Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)

graficas, tablas

Autores:
Henao Ríos, José León
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83193
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83193
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)
OWC
VLC
LED
Modulation
PWM
M-PPM
Manchester
WDM
OFDM
Spatial Multiplexing
RGB
Modulación
Multiplexación espacial
Tecnología de la comunicación
Communication technology
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e2715d795c1c524e6bb3662e6c3f1bc6
oai_identifier_str oai:repositorio.unal.edu.co:unal/83193
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
dc.title.translated.spa.fl_str_mv Modelado y simulación de un esquema de modulación espacial adaptativa para la optimización del ancho de banda efectivo sobre luz visible (VLC), utilizando dispositivos de estado sólido para la iluminación (SSL)
title Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
spellingShingle Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
600 - Tecnología (Ciencias aplicadas)
OWC
VLC
LED
Modulation
PWM
M-PPM
Manchester
WDM
OFDM
Spatial Multiplexing
RGB
Modulación
Multiplexación espacial
Tecnología de la comunicación
Communication technology
title_short Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
title_full Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
title_fullStr Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
title_full_unstemmed Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
title_sort Modeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)
dc.creator.fl_str_mv Henao Ríos, José León
dc.contributor.advisor.none.fl_str_mv Guerrero González, Neil
Garcia-Alvarez, Julio Cesar
dc.contributor.author.none.fl_str_mv Henao Ríos, José León
dc.contributor.researchgroup.spa.fl_str_mv Propagación Electromagnética Aplicada (Propela)
dc.contributor.orcid.spa.fl_str_mv Henao Rios, Jose Leon [0000-0002-3119-9775]
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)
topic 600 - Tecnología (Ciencias aplicadas)
OWC
VLC
LED
Modulation
PWM
M-PPM
Manchester
WDM
OFDM
Spatial Multiplexing
RGB
Modulación
Multiplexación espacial
Tecnología de la comunicación
Communication technology
dc.subject.proposal.eng.fl_str_mv OWC
VLC
LED
Modulation
PWM
M-PPM
Manchester
WDM
OFDM
Spatial Multiplexing
dc.subject.proposal.none.fl_str_mv RGB
dc.subject.proposal.spa.fl_str_mv Modulación
Multiplexación espacial
dc.subject.unesco.none.fl_str_mv Tecnología de la comunicación
Communication technology
description graficas, tablas
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2023-01-30T20:53:37Z
dc.date.available.none.fl_str_mv 2023-01-30T20:53:37Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Image
Text
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83193
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83193
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv CISCO. (2020, Mar.) Cisco annual internet report (2018ˆa€“2023) white paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
H. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, “Introduction to indoor networking concepts and challenges in lifi,” Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A190–A203, 2020.
F. Delgado, I. Quintana, J. Rufo, J. Rabadan, C. Quintana, and R. Perez-Jimenez, “Design and implementation of an ethernet-vlc interface for broadcast transmissions,” IEEE Communications letters, vol. 14, no. 12, pp. 1089–1091, 2010.
C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-led visible light communication (vlc) with compact size,” Optics express, vol. 21, no. 22, pp. 26 192–26 197, 2013.
X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A gb/s vlc transmission using hardware preequalization circuit,” IEEE photonics technology letters, vol. 27, no. 18, pp. 1915–1918, 2015.
S. Rajbhandari, H. Chun, G. Faulkner, H. Haas, E. Xie, J. J. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. Oˆa€™Brien, “Neural network-based joint spatial and temporal equalization for mimo-vlc system,” IEEE Photonics Technology Letters, vol. 31, no. 11, pp. 821–824, 2019.
M. L. G. Salmento, G. M. Soares, J. M. Alonso, and H. A. Braga, “A dimmable offline led driver with ook-m-fsk modulation for vlc applications,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5220–5230, 2018.
J.-N. Guo, J. Zhang, G. Xin, and L. Li, “Constant transmission efficiency dimming control scheme for vlc systems,” in Photonics, vol. 8, no. 1. Multidisciplinary Digital Publishing Institute, 2021, p. 7.
Y. Celik, S. Aldirmaz-Colak, and E. Basar, “Flexible quadrature spatial pulse amplitude modulation for vlc systems,” IEEE Systems Journal, 2021.
O. P. Babalola and V. Balyan, “Efficient channel coding for dimmable visible light communications system,” IEEE Access, vol. 8, pp. 215 100–215 106, 2020.
T. Wang, F. Yang, C. Pan, L. Cheng, and J. Song, “Spectral-efficient hybrid dimming scheme for indoor visible light communication: A subcarrier index modulation based approach,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5756–5765, 2019.
R. Ahmad and A. Srivastava, “Papr reduction of ofdm signal through dft precoding and gmsk pulse shaping in indoor vlc,” IEEE Access, vol. 8, pp. 122 092–122 103, 2020.
S. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, and P. C. Sofotasios, “An effective spatial modulation based scheme for indoor vlc systems,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1–11, 2022.
Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.
M. Uysal and H. Nouri, “Optical wireless communications ˆa€” an emerging technology,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–7.
H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 18.
S. Karabetsos, S. Mikroulis, and A. Nassiopoulos, “Radio over fiber for broadband communications: A promising technology for next generation networks,” in Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms. IGI Global, 2009, pp. 80–103.
H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.
J. V. Aravind, S. Kumar, and S. Prince, “Mathematical modelling of underwater wireless optical channel,” in 2018 International Conference on Communication and Signal Processing (ICCSP), 2018, pp. 0776–0780.
G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261, 2020.
M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.
H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE communications surveys & tutorials, vol. 19, no. 1, pp. 57–96, 2016.
W. Wu, M. Chen, Z. Zhang, X. Liu, and Y. Dong, “Overview of deep space laser communication,” Science China Information Sciences, vol. 61, no. 4, pp. 1–12, 2018.
S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, 2008, pp. 82–86.
A.-M. C˘ailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 2017.
N. Kumar, N. Louren¸co, D. Terra, L. N. Alves, and R. L. Aguiar, “Visible light communications in intelligent transportation systems,” in 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 748–753.
T. D. Little, A. Agarwal, J. Chau, M. Figueroa, A. Ganick, J. Lobo, T. Rich, and P. Schimitsch, “Directional communication system for short-range vehicular communications,” in 2010 IEEE Vehicular Networking Conference. IEEE, 2010, pp. 231–238.
E. Eso, O. I. Younus, Z. Ghassemlooy, S. Zvanovec, and M. M. Abadi, “Performances of optical camera-based vehicular communications under turbulence conditions,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020, pp. 1–5.
M. D. Thieu, T. L. Pham, T. Nguyen, and Y. M. Jang, “Optical-roi-signaling for vehicular communications,” IEEE Access, vol. 7, pp. 69 873–69 891, 2019.
T. Garlington, J. Babbitt, and G. Long, “Analysis of free space optics as a transmission technology,” US Army Information Systems Engineering Command, vol. 3, no. 2, 2005.
D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.
S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced optical wireless communication systems. Cambridge university press, 2012.
N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X.-L. Huang, “Visible light communications: demand factors, benefits and opportunities [guest editorial],” IEEE Wireless Communications, vol. 22, no. 2, pp. 5–7, 2015.
H. Haas, L. Yin, Y.Wang, and C. Chen, “What is lifi?” Journal of lightwave technology, vol. 34, no. 6, pp. 1533–1544, 2015.
D. C. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2008, pp. 1–5.
S. Park, D. Jung, H. Shin, D. Shin, Y. Hyun, K. Lee, and Y. Oh, “Information broadcasting system based on visible light signboard,” Proc. Wireless Opt. Commun, vol. 30, pp. 311–313, 2007.
T. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 4, pp. 88–95, 2020.
S. Mali, A. Agarwal, S. K. Singh, and D. D. Pradhan, “Design and implementation of text and audio signal transmission using visible light communication,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(ISMAC). IEEE, 2020, pp. 303–306.
