1cf90b7e1103fc9dfd26be24b4a 0bd4dcf89c8ff4acc587f0c4c9a912f2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090198939598848 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Tibaduiza Burgos, Diego Alexanderb3416ad87ce35b324e978bb991d649a2Anaya Vejar, Maribel71ac02af39a9a3a32b17c4fad0bdbca8Sarmiento Abello, Juan Danield7d0d839c523d5bc4ee1e5a9f74add6dGrupo de investigación en ingeniería electrónica (GMUN)Grupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)Sarmiento Abello, Juan Daniel [0009000562043123]Sarmiento Abello, Juan Daniel [mHOhLy8AAAAJ&hl]2024-05-14T14:56:39Z2024-05-14T14:56:39Z2024-05-10https://repositorio.unal.edu.co/handle/unal/86071Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLos microplásticos son partículas contaminantes de origen artificial que podrían presentar un riesgo para la salud humana si ingresan a la cadena trófica. Por tal motivo, identificarlos y clarificarlos en diferentes entornos es crucial al momento de ejecutar acciones para prevenir o mitigar su impacto. En consecuencia, en el presente trabajo se desarrolló una metodología que permite evaluar en qué entornos es más probable detectar y clasificar por tamaños partículas de 500µm, 1000µm y 1400µm - dos tipos de microplástico como lo son: el tereftalato de polietileno (PET) y el poliestireno expandido (EPS) en distintos entornos de agua. Debido a la complejidad (alta selectividad) que estos entornos pueden manifestar se escogió una lengua electrónica - en conjunto con una red de sensores -, pues este instrumento es idóneo para detectar elementos en soluciones de alta selectividad. Así las cosas, se evaluaron de forma independiente tres algoritmos de aprendizaje automático, máquinas de soporte vectorial, árboles de decisión y k vecinos más cercanos en ambientes compuestos por: agua potable y tres soluciones conformadas por agua potable y materia orgánica inerte, agua potable, materia orgánica inerte y materia inorgánica y agua potable con materia inorgánica, materia orgánica inerte y materia orgánica viva. Es importante mencionar que los dos tipos de microplástico se midieron de forma independiente en cada uno de los entornos y se obtuvieron rendimientos superiores al 80 % en la detección y clasificación por tamaño. (Texto tomado de la fuente)Microplastics are contaminating particles of artificial origin that could present a risk to human health if they enter the food chain, for this reason identifying and classifying them in different environments is crucial when carrying out actions to prevent or mitigate their impact. For this reason in this work, a methodology was developed that allows for evaluating in which environments it is more likely to detect and classify by size, particles of 500µm, 1000µm and 1400µm, two types of microplastics such as Polyethylene Terephthalate (PET) and Expanded Polystyrene (EPS) in different water environments. Due to the complexity (high selectivity) that these environments can manifest, an electronic language was chosen in conjunction with a network of sensors because this instrument is ideal for detecting elements in highly selectivity solutions. Three machine learning algorithms, support vector machines, decision trees and k driest neighbors were evaluated independently in environments com- posed of: drinking water and three solutions consisting of drinking water and inert organic matter. Drinking water, inert organic matter and inorganic matter and drinking water inorganic matter, inert organic matter and living organic matter. The two types of microplastic were measured independently in each of the environments and performances greater than 80 % were obtained in detection and classification by size.MaestríaMagíster en Ingeniería - Ingeniería ElectrónicaInteligencia artificial y procesamiento de señalesxiv, 80 