A kernel-based multi-feature image representation for histopathology image classification

This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further...

Full description

Autores:
Moreno, J Carlos
Caicedo, J. Carlos
González, F
Tipo de recurso:
Article of journal
Fecha de publicación:
2010
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/31759
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/31759
http://bdigital.unal.edu.co/21839/
http://bdigital.unal.edu.co/21839/2/
Palabra clave:
Automatic image annotation
machine learning
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e2aa8bac2691a1fdfca99016d6cb1104
oai_identifier_str oai:repositorio.unal.edu.co:unal/31759
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno, J Carlose2f86607-3856-44fa-9fd9-500b188b21a6300Caicedo, J. Carlos769dd09e-f121-485a-999a-e7f46b61d254300González, F2d069e74-4967-4a29-a8e1-c12c6badf92d3002019-06-26T14:45:53Z2019-06-26T14:45:53Z2010https://repositorio.unal.edu.co/handle/unal/31759http://bdigital.unal.edu.co/21839/http://bdigital.unal.edu.co/21839/2/This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.application/pdfspaUniversidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biologíahttp://revistas.unal.edu.co/index.php/actabiol/article/view/18363Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica ColombianaActa Biológica ColombianaActa Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548XMoreno, J Carlos and Caicedo, J. Carlos and González, F (2010) A kernel-based multi-feature image representation for histopathology image classification. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X .A kernel-based multi-feature image representation for histopathology image classificationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTAutomatic image annotationmachine learningORIGINAL18363-71650-1-PB.pdfapplication/pdf644563https://repositorio.unal.edu.co/bitstream/unal/31759/1/18363-71650-1-PB.pdfa4cbd37d3c7942555d1e6b3824e6edfaMD5118363-59490-1-SP.rarapplication/octet-stream666609https://repositorio.unal.edu.co/bitstream/unal/31759/2/18363-59490-1-SP.rara1c82cb506d055aff2620d3f82b92535MD52THUMBNAIL18363-71650-1-PB.pdf.jpg18363-71650-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5811https://repositorio.unal.edu.co/bitstream/unal/31759/3/18363-71650-1-PB.pdf.jpg9437bc951c5c495e013e501e95c8ed67MD53unal/31759oai:repositorio.unal.edu.co:unal/317592023-12-02 23:06:58.032Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A kernel-based multi-feature image representation for histopathology image classification
title A kernel-based multi-feature image representation for histopathology image classification
spellingShingle A kernel-based multi-feature image representation for histopathology image classification
Automatic image annotation
machine learning
title_short A kernel-based multi-feature image representation for histopathology image classification
title_full A kernel-based multi-feature image representation for histopathology image classification
title_fullStr A kernel-based multi-feature image representation for histopathology image classification
title_full_unstemmed A kernel-based multi-feature image representation for histopathology image classification
title_sort A kernel-based multi-feature image representation for histopathology image classification
dc.creator.fl_str_mv Moreno, J Carlos
Caicedo, J. Carlos
González, F
dc.contributor.author.spa.fl_str_mv Moreno, J Carlos
Caicedo, J. Carlos
González, F
dc.subject.proposal.spa.fl_str_mv Automatic image annotation
machine learning
topic Automatic image annotation
machine learning
description This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.
publishDate 2010
dc.date.issued.spa.fl_str_mv 2010
dc.date.accessioned.spa.fl_str_mv 2019-06-26T14:45:53Z
dc.date.available.spa.fl_str_mv 2019-06-26T14:45:53Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/31759
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/21839/
http://bdigital.unal.edu.co/21839/2/
url https://repositorio.unal.edu.co/handle/unal/31759
http://bdigital.unal.edu.co/21839/
http://bdigital.unal.edu.co/21839/2/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/actabiol/article/view/18363
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica Colombiana
Acta Biológica Colombiana
dc.relation.ispartofseries.none.fl_str_mv Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X
dc.relation.references.spa.fl_str_mv Moreno, J Carlos and Caicedo, J. Carlos and González, F (2010) A kernel-based multi-feature image representation for histopathology image classification. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/31759/1/18363-71650-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/31759/2/18363-59490-1-SP.rar
https://repositorio.unal.edu.co/bitstream/unal/31759/3/18363-71650-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv a4cbd37d3c7942555d1e6b3824e6edfa
a1c82cb506d055aff2620d3f82b92535
9437bc951c5c495e013e501e95c8ed67
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090122163912704