X.-T. Jiang, H. Gao, and P. Li, “Visible light communication audio signal transmission system design,” in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2018, pp. 1–4.
W. Liu, C. Yang, and Q. Yang, “Indoor high-accuracy positioning system using image sensor and visible led lights,” in 2016 Asia Communications and Photonics Conference (ACP), 2016, pp. 1–3.
Y. See and N. M. Noor, “Investigation of indoor positioning system using visible light communication,” in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 186–189.
F. Seguel, P. Palacios-Jativa, C. A. Azurdia-Meza, N. Krommenacker, P. Charpentier, and I. Soto, “Underground mine positioning: A review,” IEEE Sensors Journal, 2021.
I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009.
M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of wifi and lifi toward 5g: concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, 2016.
X. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid lifi and wifi networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398–1420, 2021.
S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid wifi-vlc internet access system,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 569–574.
R. Ahmad, A. Srivastava et al., “Energy-efficient coexistence of lifi users and light enabled iot devices,” IEEE Transactions on Green Communications and Networking, 2021.
M. Kavehrad, “Optical wireless applications: A solution to ease the wireless airwaves spectrum crunch,” in Broadband Access Communication Technologies Vii, vol. 8645. International Society for Optics and Photonics, 2013, p. 86450G.
D. A. Basnayaka and H. Haas, “Hybrid rf and vlc systems: Improving user data rate performance of vlc systems,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015, pp. 1–5.
L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible light communication: concepts, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019.
I. 62471, “Photobiological safety of lamps and lamp systems,” 2006.
M. T. Alresheedi and J. M. Elmirghani, “10 gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1843–1856, 2012.
“Mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” in 2010 Seventh International Conference on Wireless and Optical Communications Networks-(WOCN). IEEE, 2010, pp. 1–6.
Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Optics express, vol. 20, no. 17, pp. 18 861–18 868, 2012.
S. Rajagopal, R. D. Roberts, and S.-K. Lim, “Ieee 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.
J. L. H. Rios, “Experimental validation of inverse mppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.
B. Bai, Z. Xu, and Y. Fan, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp. 1–5.
F. Zafar, D. Karunatilaka, and R. Parthiban, “Dimming schemes for visible light communication: the state of research,” IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, 2015.
P. Cao, J. Chen, and X. You, “An initialization scheme for blind equalization in vlc systems,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017, pp. 1–3.
K. Werfli, P. A. Haigh, Z. Ghassemlooy, P. Chvojka, S. Zvanovec, S. Rajbhandari, and S. Long, “Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited vlc systems,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015, pp. 6–10.
H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc: Beyond pointto-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98–105, 2014.
X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750mbit/s visible light communications employing 64qam-ofdm based on amplitude equalization circuit,” in 2015 optical fiber communications conference and exhibition (OFC). IEEE, 2015, pp. 1–3.
G. Zhang, X. Hong, C. Fei, and X. Hong, “Sparsity-aware nonlinear equalization with greedy algorithms for led-based visible light communication systems,” Journal of Lightwave Technology, vol. 37, no. 20, pp. 5273–5281, 2019.
R. Martinek, L. Danys, R. Jaros, D. Mozny, P. Siska, and J. Latal, “Vlc channel equalization simulator based on lms algorithm and virtual instrumentation,” in 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2019, pp. 1–6.
J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.
Y. Yang, Z. Zeng, J. Cheng, and C. Guo, “An enhanced dco-ofdm scheme for dimming control in visible light communication systems,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–13, 2016.
Y. Hong, J. Xu, and L.-K. Chen, “Experimental investigation of multi-band oct precoding for ofdm-based visible light communications,” Opt. Express, vol. 25, no. 11, pp. 12 908–12 914, May 2017.
A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical mimo-ofdm with generalized led index modulation,” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429–3441, 2017.
K. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation of carrierless amplitude and phase modulation in visible light communication,” IEEE Access, vol. 6, pp. 60 532–60 546, 2018.
I. Din and H. Kim, “Energy-efficient brightness control and data transmission for visible light communication,” IEEE photonics technology letters, vol. 26, no. 8, pp. 781–784, 2014.
G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Optics express, vol. 20, no. 26, pp. B501–B506, 2012.
S. H. Younus, A. A. Al-Hameed, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, “Wdm for multi-user indoor vlc systems with scm,” IET Communications, vol. 13, no. 18, pp. 3003–3011, 2019.
Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in 2016 IEEE 83rd vehicular technology conference (VTC Spring). IEEE, 2016, pp. 1–5.
K. P. Pujapanda, “Lifi integrated to power-lines for smart illumination cum communication,” in 2013 International Conference on Communication Systems and Network Technologies. IEEE, 2013, pp. 875–878.
G. Sun, W. Zhao, R. Wang, and X. Li, “Design of ethernet-vlc data conversion system based on fpga,” International Journal of Computer Theory and Engineering, vol. 12, no. 3, 2020.
Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications. CRC press, 2017.
X. Wang, L. Wang, K. Jian, C. Wang, and C. P. Yue, “A rgb led pam-4 visible light communication transmitter based on a system design with equalization,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020, pp. 798–801.
C. Min, X. Chen, X. Mao, X. Li, T. Pan, Q. Sun, and H. Chen, “A novel method for constructing vlc equalizer with active-passive hybrid network,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–10, 2020.
N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 mb/s by a blue led, 600 mb/s by a red led, and 520 mb/s by a green led based on simple ook-nrz modulation of a commercially available rgb-type white led using pre-emphasis and postequalizing techniques,” in 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014, pp. 1–3.
H. Li, X. Chen, J. Guo, and H. Chen, “A 550 mbit/s real-time visible light communication system based on phosphorescent white light led for practical high-speed low-complexity application,” Optics express, vol. 22, no. 22, pp. 27 203–27 213, 2014.
R. Kisacik, M. Yagan, M. Uysal, A. Pusane, and A. Yalcinkaya, “A new led response model and its application to pre-equalization in vlc systems,” IEEE Photonics Technology Letters, vol. 33, no. 17, pp. 955–958, 2021.
M. Ataee, S. M. S. Sadough, and Z. Ghassemlooy, “Adaptive equalization for visible light communications with power over ethernet backhaul,” in 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC). IEEE, 2020, pp. 1–5.
J. Gancarz, H. Elgala, and T. D. Little, “Impact of lighting requirements on vlc systems,” IEEE Communications Magazine, vol. 51, no. 12, pp. 34–41, 2013.
A. Dix, J. Finlay, G. D. Abowd, and R. Beale, “Human-computer interaction,” Harlow ua, 2000.
J. A. Jacko, “Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications,” 2012.
J. K. Kwon, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455–1457, 2010.
T. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with laco-ofdm in vlc,” IEEE Access, vol. 6, pp. 41 153–41 162, 2018.
Y. Zuo and J. Zhang, “A novel coding based dimming scheme with constant transmission efficiency in vlc systems,” Applied Sciences, vol. 9, no. 4, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/4/803
D.-F. Zhang, Y.-J. Zhu, and Y.-Y. Zhang, “Multi-led phase-shifted ook modulation based visible light communication systems,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2251–2254, 2013.
C.Wang, Y. Yang, C. Guo, Z. Zeng, and C. Feng, “Generalized dimming control scheme with optimal dimming control pattern for vlc,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.
S. He, G. Ren, L. Wu, Z. Sun, and Y. Zhao, “Flicker mitigation and dimming control analyze of duty cycle fixed-mvpm for indoor vlc system,” in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 6–9.
J.-N. Guo, J. Zhang, Y.-Y. Zhang, G. Xin, and L. Li, “Constant weight space-time codes for dimmable mimo-vlc systems,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–15, 2020.
J. Henao-Rios, D. Marquez-Viloria, and N. Guerrero-Gonz´alez, “Real time implementation of a hybrid differential manchester-pwm encoding for constant data rate under variable brightness in vlc systems,” in 2020 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2020, pp. 1–5.
G. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge University Press, 2016.
R. B. Nunes, A. Shahpari, J. A. L. Silva, M. Lima, P. S. B. de Andr˜A©, and M. E. V. Segatto, “Experimental demonstration of a 33.5-gb/s ofdm-based pon with subcarrier pre-emphasis,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 860–863, 2016.
E. Basar, “Index modulation techniques for 5g wireless networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 168–175, 2016.
E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, 2017.
K. M. vd Zwaag, J. L. Neves, H. R. Rocha, M. E. Segatto, and J. A. Silva, “Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals,” Optics Communications, vol. 441, pp. 14 – 20, 2019.
F. T. Monteiro, W. S. Costa, J. L. Neves, D. M. Silva, H. R. Rocha, E. O. Salles, and J. A. Silva, “Experimental evaluation of pulse shaping based 5g multicarrier modulation formats in visible light communication systems,” Optics Communications, vol. 457, p. 124693, 2020.
Q. Wang, Z. Wang, L. Dai, and J. Quan, “Dimmable visible light communications based on multilayer aco-ofdm,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–11, 2016.
A. W. Azim, Y. Le Guennec, and G. Maury, “Spectrally augmented hartley transform precoded asymmetrically clipped optical ofdm for vlc,” IEEE Photonics Technology Letters, vol. 30, no. 23, pp. 2029–2032, 2018.
C. Guerra-Y´anez, S. Zv´anovec, and Z. Ghassemlooy, “Experimental evaluation of a hermite function-based multicarrier scheme for vlc,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–4.
N. Bamiedakis, R. Penty, and I. White, “Carrierless amplitude and phase modulation in wireless visible light communication systems,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2169, p. 20190181, 2020.
S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband supernyquist cap16 vlc system employing a joint mimo equalizer,” Optics express, vol. 26, no. 12, pp. 15 718–15 725, 2018.
P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Nonorthogonal multi-band cap for highly spectrally efficient vlc systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–6.
P. A. Haigh, P. Chvojka, A. Minotto, A. Burton, P. Murto, E. Wang, Z. Ghassemlooy, S. Zvanovec, F. Cacialli, and I. Darwazeh, “Hybrid super-nyquist cap modulation based vlc with low bandwidth polymer leds,” in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.
K. O. Akande and W. O. Popoola, “Mimo techniques for carrierless amplitude and phase modulation in visible light communication,” IEEE Communications Letters, vol. 22, no. 5, pp. 974–977, 2018.
H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “Led based wavelength division multiplexed 10 gb/s visible light communications,” Journal of lightwave technology, vol. 34, no. 13, pp. 3047–3052, 2016.
J. L. H. Rios, N. G. Gonz´alez, M. R. Ribeiro, and J. A. Silva, “Experimental validation of a three-dimensional modulation format for data transmission in rgb visible light communication systems,” IET Communications, vol. 15, no. 2, pp. 279–288, 2021.
A. T. Hussein and J. M. Elmirghani, “10 gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes,” Journal of Optical Communications and Networking, vol. 7, no. 8, pp. 718–735, 2015.
R. Bian, I. Tavakkolnia, and H. Haas, “15.73 gb/s visible light communication with off-the-shelf leds,” Journal of Lightwave Technology, vol. 37, no. 10, pp. 2418–2424, 2019.
Y. Wang, Y. Zhou, T. Gui, K. Zhong, X. Zhou, L. Wang, A. P. T. Lau, C. Lu, and N. Chi, “Efficient mmse-sqrd-based mimo decoder for sefdm-based 2.4-gb/s-spectrumcompressed wdm vlc system,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–9, 2016.
J. Zhu, L. Mu, and X. Zhang, “Pwm-based dimmable hybrid optical ofdm for visiblelight communications,” IET Communications, vol. 14, no. 6, pp. 930–936, 2020.
M. Mohammedi Merah, H. Guan, and L. Chassagne, “Experimental multi-user visible light communication attocell using multiband carrierless amplitude and phase modulation,” IEEE Access, vol. 7, pp. 12 742–12 754, 2019.
I. Newton, Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. Sam Smith & Benj Walford Printers to the Royal Society, 1704.
H. Christiaan, Trait´e de la Lumi`ere: O`u Sont Expliqu´es les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction. Pieter van der Aa, 1690.
Y. Thomas, The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London, 1804.
M. García Castañeda and J. Ewert De-Geus, Introducción a la física moderna. UNIVERSIDAD NACIONAL DE COLOMBIA,, 2003, no. 539 G164i Ej. 1.
D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.
A. F. Rex, R. Wolfson, and M. M. Romo, Fundamentos de f´ısica. Addison Wesley, 2011.
W. Doherty and R. Joos, “The pin diode circuit designersˆa€™ handbook,” Microsemi Corporation, vol. 1, pp. 1–137, 1998. [123] I. Yun, Photodiodes: From Fundamentals to Applications. BoD–Books on Demand, 2012.
J. Graeme, Photodiode amplifiers: op amp solutions. McGraw-Hill, Inc., 1995.
G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012, vol. 222.
R. M. Gagliardi and S. Karp, “Optical communications,” New York, 1976.
M. Petit, L. Michez, J.-M. Raimundo, and P. Dumas, “Electrical and optical measurements of the bandgap energy of a light-emitting diode,” Physics Education, vol. 51, no. 2, p. 025003, 2016.
A. Einstein and F. A. Davis, The principle of relativity. Courier Corporation, 2013.
N. Chi, LED-based visible light Communications. Springer, 2018.
E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.
J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.
S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.” Optometry and vision science: official publication of the American Academy of Optometry, vol. 68, no. 8, pp. 645–662, 1991.
K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE photonics technology letters, vol. 23, no. 16, pp. 1136–1138, 2011.
H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “Pwm-based ppm format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–5.
F. Knobloch, “Noncoherent dimming frequency shift on-off keying scheme for low data rate optical street lighting communication,” ICTON 2015, p. Mo.B2.5, 2015.
C.-S. A. Gong, Y.-C. Lee, J.-L. Lai, C.-H. Yu, L. R. Huang, and C.-Y. Yang, “The highefficiency led driver for visible light communication applications,” Scientific reports, vol. 6, p. 30991, 2016.
B. Aydin and C¸ . Duman, “Comparison of ook-rz and 4-ppm performances in li-fi systems using led arrays,” Optics & Laser Technology, vol. 153, p. 108247, 2022.
A. Pradana, N. Ahmadi, T. Adiono, W. A. Cahyadi, and Y.-H. Chung, “Vlc physical layer design based on pulse position modulation (ppm) for stable illumination,” in 2015 international symposium on intelligent signal processing and communication systems (ISPACS). IEEE, 2015, pp. 368–373.
J. R. Barry, Wireless infrared communications. Springer Science & Business Media, 2012, vol. 280.
S. N. Ismail and M. H. Salih, “A review of visible light communication (vlc) technology,” in AIP Conference Proceedings, vol. 2213, no. 1. AIP Publishing LLC, 2020, p. 020289.
D.-s. Shiu and J. M. Kahn, “Differential pulse-position modulation for power-efficient optical communication,” IEEE transactions on communications, vol. 47, no. 8, pp. 1201–1210, 1999.
V. Dixit and A. Kumar, “Performance analysis of l-ppm modulated nlos-vlc system with perfect and imperfect csi,” Journal of Optics, vol. 23, no. 1, p. 015702, 2020.
G. Lee and G. Schroeder, “Optical pulse position modulation with multiple positions per pulsewidth,” IEEE Transactions on Communications, vol. 25, no. 3, pp. 360–364, 1977.
C. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1313–1326, 1994.
X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Optics Express, vol. 19, no. 26, pp. B868–B881, 2011.