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::537 - Electricidad y electrónicaPLASTICOSPARTICULAS-DETERMINACION DEL TAMAÑOPlasticsParticle size determinationMicroplásticoMetodologíaAprendizaje automáticoLengua electrónicaSelectividadContaminantesInteligencia artificialMicroplasticMethodologyMachine learningElectronic languageSelectivityContaminantsArtificial intelligenceDesarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedanciaDevelopment of a system for the detection and identification of microplastics in bodies of water using impedance spectroscopyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionModelSoftwareWorkflowhttp://purl.org/redcol/resource_type/TM[1] PalmSens, “Sensor cable with banana connectors for use with mux8-r2 - palmsens.”[2] PalmSens, “Mux8-r2 multiplexer - palmsens.”[3] L. Stratmann, “Open circuit potential measurements with a mux8-r2 optimal usage of the mux8-r2’s input buffers open circuit potential measurements with a mux8-r2,” 2019.[4] MathWorks, “Conceptos clave de support vector machine (svm) - matlab simulink.”[5] J. López-Vázquez, R. Rodil, M. J. Trujillo-Rodrı́guez, J. B. Quintana, R. Cela, and M. Miró, “Mimicking human ingestion of microplastics: Oral bioaccessibility tests of bisphenol a and phthalate esters under fed and fasted states,” Science of The Total Environment, vol. 826, p. 154027, 6 2022.[6] C. J. Silva, A. L. Silva, C. Gravato, and J. L. Pestana, “Ingestion of small-sized and irre- gularly shaped polyethylene microplastics affect chironomus riparius life-history traits,” Science of The Total Environment, vol. 672, pp. 862–868, 7 2019.[7] M. Kosuth, S. A. Mason, and E. V. Wattenberg, “Anthropogenic contamination of tap water, beer, and sea salt,” PLOS ONE, vol. 13, p. e0194970, 4 2018.[8] D. Yang, H. Shi, L. Li, J. Li, K. Jabeen, and P. Kolandhasamy, “Microplastic pollution in table salts from china,” Environmental science technology, vol. 49, pp. 13622–13627, 10 2015.[9] R. C. Thompson, Y. Olson, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. John, D. McGonigle, and A. E. Russell, “Lost at sea: Where is all the plastic?,” Science, vol. 304, p. 838, 5 2004.[10] S. M. Praveena, S. N. M. Shaifuddin, and S. Akizuki, “Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from malaysia,” Marine Pollution Bulletin, vol. 136, pp. 135–140, 11 2018.[11] I. E. Napper and R. C. Thompson, “Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions,” Marine Pollution Bulletin, vol. 112, pp. 39–45, 11 2016.[12] B. C. Colson and A. P. Michel, “Flow-through quantification of microplastics using impedance spectroscopy,” ACS Sensors, vol. 6, pp. 238–244, 1 2021.13] A. M. S. A. Manel del Valle, “Sensores electroquı́micos: introducción a los quimiosen- sores y biosensores ... - salvador alegret, manel del valle, arben merkoçi - google libros.”[14] B. Mostafiz, S. A. Bigdeli, K. Banan, H. Afsharara, D. Hatamabadi, P. Mousavi, C. M. Hussain, R. Keçili, and F. Ghorbani-Bidkorbeh, “Molecularly imprinted polymer-carbon paste electrode (mip-cpe)-based sensors for the sensitive detection of organic and inorga- nic environmental pollutants: A review,” Trends in Environmental Analytical Chemistry, vol. 32, p. e00144, 12 2021.[15] X. V. Chen and P. Bühlmann, “Ion-selective potentiometric sensors with silicone sensing membranes: A review,” Current Opinion in Electrochemistry, vol. 32, p. 100896, 4 2022.[16] A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sensing and Bio-Sensing Research, vol. 41, p. 100571, 8 2023.[17] A. Bole, A. Wall, and A. Norris, “Basic radar principles,” Radar and ARPA Manual, pp. 1–28, 1 2014.[18] D. A. Tibaduiza, L. E. Mujica, M. Anaya, and J. Rodellar, Combined and I Indices Based on Principal Component Analysis for Damage Detection and Localization. 2011.[19] R. P. Areny, “Sensores y acondicionadores de señal,” p. 480, 2004.