A note on universal maps
A map d of the n-dimension E uclidean unit ball Bn into itself is called universal if every map of Bn into itself agrees with d at at least one point. Theorem. Let d be a map of Bn into itself, let A= d1 (Sn-1) where Sn-1 is the boundary of, Bn and let f be the restriction of d to A. Then...
- Autores:
-
Bell, Harold
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 1975
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/42395
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/42395
http://bdigital.unal.edu.co/32492/
- Palabra clave:
- Universal maps
theorem
homomorphism
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | A map d of the n-dimension E uclidean unit ball Bn into itself is called universal if every map of Bn into itself agrees with d at at least one point. Theorem. Let d be a map of Bn into itself, let A= d1 (Sn-1) where Sn-1 is the boundary of, Bn and let f be the restriction of d to A. Then d is universal if and only if the homomorphism qenerated by f between the corresponding Ce ch cohomology groups f* : Hn-1 (Sn-1) → Hn-1 (A) is nontrivial. |
---|