Y. Akaiwa, “Digital modulation/demodulation for mobile radio communication,” 2015.
L. Litwin, “An introduction to multicarrier modulation,” IEEE potentials, vol. 19, no. 2, pp. 36–38, 2000.
A. A. Hajomer, X. Yang, and W. Hu, “Secure ofdm transmission precoded by chaotic discrete hartley transform,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–9, 2017.
I. Mapfumo, Performance of asymmetrically clipped optical OFDM and DC-biased optical OFDM based on fast Fourier transform/discrete Hartley transform for powerline communication-visible light communication systems under impulsive noise. University of Johannesburg (South Africa), 2020.
A. Goldsmith, Wireless communications. Cambridge university press, 2005.
G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m),” Opt. Express, vol. 23, no. 12, pp. 15 700–15 705, Jun 2015.
K. Liang, C.-W. Chow, and Y. Liu, “Rgb visible light communication using mobilephone camera and multi-input multi-output,” Opt. Express, vol. 24, no. 9, pp. 9383–9388, May 2016.
C.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m rgb visible light communication transmission based on a cmos image sensor,” Opt. Express, vol. 26, no. 6, pp. 7079–7084, Mar 2018.
P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of rgb led-based optical camera communications,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–12, 2015.
M. S. Moreolo, R. Mu˜noz, and G. Junyent, “Novel power efficient optical ofdm based on hartley transform for intensity-modulated direct-detection systems,” Journal of lightwave Technology, vol. 28, no. 5, pp. 798–805, 2010.
R. N. Bracewell, “Discrete hartley transform,” JOSA, vol. 73, no. 12, pp. 1832–1835, 1983.
X. Li, R. Mardling, and J. Armstrong, “Channel capacity of im/dd optical communication systems and of aco-ofdm,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 2128–2133.
Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: modulation and signal processing. John Wiley & Sons, 2017.
J. Tang and L. Zhang, “Efficient real-fourier domain-based color shift keying ofdm implemented with hartley transform for visible light communication system,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017, pp. 1–5.
Y. Cao, X. Zhou, J. Sun, W. Zhang, and C.-X. Wang, “Optical spatial modulation with dht-based ofdm in visible light communication systems,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017, pp. 1–5.
J. R. B. J. M. Kahn, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.
Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications system and channel modelling with Matlab. CRC press, 2019. [163] R. Mesleh, H. Elgala, and H. Haas, “Optical spatial modulation,” Journal of Optical Communications and Networking, vol. 3, no. 3, pp. 234–244, 2011.
L. R. M. Castor, R. Natale, J. A. L. Silva, and M. E. V. Segatto, “Experimental investigation of broadband power line communication modems for onshore oil gas industry: A preliminary analysis,” in 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 244–248.
L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational complexity analysis of advanced physical layers based on multicarrier modulation,” in 2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.
J. L. H. Rios, N. G. Gonzalez, and J. C. G. ´Alvarez, “Experimental validation of inverse m-ppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 19, no. 02, pp. 280–287, 2021.
S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1385–1399, 2003.
S. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless optical channels,” International Journal of Communication Systems, vol. 18, no. 3, pp. 205–228, 2005.
P. Fahamuel, J. Thompson, and H. Haas, “Study, analysis and application of optical ofdm, single carrier (sc) and mimo in intensity modulation direct detection (im/dd),” 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 108 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Arquitectura
dc.publisher.place.spa.fl_str_mv Manizales, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Manizales
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83193/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83193/4/79383020.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83193/5/79383020.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
3fd6958bf0e099922f4ef3006a325285
a81b3e1e0acd234488c3d087d2010b2b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886312022638592
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Guerrero González, Neiladbdfbe0c5bcc346f665dd89ff80f8ce600Garcia-Alvarez, Julio Cesar1fd265c4e853f72c2b28d54725cdf05b600Henao Ríos, José Leónb6ce6b224fbfd0d7fc20f4d43d76eb82600Propagación Electromagnética Aplicada (Propela)Henao Rios, Jose Leon [0000-0002-3119-9775]2023-01-30T20:53:37Z2023-01-30T20:53:37Z2021https://repositorio.unal.edu.co/handle/unal/83193Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasThis thesis presents an investigation of the different formats and modulation methods used in Optical Wireless Communications (OWC), specifically in Visible Light Communications (VLC), using solid-state lighting devices (SSL). The final objective is to propose, model and validate an adaptive spatial (three-dimensional) modulation scheme that allows the optimization of the effective bandwidth through the use of power RGB LEDs. Initially, a taxonomy of the different technologies and possible uses of OWC communications is made in order to identify their functionalities and characteristics. From this classification, the challenges presented by visible light communications for indoor use also called VLC (which is within the OWC category), were identified, as well as the different modulation formats used in it. Once the above has been determined, a review of the state of the art for each of the identified challenges is made, and the contribution that was made to solve this particular challenge (if applicable) during the course of the Doctoral process and that made it possible to reach the proposed solution. In section 3, the underlying theory of LEDs is shown, which are a fundamental part of VLC systems. Based on the electrical model, the equations that allow characterizing relevant aspects such as electrical bandwidth, optical bandwidth, radiation patterns, and optical power are determined. Finally, the experimental characterization (laboratory measurements) of the RGB LED device used to implement the final proposal of this thesis is presented. Section 4 presents an overview of different baseband digital modulation formats used in VLC systems. Some of these formats allow lighting control by themselves, or in conjunction with techniques such as PWM or current injection (I-bias). In subsection 4.4, the work carried out during the development of this research process is exposed in detail using some modulation formats presented in the previous subsections and which allow solving the lighting control problem by keeping constant the transmission speed of data. The aforementioned works, achieved a constant transmission rate of $6$ Kbps using a codification that combines in the same bit frame PWM modulation for brightness control and M-PPM coding for the creation of data words, the transmitter was implemented with two 10W RGB LEDs located 0.9 meters from the receiver (Texas Instruments OPT101 photo-detector), and a range of illumination was obtained between 25% to 85% of the possible light power of the LED sources. Similarly, a second work implements a Differential Manchester-PWM hybrid differential encoding for data transmission and brightness control in a real-time system, the proposed digital modulation allows simultaneous control of brightness while maintaining data transmission with a constant rate of 50 Kbps using three 10 W white LEDs at a distance of 0.9 meters, and a brightness range between 10% and 90% of the maximum luminous flux of the LED sources. It should be noted that these proposed hybrid encodings are self-authored and to the best of our knowledge, had not been presented prior to publication and submission to IEEE Latin America and COLCOM 2020 respectively. Given the good results obtained in the previously presented works, we focused on optimizing the available bandwidth, taking into account that in an RGB LED, three transmission sources are available (one for each color) similar to the WDM technique (wavelength division multiplexing). In the first instance, OFDM (Orthogonal Frequency Division Multiplexing) multicarrier modulation was used and it was determined by means of simulations which were the most efficient coding schemes taking the Bit Error Rate (BER) as a reference. Next, it was explored which was the best way to segment the information in order to be transmitted through each of the available channels. It was determined that the data bit stream should be segmented into groups of 6 bits (4 M-QAM coded bits and 2 M-PAM coded bits) using the Spatial Multiplexing (SM) transmission scheme, generating a three-dimensional constellation and obtaining a speed of 27.3 Mbps through a 1.5 m VLC link (subsection 5.4.1) (Texto tomado de la fuente)Esta tesis presenta una investigación sobre los diferentes formatos y métodos de modulación usados en comunicaciones ópticas inalámbricas (OWC - Optical Wireless Communications), específicamente en las comunicaciones sobre luz visible (VLC - Visible Light Communications), utilizando dispositivos de estado sólido para iluminación (SSL). El objetivo final es proponer, modelar y validar un esquema de modulación espacial (tridimensional) adaptativo, que permita la optimización del ancho de banda efectivo mediante el uso de LED’s RGB de potencia. Inicialmente, se hace una taxonomía de las diferentes tecnologías y posibles usos de las comunicaciones OWC con el fin de identificar sus funcionalidades y características. A partir de esta clasificación, se identificaron los desafíos que presentan las comunicaciones por luz visible para uso en interiores también denominada VLC (la cual se encuentra dentro de la categoría OWC), así como también los diferentes formatos de modulación usados en ella. Una vez se ha determinado lo anterior, se hace una revisión sobre el estado del arte para cada uno de los desafíos identificados, y se indica la contribución que se realizó para resolver ese reto en particular (si es del caso) durante el transcurso del proceso Doctoral y que permitieron llegar a la solución propuesta. En la siguiente sección se presenta la teoría subyacente a los LED, los cuales son parte fundamental de los sistemas VLC. En esta, a partir del modelo eléctrico, se determinan las ecuaciones que permiten caracterizar aspectos relevantes tales como como el ancho de banda eléctrica, ancho de banda óptico, patrones de radiación y potencia óptica. Al finalizar, se presenta la caracterización experimental (medidas tomadas en laboratorio) del dispositivo LED RGB usado para implementar la propuesta final de esta tesis. A continuación, se muestra una descripción general de diferentes formatos de modulación digital en banda base usados en los sistemas VLC. Algunos de estos formatos permiten el control de iluminación por si solos, en unión con técnicas tales como PWM o inyección de corriente (I-bias). En la subsección 4.4, se exponen de manera detallada los trabajos realizados durante el desarrollo de este proceso de investigación usando algunos formatos de modulación presentados en las subsecciones anteriores, los cuales permiten dar solución al problema del control de iluminación manteniendo constante la velocidad de transmisión de datos. Los trabajos mencionados anteriormente, lograron una velocidad de transmisión constante de 6 Kbps usando una codificación que combina en una misma trama de bits la modulación PWM para control de brillo y la codificación M-PPM para la creación de palabras de datos, el transmisor se implementó con dos LEDs RGB de 10 W ubicados a 0.9 metros del receptor (foto-detector OPT101 de Texas Instruments), y se obtuvo un rango de iluminación entre 25% al 85% de la potencia luminosa posible de las fuentes LED. De igual forma, un segundo trabajo implementa una codificación diferencial híbrida Manchester-PWM para la transmisión de datos y el control de luminosidad en un sistema en tiempo real, la modulación digital propuesta permite el control simultáneo de la luminosidad manteniendo la transmisión de datos con una velocidad constante de 50 Kbps utilizando tres LED’s blancos de 10 W a una distancia de 0.9 metros, y un rango de luminosidad entre el 10% y el 90% del flujo luminoso máximo de las fuentes LED. Cabe anotar que estas codificaciones hibridas propuestas, son de autoría propia y según nuestro mejor conocimiento, no habían sido presentadas antes de la publicación y presentación en la revista IEEE Latinoamérica y COLCOM 2020 respectivamente. Dados los buenos resultados obtenidos en los trabajos presentados anteriormente, nos enfocamos en optimizar el ancho de banda disponible, teniendo en cuenta que en un LED RGB, se tienen disponibles tres fuentes de transmisión (una por cada color) similar a la técnica WDM (multiplicación por división de longitud de onda). En una primera instancia, se hizo uso de la modulación multiportadora OFDM (Multiplexación por División de Frecuencias Ortogonales) y se determinó por medio de simulaciones cuáles eran los esquemas de codificación más eficientes, teniendo como referencia tasa de error de bit (BER). A continuación, se exploró cual era la mejor forma de segmentar la información con el fin de ser transmitida por cada uno de los canales disponibles, se determinó que el flujo de bits de datos debía ser segmentado en grupos de 6 bits (4 bits codificados M-QAM y 2 bits codificados M-PAM) usando en esquema de transmisión por Multiplexación Espacial (SM) generando una constelación tridimensional obteniendo una velocidad de 27.3 Mbps a través de un enlace VLC de 1.5 m (subsección 5.4.1).Politécnico Colombiano Jaime Isaza CadavidDoctoradoDoctor en Ingeniería - Ingeniería AutomáticaComunicaciones Opticas Inalambricas.Eléctrica, Electrónica, Automatización Y Telecomunicacionesxxiii, 108 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales600 - Tecnología (Ciencias aplicadas)OWCVLCLEDModulationPWMM-PPMManchesterWDMOFDMSpatial MultiplexingRGBModulaciónMultiplexación espacialTecnología de la comunicaciónCommunication technologyModeling and simulation of an adaptive spatial modulation scheme for optimization of effective bandwidth in communications over visible light (VLC), using solid state devices for lighting (SSL)Modelado y simulación de un esquema de modulación espacial adaptativa para la optimización del ancho de banda efectivo sobre luz visible (VLC), utilizando dispositivos de estado sólido para la iluminación (SSL)Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextCISCO. (2020, Mar.) Cisco annual internet report (2018ˆa€“2023) white paper. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.htmlH. Haas, L. Yin, C. Chen, S. Videv, D. Parol, E. Poves, H. Alshaer, and M. S. Islim, “Introduction to indoor networking concepts and challenges in lifi,” Journal of Optical Communications and Networking, vol. 12, no. 2, pp. A190–A203, 2020.F. Delgado, I. Quintana, J. Rufo, J. Rabadan, C. Quintana, and R. Perez-Jimenez, “Design and implementation of an ethernet-vlc interface for broadcast transmissions,” IEEE Communications letters, vol. 14, no. 12, pp. 1089–1091, 2010.C.