[20] M. Scampicchio, D. Ballabio, A. Arecchi, S. M. Cosio, and S. Mannino, “Amperometric electronic tongue for food analysis,” 9 2008.[21] N. Jaffrezic-Renault and S. V. Dzyadevych, “Conductometric microbiosensors for envi- ronmental monitoring,” Sensors 2008, Vol. 8, Pages 2569-2588, vol. 8, pp. 2569–2588, 4 2008.[22] L. Escuder-Gilabert and M. Peris, “Review: Highlights in recent applications of electro- nic tongues in food analysis,” Analytica Chimica Acta, vol. 665, pp. 15–25, 4 2010.[23] G. Orlandi, R. Calvini, G. Foca, L. Pigani, G. V. Simone, and A. Ulrici, “Data fusion of electronic eye and electronic tongue signals to monitor grape ripening,” Talanta, vol. 195, pp. 181–189, 4 2019.[24] C. D. Natale, R. Paolesse, A. Macagnano, A. Mantini, A. D’Amico, A. Legin, L. Lvova, A. Rudnitskaya, and Y. Vlasov, “Electronic nose and electronic tongue integration for improved classification of clinical and food samples,” Sensors and Actuators B: Chemi- cal, vol. 64, pp. 15–21, 6 2000.[25] Y. Tahara and K. Toko, “Electronic tongues-a review,” IEEE SENSORS JOURNAL, vol. 13, p. 3001, 2013.[26] P. Ivarsson, Y. Kikkawa, F. Winquist, C. Krantz-Rülcker, N.-E. Höjer, K. Hayashi, K. Toko, and I. Lundström, “Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor,” 2001.[27] F. Winquist, P. Wide, and I. Lundström, “An electronic tongue based on voltammetry,” Analytica Chimica Acta, vol. 357, pp. 21–31, 12 1997.[28] C. Söderström, F. Winquist, and C. Krantz-Rülcker, “Recognition of six microbial spe- cies with an electronic tongue,” Sensors and Actuators B: Chemical, vol. 89, pp. 248–255, 4 2003.[29] M. Palit, B. Tudu, N. Bhattacharyya, A. Dutta, P. K. Dutta, A. Jana, R. Bandyopadh- yay, and A. Chatterjee, “Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea,” Analytica Chimica Acta, vol. 675, pp. 8–15, 8 2010.[30] J. Wang, L. Zhu, W. Zhang, and Z. Wei, “Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins,” Analytica Chimica Acta, vol. 1050, pp. 60–70, 3 2019.[31] X. Cetó, S. Pérez, and B. Prieto-Simón, “Fundamentals and application of voltamme- tric electronic tongues in quantitative analysis,” TrAC Trends in Analytical Chemistry, vol. 157, p. 116765, 12 2022.[32] L. Nuñez, X. Cetó, M. I. Pividori, M. V. Zanoni, and M. del Valle, “Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters,” Microchemical Journal, vol. 110, pp. 273–279, 9 2013.[33] L. G. Dias, A. Fernandes, A. C. Veloso, A. A. Machado, J. A. Pereira, and A. M. Peres, “Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue,” Food Chemistry, vol. 160, pp. 321–329, 10 2014.[34] X. Ceto, M. Gutierrez-Capitan, D. Calvo, and M. D. Valle, “Beer classification by means of a potentiometric electronic tongue,” Food Chemistry, vol. 141, pp. 2533–2540, 12 2013.[35] A. Mimendia, A. Legin, A. Merkoçi, and M. del Valle, “Use of sequential injection analysis to construct a potentiometric electronic tongue: Application to the multideter- mination of heavy metals,” Sensors and Actuators B: Chemical, vol. 146, pp. 420–426, 4 2010.[36] N. Major, K. Marković, M. Krpan, G. Šarić, M. Hruškar, and N. Vahčić, “Rapid honey characterization and botanical classification by an electronic tongue,” Talanta, vol. 85, pp. 569–574, 7 2011.[37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023.[37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023.[39] Y. Elamine, P. M. Inácio, B. Lyoussi, O. Anjos, L. M. Estevinho, M. da Graça Miguel, and H. L. Gomes, “Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination,” Sensors and Actuators B: Chemical, vol. 285, pp. 24–33, 4 2019.[40] A. Riul, A. M. Soto, S. V. Mello, S. Bone, D. M. Taylor, and L. H. Mattoso, “An electronic tongue using polypyrrole and polyaniline,” Synthetic Metals, vol. 132, pp. 109– 116, 1 2003.