A kernel-based multi-feature image representation for histopathology image classification
This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further...
- Autores:
-
Moreno, J Carlos
Caicedo, J. Carlos
González, F
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2010
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/31759
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/31759
http://bdigital.unal.edu.co/21839/
http://bdigital.unal.edu.co/21839/2/
- Palabra clave:
- Automatic image annotation
machine learning
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e2aa8bac2691a1fdfca99016d6cb1104 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/31759 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Moreno, J Carlose2f86607-3856-44fa-9fd9-500b188b21a6300Caicedo, J. Carlos769dd09e-f121-485a-999a-e7f46b61d254300González, F2d069e74-4967-4a29-a8e1-c12c6badf92d3002019-06-26T14:45:53Z2019-06-26T14:45:53Z2010https://repositorio.unal.edu.co/handle/unal/31759http://bdigital.unal.edu.co/21839/http://bdigital.unal.edu.co/21839/2/This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel.application/pdfspaUniversidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biologíahttp://revistas.unal.edu.co/index.php/actabiol/article/view/18363Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica ColombianaActa Biológica ColombianaActa Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548XMoreno, J Carlos and Caicedo, J. Carlos and González, F (2010) A kernel-based multi-feature image representation for histopathology image classification. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X .A kernel-based multi-feature image representation for histopathology image classificationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTAutomatic image annotationmachine learningORIGINAL18363-71650-1-PB.pdfapplication/pdf644563https://repositorio.unal.edu.co/bitstream/unal/31759/1/18363-71650-1-PB.pdfa4cbd37d3c7942555d1e6b3824e6edfaMD5118363-59490-1-SP.rarapplication/octet-stream666609https://repositorio.unal.edu.co/bitstream/unal/31759/2/18363-59490-1-SP.rara1c82cb506d055aff2620d3f82b92535MD52THUMBNAIL18363-71650-1-PB.pdf.jpg18363-71650-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5811https://repositorio.unal.edu.co/bitstream/unal/31759/3/18363-71650-1-PB.pdf.jpg9437bc951c5c495e013e501e95c8ed67MD53unal/31759oai:repositorio.unal.edu.co:unal/317592023-12-02 23:06:58.032Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
A kernel-based multi-feature image representation for histopathology image classification |
title |
A kernel-based multi-feature image representation for histopathology image classification |
spellingShingle |
A kernel-based multi-feature image representation for histopathology image classification Automatic image annotation machine learning |
title_short |
A kernel-based multi-feature image representation for histopathology image classification |
title_full |
A kernel-based multi-feature image representation for histopathology image classification |
title_fullStr |
A kernel-based multi-feature image representation for histopathology image classification |
title_full_unstemmed |
A kernel-based multi-feature image representation for histopathology image classification |
title_sort |
A kernel-based multi-feature image representation for histopathology image classification |
dc.creator.fl_str_mv |
Moreno, J Carlos Caicedo, J. Carlos González, F |
dc.contributor.author.spa.fl_str_mv |
Moreno, J Carlos Caicedo, J. Carlos González, F |
dc.subject.proposal.spa.fl_str_mv |
Automatic image annotation machine learning |
topic |
Automatic image annotation machine learning |
description |
This paper presents a novel strategy for building a high-dimensional feature space to represent histopathology image contents. Histogram features, related to colors, textures and edges, are combined together in a unique image representation space using kernel functions. This feature space is further enhanced by the application of Latent Semantic Analysis, to model hidden relationships among visual patterns. All that information is included in the new image representation space. Then, Support Vector Machine classifiers are used to assign semantic labels to images. Processing and classification algorithms operate on top of kernel functions, so that, the structure of the feature space is completely controlled using similarity measures and a dual representation. The proposed approach has shown a successful performance in a classification task using a dataset with 1,502 real histopathology images in 18 different classes. The results show that our approach for histological image classification obtains an improved average performance of 20.6% when compared to a conventional classification approach based on SVM directly applied to the original kernel. |
publishDate |
2010 |
dc.date.issued.spa.fl_str_mv |
2010 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-26T14:45:53Z |
dc.date.available.spa.fl_str_mv |
2019-06-26T14:45:53Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/31759 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/21839/ http://bdigital.unal.edu.co/21839/2/ |
url |
https://repositorio.unal.edu.co/handle/unal/31759 http://bdigital.unal.edu.co/21839/ http://bdigital.unal.edu.co/21839/2/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/actabiol/article/view/18363 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Acta Biológica Colombiana Acta Biológica Colombiana |
dc.relation.ispartofseries.none.fl_str_mv |
Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X |
dc.relation.references.spa.fl_str_mv |
Moreno, J Carlos and Caicedo, J. Carlos and González, F (2010) A kernel-based multi-feature image representation for histopathology image classification. Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 Acta Biológica Colombiana; Vol. 15, núm. 3 (2010); 251-260 1900-1649 0120-548X . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia, Facultad de Ciencias, Departamento de Biología |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/31759/1/18363-71650-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/31759/2/18363-59490-1-SP.rar https://repositorio.unal.edu.co/bitstream/unal/31759/3/18363-71650-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
a4cbd37d3c7942555d1e6b3824e6edfa a1c82cb506d055aff2620d3f82b92535 9437bc951c5c495e013e501e95c8ed67 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090122163912704 |