-H. Yeh, Y.-L. Liu, and C.-W. Chow, “Real-time white-light phosphor-led visible light communication (vlc) with compact size,” Optics express, vol. 21, no. 22, pp. 26 192–26 197, 2013.X. Huang, J. Shi, J. Li, Y. Wang, and N. Chi, “A gb/s vlc transmission using hardware preequalization circuit,” IEEE photonics technology letters, vol. 27, no. 18, pp. 1915–1918, 2015.S. Rajbhandari, H. Chun, G. Faulkner, H. Haas, E. Xie, J. J. McKendry, J. Herrnsdorf, E. Gu, M. D. Dawson, and D. Oˆa€™Brien, “Neural network-based joint spatial and temporal equalization for mimo-vlc system,” IEEE Photonics Technology Letters, vol. 31, no. 11, pp. 821–824, 2019.M. L. G. Salmento, G. M. Soares, J. M. Alonso, and H. A. Braga, “A dimmable offline led driver with ook-m-fsk modulation for vlc applications,” IEEE Transactions on Industrial Electronics, vol. 66, no. 7, pp. 5220–5230, 2018.J.-N. Guo, J. Zhang, G. Xin, and L. Li, “Constant transmission efficiency dimming control scheme for vlc systems,” in Photonics, vol. 8, no. 1. Multidisciplinary Digital Publishing Institute, 2021, p. 7.Y. Celik, S. Aldirmaz-Colak, and E. Basar, “Flexible quadrature spatial pulse amplitude modulation for vlc systems,” IEEE Systems Journal, 2021.O. P. Babalola and V. Balyan, “Efficient channel coding for dimmable visible light communications system,” IEEE Access, vol. 8, pp. 215 100–215 106, 2020.T. Wang, F. Yang, C. Pan, L. Cheng, and J. Song, “Spectral-efficient hybrid dimming scheme for indoor visible light communication: A subcarrier index modulation based approach,” Journal of Lightwave Technology, vol. 37, no. 23, pp. 5756–5765, 2019.R. Ahmad and A. Srivastava, “Papr reduction of ofdm signal through dft precoding and gmsk pulse shaping in indoor vlc,” IEEE Access, vol. 8, pp. 122 092–122 103, 2020.S. Naser, L. Bariah, S. Muhaidat, M. Al-Qutayri, and P. C. Sofotasios, “An effective spatial modulation based scheme for indoor vlc systems,” IEEE Photonics Journal, vol. 14, no. 1, pp. 1–11, 2022.Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications: system and channel modelling with Matlab®. CRC press, 2019.M. Uysal and H. Nouri, “Optical wireless communications ˆa€” an emerging technology,” in 2014 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–7.H. Kaushal, V. Jain, and S. Kar, Free space optical communication. Springer, 2017, vol. 18.S. Karabetsos, S. Mikroulis, and A. Nassiopoulos, “Radio over fiber for broadband communications: A promising technology for next generation networks,” in Handbook of Research on Heterogeneous Next Generation Networking: Innovations and Platforms. IGI Global, 2009, pp. 80–103.H. Kaushal and G. Kaddoum, “Underwater optical wireless communication,” IEEE access, vol. 4, pp. 1518–1547, 2016.J. V. Aravind, S. Kumar, and S. Prince, “Mathematical modelling of underwater wireless optical channel,” in 2018 International Conference on Communication and Signal Processing (ICCSP), 2018, pp. 0776–0780.G. Schirripa Spagnolo, L. Cozzella, and F. Leccese, “Underwater optical wireless communications: Overview,” Sensors, vol. 20, no. 8, p. 2261, 2020.M. A. Khalighi and M. Uysal, “Survey on free space optical communication: A communication theory perspective,” IEEE communications surveys & tutorials, vol. 16, no. 4, pp. 2231–2258, 2014.H. Kaushal and G. Kaddoum, “Optical communication in space: Challenges and mitigation techniques,” IEEE communications surveys & tutorials, vol. 19, no. 1, pp. 57–96, 2016.W. Wu, M. Chen, Z. Zhang, X. Liu, and Y. Dong, “Overview of deep space laser communication,” Science China Information Sciences, vol. 61, no. 4, pp. 1–12, 2018.S. S. Muhammad, T. Plank, E. Leitgeb, A. Friedl, K. Zettl, T. Javornik, and N. Schmitt, “Challenges in establishing free space optical communications between flying vehicles,” in 2008 6th international symposium on communication systems, networks and digital signal processing. IEEE, 2008, pp. 82–86.A.-M. C˘ailean and M. Dimian, “Current challenges for visible light communications usage in vehicle applications: A survey,” IEEE Communications Surveys & Tutorials, vol. 19, no. 4, pp. 2681–2703, 2017.N. Kumar, N. Louren¸co, D. Terra, L. N. Alves, and R. L. Aguiar, “Visible light communications in intelligent transportation systems,” in 2012 IEEE Intelligent Vehicles Symposium. IEEE, 2012, pp. 748–753.T. D. Little, A. Agarwal, J. Chau, M. Figueroa, A. Ganick, J. Lobo, T. Rich, and P. Schimitsch, “Directional communication system for short-range vehicular communications,” in 2010 IEEE Vehicular Networking Conference. IEEE, 2010, pp. 231–238.E. Eso, O. I. Younus, Z. Ghassemlooy, S. Zvanovec, and M. M. Abadi, “Performances of optical camera-based vehicular communications under turbulence conditions,” in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP). IEEE, 2020, pp. 1–5.M. D. Thieu, T. L. Pham, T. Nguyen, and Y. M. Jang, “Optical-roi-signaling for vehicular communications,” IEEE Access, vol. 7, pp. 69 873–69 891, 2019.T. Garlington, J. Babbitt, and G. Long, “Analysis of free space optics as a transmission technology,” US Army Information Systems Engineering Command, vol. 3, no. 2, 2005.D. Kedar and S. Arnon, “Urban optical wireless communication networks: the main challenges and possible solutions,” IEEE Communications Magazine, vol. 42, no. 5, pp. S2–S7, 2004.S. Arnon, J. Barry, G. Karagiannidis, R. Schober, and M. Uysal, Advanced optical wireless communication systems. Cambridge university press, 2012.N. Chi, H. Haas, M. Kavehrad, T. D. Little, and X.-L. Huang, “Visible light communications: demand factors, benefits and opportunities [guest editorial],” IEEE Wireless Communications, vol. 22, no. 2, pp. 5–7, 2015.H. Haas, L. Yin, Y.Wang, and C. Chen, “What is lifi?” Journal of lightwave technology, vol. 34, no. 6, pp. 1533–1544, 2015.D. C. O’brien, L. Zeng, H. Le-Minh, G. Faulkner, J. W. Walewski, and S. Randel, “Visible light communications: Challenges and possibilities,” in 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2008, pp. 1–5.S. Park, D. Jung, H. Shin, D. Shin, Y. Hyun, K. Lee, and Y. Oh, “Information broadcasting system based on visible light signboard,” Proc. Wireless Opt. Commun, vol. 30, pp. 311–313, 2007.T. Wang, F. Yang, J. Song, and Z. Han, “Dimming techniques of visible light communications for human-centric illumination networks: State-of-the-art, challenges, and trends,” IEEE Wireless Communications, vol. 27, no. 4, pp. 88–95, 2020.S. Mali, A. Agarwal, S. K. Singh, and D. D. Pradhan, “Design and implementation of text and audio signal transmission using visible light communication,” in 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(ISMAC). IEEE, 2020, pp. 303–306.X.