[41] Ángela González López, “Desarrollo de una lengua electrÓnica,” 2021.[42] A. Kutyla-Olesiuk, M. Nowacka, M. Wesoly, and P. Ciosek, “Evaluation of organolep- tic and texture properties of dried apples by hybrid electronic tongue,” Sensors and Actuators B: Chemical, vol. 187, pp. 234–240, 10 2013.[43] M. Zabadaj, I. Ufnalska, K. Chreptowicz, J. Mierzejewska, W. Wróblewski, and P. Ciosek-Skibińska, “Performance of hybrid electronic tongue and hplc coupled with chemometric analysis for the monitoring of yeast biotransformation,” Chemometrics and Intelligent Laboratory Systems, vol. 167, pp. 69–77, 8 2017.[44] A. Kutyla-Olesiuk, M. Zaborowski, P. Prokaryn, and P. Ciosek, “Monitoring of beer fermentation based on hybrid electronic tongue,” Bioelectrochemistry, vol. 87, pp. 104– 113, 10 2012.[45] M. Gutiérrez, C. Domingo, J. Vila-Planas, A. Ipatov, F. Capdevila, S. Demming, S. Büttgenbach, A. Llobera, and C. Jiménez-Jorquera, “Hybrid electronic tongue for the characterization and quantification of grape variety in red wines,” Sensors and Ac- tuators B: Chemical, vol. 156, pp. 695–702, 8 2011.[46] P. Ivarsson, C. Krantz-Rülcker, F. Winquist, and I. Lundström, “A voltammetric elec- tronic tongue,” Chemical Senses, vol. 30, pp. i258–i259, 1 2005.[47] Z. Zhang and Y. Takane, “Multidimensional scaling,” International Encyclopedia of Education, Third Edition, pp. 304–311, 1 2010.[48] A. Antoniadis, J. Bigot, and S. Lambert-Lacroix, “Peaks detection and alignment for mass spectrometry data,” Journal de la société française de statistique, vol. 151, pp. 17– 37, 2010.[49] M. Navarro-Reig, J. Jaumot, T. A. van Beek, G. Vivó-Truyols, and R. Tauler, “Chemo- metric analysis of comprehensive lc×lc-ms data: Resolution of triacylglycerol structural isomers in corn oil,” Talanta, vol. 160, pp. 624–635, 11 2016.[50] X. Cetó, F. Céspedes, and M. del Valle, “Comparison of methods for the processing of voltammetric electronic tongues data,” Microchimica Acta, vol. 180, pp. 319–330, 4 2013.[51] M. Sun, C. C. Liu, J. Yang, Z. Jin, and J. Yang, “A two-step framework for highly nonlinear data unfolding,” Neurocomputing, vol. 73, pp. 1801–1807, 6 2010.[52] J. A. Arancibia, A. C. Olivieri, D. B. Gil, A. E. Mansilla, I. Durán-Merás, and A. M. D. L. Peña, “Trilinear least-squares and unfolded-pls coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data,” Chemometrics and Intelligent Laboratory Systems, vol. 80, pp. 77–86, 1 2006.[53] M. del Valle, “Sensor arrays and electronic tongue systems,” International Journal of Electrochemistry, vol. 2012, pp. 1–11, 2012.[54] G. Liang, Z. He, J. Zhen, H. Tian, L. Ai, L. Pan, and W. Gong, “Development of the screen-printed electrodes: A mini review on the application for pesticide detection,” Environmental Technology Innovation, vol. 28, p. 102922, 11 2022.[55] BVT, “Ac1 electrochemical sensor.”[55] BVT, “Ac1 electrochemical sensor.” [56] V. Meiler, J. Pfeiffer, L. Bifano, C. Kandlbinder-Paret, and G. Fischerauer, “Approaches to detect microplastics in water using electrical impedance measurements and support vector machines,” IEEE Sensors Journal, vol. 23, pp. 4863–4872, 3 2023.EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1000331954.2024.pdf1000331954.2024.pdfTesis de Maestría en ingeniería electrónicaapplication/pdf16477545https://repositorio.unal.edu.co/bitstream/unal/86071/4/1000331954.2024.pdf706963fd0a2cc210e5167eb5bf9ceac5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86071/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53THUMBNAIL1000331954.2024.pdf.jpg1000331954.2024.pdf.jpgGenerated Thumbnailimage/jpeg4921https://repositorio.unal.edu.co/bitstream/unal/86071/5/1000331954.2024.pdf.jpg0bd4dcf89c8ff4acc587f0c4c9a912f2MD55unal/86071oai:repositorio.unal.edu.co:unal/860712024-08-24 23:13:17.735Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |