A note on universal maps

A map d of the  n-dimension E uclidean unit ball  Bn  into itself is called universal if every map of Bn  into itself agrees with d at at least one point. Theorem. Let d be a map of Bn  into itself, let  A= d1 (Sn-1) where  Sn-1 is the boundary of, Bn  and let  f  be the restriction of d to A. Then...

Full description

Autores:
Bell, Harold
Tipo de recurso:
Article of journal
Fecha de publicación:
1975
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/42395
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/42395
http://bdigital.unal.edu.co/32492/
Palabra clave:
Universal maps
theorem
homomorphism
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e2805a58471b5abe6e1d55f5ce7bc9ae
oai_identifier_str oai:repositorio.unal.edu.co:unal/42395
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bell, Harold3eb02987-05cb-4515-8596-e0a8c01f79433002019-06-28T10:47:23Z2019-06-28T10:47:23Z1975https://repositorio.unal.edu.co/handle/unal/42395http://bdigital.unal.edu.co/32492/A map d of the  n-dimension E uclidean unit ball  Bn  into itself is called universal if every map of Bn  into itself agrees with d at at least one point. Theorem. Let d be a map of Bn  into itself, let  A= d1 (Sn-1) where  Sn-1 is the boundary of, Bn  and let  f  be the restriction of d to A. Then d is universal if and only if the homomorphism qenerated by f between the corresponding Ce ch cohomology  groups f* :  Hn-1 (Sn-1) → Hn-1 (A) is nontrivial.application/pdfspaUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticashttp://revistas.unal.edu.co/index.php/recolma/article/view/32020Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de MatemáticasRevista Colombiana de MatemáticasRevista Colombiana de Matemáticas; Vol. 9, núm. 2 (1975); 91-94 0034-7426Bell, Harold (1975) A note on universal maps. Revista Colombiana de Matemáticas; Vol. 9, núm. 2 (1975); 91-94 0034-7426 .A note on universal mapsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTUniversal mapstheoremhomomorphismORIGINAL32020-117361-1-PB.pdfapplication/pdf930874https://repositorio.unal.edu.co/bitstream/unal/42395/1/32020-117361-1-PB.pdfb5d20d3c49d820d15ec10e5ff8f3fe1aMD51THUMBNAIL32020-117361-1-PB.pdf.jpg32020-117361-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg5368https://repositorio.unal.edu.co/bitstream/unal/42395/2/32020-117361-1-PB.pdf.jpgade5e4df5fb67e98214d9f32ebf8bca1MD52unal/42395oai:repositorio.unal.edu.co:unal/423952023-02-07 23:05:59.241Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv A note on universal maps
title A note on universal maps
spellingShingle A note on universal maps
Universal maps
theorem
homomorphism
title_short A note on universal maps
title_full A note on universal maps
title_fullStr A note on universal maps
title_full_unstemmed A note on universal maps
title_sort A note on universal maps
dc.creator.fl_str_mv Bell, Harold
dc.contributor.author.spa.fl_str_mv Bell, Harold
dc.subject.proposal.spa.fl_str_mv Universal maps
theorem
homomorphism
topic Universal maps
theorem
homomorphism
description A map d of the  n-dimension E uclidean unit ball  Bn  into itself is called universal if every map of Bn  into itself agrees with d at at least one point. Theorem. Let d be a map of Bn  into itself, let  A= d1 (Sn-1) where  Sn-1 is the boundary of, Bn  and let  f  be the restriction of d to A. Then d is universal if and only if the homomorphism qenerated by f between the corresponding Ce ch cohomology  groups f* :  Hn-1 (Sn-1) → Hn-1 (A) is nontrivial.
publishDate 1975
dc.date.issued.spa.fl_str_mv 1975
dc.date.accessioned.spa.fl_str_mv 2019-06-28T10:47:23Z
dc.date.available.spa.fl_str_mv 2019-06-28T10:47:23Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/42395
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/32492/
url https://repositorio.unal.edu.co/handle/unal/42395
http://bdigital.unal.edu.co/32492/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/recolma/article/view/32020
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
Revista Colombiana de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Revista Colombiana de Matemáticas; Vol. 9, núm. 2 (1975); 91-94 0034-7426
dc.relation.references.spa.fl_str_mv Bell, Harold (1975) A note on universal maps. Revista Colombiana de Matemáticas; Vol. 9, núm. 2 (1975); 91-94 0034-7426 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/42395/1/32020-117361-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/42395/2/32020-117361-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv b5d20d3c49d820d15ec10e5ff8f3fe1a
ade5e4df5fb67e98214d9f32ebf8bca1
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089421213925376