-T. Jiang, H. Gao, and P. Li, “Visible light communication audio signal transmission system design,” in 2018 15th China International Forum on Solid State Lighting: International Forum on Wide Bandgap Semiconductors China (SSLChina: IFWS). IEEE, 2018, pp. 1–4.W. Liu, C. Yang, and Q. Yang, “Indoor high-accuracy positioning system using image sensor and visible led lights,” in 2016 Asia Communications and Photonics Conference (ACP), 2016, pp. 1–3.Y. See and N. M. Noor, “Investigation of indoor positioning system using visible light communication,” in 2016 IEEE Region 10 Conference (TENCON). IEEE, 2016, pp. 186–189.F. Seguel, P. Palacios-Jativa, C. A. Azurdia-Meza, N. Krommenacker, P. Charpentier, and I. Soto, “Underground mine positioning: A review,” IEEE Sensors Journal, 2021.I. F. Akyildiz, Z. Sun, and M. C. Vuran, “Signal propagation techniques for wireless underground communication networks,” Physical Communication, vol. 2, no. 3, pp. 167–183, 2009.M. Ayyash, H. Elgala, A. Khreishah, V. Jungnickel, T. Little, S. Shao, M. Rahaim, D. Schulz, J. Hilt, and R. Freund, “Coexistence of wifi and lifi toward 5g: concepts, opportunities, and challenges,” IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, 2016.X. Wu, M. D. Soltani, L. Zhou, M. Safari, and H. Haas, “Hybrid lifi and wifi networks: A survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 2, pp. 1398–1420, 2021.S. Shao, A. Khreishah, M. B. Rahaim, H. Elgala, M. Ayyash, T. D. Little, and J. Wu, “An indoor hybrid wifi-vlc internet access system,” in 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems. IEEE, 2014, pp. 569–574.R. Ahmad, A. Srivastava et al., “Energy-efficient coexistence of lifi users and light enabled iot devices,” IEEE Transactions on Green Communications and Networking, 2021.M. Kavehrad, “Optical wireless applications: A solution to ease the wireless airwaves spectrum crunch,” in Broadband Access Communication Technologies Vii, vol. 8645. International Society for Optics and Photonics, 2013, p. 86450G.D. A. Basnayaka and H. Haas, “Hybrid rf and vlc systems: Improving user data rate performance of vlc systems,” in 2015 IEEE 81st Vehicular Technology Conference (VTC Spring). IEEE, 2015, pp. 1–5.L. E. M. Matheus, A. B. Vieira, L. F. Vieira, M. A. Vieira, and O. Gnawali, “Visible light communication: concepts, applications and challenges,” IEEE Communications Surveys & Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019.I. 62471, “Photobiological safety of lamps and lamp systems,” 2006.M. T. Alresheedi and J. M. Elmirghani, “10 gb/s indoor optical wireless systems employing beam delay, power, and angle adaptation methods with imaging detection,” Journal of Lightwave Technology, vol. 30, no. 12, pp. 1843–1856, 2012.“Mobile optical wireless systems employing beam angle and power adaptation with diversity receivers,” in 2010 Seventh International Conference on Wireless and Optical Communications Networks-(WOCN). IEEE, 2010, pp. 1–6.Z. Wang, W.-D. Zhong, C. Yu, J. Chen, C. P. S. Francois, and W. Chen, “Performance of dimming control scheme in visible light communication system,” Optics express, vol. 20, no. 17, pp. 18 861–18 868, 2012.S. Rajagopal, R. D. Roberts, and S.-K. Lim, “Ieee 802.15. 7 visible light communication: modulation schemes and dimming support,” IEEE Communications Magazine, vol. 50, no. 3, pp. 72–82, 2012.J. L. H. Rios, “Experimental validation of inverse mppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 100, no. 1e, 2020.B. Bai, Z. Xu, and Y. Fan, “Joint led dimming and high capacity visible light communication by overlapping ppm,” in The 19th Annual Wireless and Optical Communications Conference (WOCC 2010). IEEE, 2010, pp. 1–5.F. Zafar, D. Karunatilaka, and R. Parthiban, “Dimming schemes for visible light communication: the state of research,” IEEE Wireless Communications, vol. 22, no. 2, pp. 29–35, 2015.P. Cao, J. Chen, and X. You, “An initialization scheme for blind equalization in vlc systems,” in 2017 16th International Conference on Optical Communications and Networks (ICOCN). IEEE, 2017, pp. 1–3.K. Werfli, P. A. Haigh, Z. Ghassemlooy, P. Chvojka, S. Zvanovec, S. Rajbhandari, and S. Long, “Multi-band carrier-less amplitude and phase modulation with decision feedback equalization for bandlimited vlc systems,” in 2015 4th International Workshop on Optical Wireless Communications (IWOW). IEEE, 2015, pp. 6–10.H. Burchardt, N. Serafimovski, D. Tsonev, S. Videv, and H. Haas, “Vlc: Beyond pointto-point communication,” IEEE Communications Magazine, vol. 52, no. 7, pp. 98–105, 2014.X. Huang, J. Shi, J. Li, Y. Wang, Y. Wang, and N. Chi, “750mbit/s visible light communications employing 64qam-ofdm based on amplitude equalization circuit,” in 2015 optical fiber communications conference and exhibition (OFC). IEEE, 2015, pp. 1–3.G. Zhang, X. Hong, C. Fei, and X. Hong, “Sparsity-aware nonlinear equalization with greedy algorithms for led-based visible light communication systems,” Journal of Lightwave Technology, vol. 37, no. 20, pp. 5273–5281, 2019.R. Martinek, L. Danys, R. Jaros, D. Mozny, P. Siska, and J. Latal, “Vlc channel equalization simulator based on lms algorithm and virtual instrumentation,” in 2019 International Symposium on Advanced Electrical and Communication Technologies (ISAECT). IEEE, 2019, pp. 1–6.J. B. Carruthers and J. M. Kahn, “Multiple-subcarrier modulation for nondirected wireless infrared communication,” IEEE Journal on Selected Areas in Communications, vol. 14, no. 3, pp. 538–546, 1996.Y. Yang, Z. Zeng, J. Cheng, and C. Guo, “An enhanced dco-ofdm scheme for dimming control in visible light communication systems,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–13, 2016.Y. Hong, J. Xu, and L.-K. Chen, “Experimental investigation of multi-band oct precoding for ofdm-based visible light communications,” Opt. Express, vol. 25, no. 11, pp. 12 908–12 914, May 2017.A. Yesilkaya, E. Basar, F. Miramirkhani, E. Panayirci, M. Uysal, and H. Haas, “Optical mimo-ofdm with generalized led index modulation,” IEEE Transactions on Communications, vol. 65, no. 8, pp. 3429–3441, 2017.K. O. Akande, P. A. Haigh, and W. O. Popoola, “On the implementation of carrierless amplitude and phase modulation in visible light communication,” IEEE Access, vol. 6, pp. 60 532–60 546, 2018.I. Din and H. Kim, “Energy-efficient brightness control and data transmission for visible light communication,” IEEE photonics technology letters, vol. 26, no. 8, pp. 781–784, 2014.G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 gbit/s visible optical wireless transmission based on rgb led,” Optics express, vol. 20, no. 26, pp. B501–B506, 2012.S. H. Younus, A. A. Al-Hameed, A. T. Hussein, M. T. Alresheedi, and J. M. Elmirghani, “Wdm for multi-user indoor vlc systems with scm,” IET Communications, vol. 13, no. 18, pp. 3003–3011, 2019.Y. Chen and M. Jiang, “Joint colour-and-spatial modulation aided visible light communication system,” in 2016 IEEE 83rd vehicular technology conference (VTC Spring). IEEE, 2016, pp. 1–5.K. P. Pujapanda, “Lifi integrated to power-lines for smart illumination cum communication,” in 2013 International Conference on Communication Systems and Network Technologies. IEEE, 2013, pp. 875–878.G. Sun, W. Zhao, R. Wang, and X. Li, “Design of ethernet-vlc data conversion system based on fpga,” International Journal of Computer Theory and Engineering, vol. 12, no. 3, 2020.Z. Ghassemlooy, L. N. Alves, S. Zvanovec, and M.-A. Khalighi, Visible light communications: theory and applications. CRC press, 2017.X. Wang, L. Wang, K. Jian, C. Wang, and C. P. Yue, “A rgb led pam-4 visible light communication transmitter based on a system design with equalization,” in 2020 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA). IEEE, 2020, pp. 798–801.C. Min, X. Chen, X. Mao, X. Li, T. Pan, Q. Sun, and H. Chen, “A novel method for constructing vlc equalizer with active-passive hybrid network,” IEEE Photonics Journal, vol. 12, no. 2, pp. 1–10, 2020.N. Fujimoto and S. Yamamoto, “The fastest visible light transmissions of 662 mb/s by a blue led, 600 mb/s by a red led, and 520 mb/s by a green led based on simple ook-nrz modulation of a commercially available rgb-type white led using pre-emphasis and postequalizing techniques,” in 2014 The European Conference on Optical Communication (ECOC). IEEE, 2014, pp. 1–3.H. Li, X. Chen, J. Guo, and H. Chen, “A 550 mbit/s real-time visible light communication system based on phosphorescent white light led for practical high-speed low-complexity application,” Optics express, vol. 22, no. 22, pp. 27 203–27 213, 2014.R. Kisacik, M. Yagan, M. Uysal, A. Pusane, and A. Yalcinkaya, “A new led response model and its application to pre-equalization in vlc systems,” IEEE Photonics Technology Letters, vol. 33, no. 17, pp. 955–958, 2021.M. Ataee, S. M. S. Sadough, and Z. Ghassemlooy, “Adaptive equalization for visible light communications with power over ethernet backhaul,” in 2020 3rd West Asian Symposium on Optical and Millimeter-wave Wireless Communication (WASOWC). IEEE, 2020, pp. 1–5.J. Gancarz, H. Elgala, and T. D. Little, “Impact of lighting requirements on vlc systems,” IEEE Communications Magazine, vol. 51, no. 12, pp. 34–41, 2013.A. Dix, J. Finlay, G. D. Abowd, and R. Beale, “Human-computer interaction,” Harlow ua, 2000.J. A. Jacko, “Human computer interaction handbook: Fundamentals, evolving technologies, and emerging applications,” 2012.J. K. Kwon, “Inverse source coding for dimming in visible light communications using nrz-ook on reliable links,” IEEE Photonics Technology Letters, vol. 22, no. 19, pp. 1455–1457, 2010.T. Wang, F. Yang, L. Cheng, and J. Song, “Spectral-efficient generalized spatial modulation based hybrid dimming scheme with laco-ofdm in vlc,” IEEE Access, vol. 6, pp. 41 153–41 162, 2018.Y. Zuo and J. Zhang, “A novel coding based dimming scheme with constant transmission efficiency in vlc systems,” Applied Sciences, vol. 9, no. 4, 2019. [Online]. Available: https://www.mdpi.com/2076-3417/9/4/803D.-F. Zhang, Y.-J. Zhu, and Y.-Y. Zhang, “Multi-led phase-shifted ook modulation based visible light communication systems,” IEEE Photonics Technology Letters, vol. 25, no. 23, pp. 2251–2254, 2013.C.Wang, Y. Yang, C. Guo, Z. Zeng, and C. Feng, “Generalized dimming control scheme with optimal dimming control pattern for vlc,” in 2020 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2020, pp. 1–6.S. He, G. Ren, L. Wu, Z. Sun, and Y. Zhao, “Flicker mitigation and dimming control analyze of duty cycle fixed-mvpm for indoor vlc system,” in 2020 International Conference on Computing, Networking and Communications (ICNC). IEEE, 2020, pp. 6–9.J.-N. Guo, J. Zhang, Y.-Y. Zhang, G. Xin, and L. Li, “Constant weight space-time codes for dimmable mimo-vlc systems,” IEEE Photonics Journal, vol. 12, no. 6, pp. 1–15, 2020.J. Henao-Rios, D. Marquez-Viloria, and N. Guerrero-Gonz´alez, “Real time implementation of a hybrid differential manchester-pwm encoding for constant data rate under variable brightness in vlc systems,” in 2020 IEEE Colombian Conference on Communications and Computing (COLCOM). IEEE, 2020, pp. 1–5.G. Miao, J. Zander, K. W. Sung, and S. B. Slimane, Fundamentals of mobile data networks. Cambridge University Press, 2016.R. B. Nunes, A. Shahpari, J. A. L. Silva, M. Lima, P. S. B. de Andr˜A©, and M. E. V. Segatto, “Experimental demonstration of a 33.5-gb/s ofdm-based pon with subcarrier pre-emphasis,” IEEE Photonics Technology Letters, vol. 28, no. 8, pp. 860–863, 2016.E. Basar, “Index modulation techniques for 5g wireless networks,” IEEE Communications Magazine, vol. 54, no. 7, pp. 168–175, 2016.E. Basar, M. Wen, R. Mesleh, M. Di Renzo, Y. Xiao, and H. Haas, “Index modulation techniques for next-generation wireless networks,” IEEE Access, vol. 5, pp. 16 693–16 746, 2017.K. M. vd Zwaag, J. L. Neves, H. R. Rocha, M. E. Segatto, and J. A. Silva, “Adaptation to the leds flicker requirement in visible light communication systems through ce-ofdm signals,” Optics Communications, vol. 441, pp. 14 – 20, 2019.F. T. Monteiro, W. S. Costa, J. L. Neves, D. M. Silva, H. R. Rocha, E. O. Salles, and J. A. Silva, “Experimental evaluation of pulse shaping based 5g multicarrier modulation formats in visible light communication systems,” Optics Communications, vol. 457, p. 124693, 2020.Q. Wang, Z. Wang, L. Dai, and J. Quan, “Dimmable visible light communications based on multilayer aco-ofdm,” IEEE Photonics Journal, vol. 8, no. 3, pp. 1–11, 2016.A. W. Azim, Y. Le Guennec, and G. Maury, “Spectrally augmented hartley transform precoded asymmetrically clipped optical ofdm for vlc,” IEEE Photonics Technology Letters, vol. 30, no. 23, pp. 2029–2032, 2018.C. Guerra-Y´anez, S. Zv´anovec, and Z. Ghassemlooy, “Experimental evaluation of a hermite function-based multicarrier scheme for vlc,” in 2021 17th International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2021, pp. 1–4.N. Bamiedakis, R. Penty, and I. White, “Carrierless amplitude and phase modulation in wireless visible light communication systems,” Philosophical Transactions of the Royal Society A, vol. 378, no. 2169, p. 20190181, 2020.S. Liang, L. Qiao, X. Lu, and N. Chi, “Enhanced performance of a multiband supernyquist cap16 vlc system employing a joint mimo equalizer,” Optics express, vol. 26, no. 12, pp. 15 718–15 725, 2018.P. A. Haigh, P. Chvojka, Z. Ghassemlooy, S. Zvanovec, and I. Darwazeh, “Nonorthogonal multi-band cap for highly spectrally efficient vlc systems,” in 2018 11th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2018, pp. 1–6.P. A. Haigh, P. Chvojka, A. Minotto, A. Burton, P. Murto, E. Wang, Z. Ghassemlooy, S. Zvanovec, F. Cacialli, and I. Darwazeh, “Hybrid super-nyquist cap modulation based vlc with low bandwidth polymer leds,” in 2019 IEEE 30th Annual International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC). IEEE, 2019, pp. 1–6.K. O. Akande and W. O. Popoola, “Mimo techniques for carrierless amplitude and phase modulation in visible light communication,” IEEE Communications Letters, vol. 22, no. 5, pp. 974–977, 2018.H. Chun, S. Rajbhandari, G. Faulkner, D. Tsonev, E. Xie, J. J. D. McKendry, E. Gu, M. D. Dawson, D. C. O’Brien, and H. Haas, “Led based wavelength division multiplexed 10 gb/s visible light communications,” Journal of lightwave technology, vol. 34, no. 13, pp. 3047–3052, 2016.J. L. H. Rios, N. G. Gonz´alez, M. R. Ribeiro, and J. A. Silva, “Experimental validation of a three-dimensional modulation format for data transmission in rgb visible light communication systems,” IET Communications, vol. 15, no. 2, pp. 279–288, 2021.A. T. Hussein and J. M. Elmirghani, “10 gbps mobile visible light communication system employing angle diversity, imaging receivers, and relay nodes,” Journal of Optical Communications and Networking, vol. 7, no. 8, pp. 718–735, 2015.R. Bian, I. Tavakkolnia, and H. Haas, “15.73 gb/s visible light communication with off-the-shelf leds,” Journal of Lightwave Technology, vol. 37, no. 10, pp. 2418–2424, 2019.Y. Wang, Y. Zhou, T. Gui, K. Zhong, X. Zhou, L. Wang, A. P. T. Lau, C. Lu, and N. Chi, “Efficient mmse-sqrd-based mimo decoder for sefdm-based 2.4-gb/s-spectrumcompressed wdm vlc system,” IEEE Photonics Journal, vol. 8, no. 4, pp. 1–9, 2016.J. Zhu, L. Mu, and X. Zhang, “Pwm-based dimmable hybrid optical ofdm for visiblelight communications,” IET Communications, vol. 14, no. 6, pp. 930–936, 2020.M. Mohammedi Merah, H. Guan, and L. Chassagne, “Experimental multi-user visible light communication attocell using multiband carrierless amplitude and phase modulation,” IEEE Access, vol. 7, pp. 12 742–12 754, 2019.I. Newton, Opticks: or, a treatise of the reflexions, refractions, inflexions and colours of light. Sam Smith & Benj Walford Printers to the Royal Society, 1704.H. Christiaan, Trait´e de la Lumi`ere: O`u Sont Expliqu´es les Causes de ce qui Luy Arrive Dans la Reflexion & Dans la Refraction. Pieter van der Aa, 1690.Y. Thomas, The Bakerian lecture. Experiments and calculation relative to physical optics. Philosophical Transactions of the Royal Society of London, 1804.M. García Castañeda and J. Ewert De-Geus, Introducción a la física moderna. UNIVERSIDAD NACIONAL DE COLOMBIA,, 2003, no. 539 G164i Ej. 1.D. A. Skoog, F. J. Holler, and S. R. Crouch, Principles of instrumental analysis. Cengage learning, 2017.A. F. Rex, R. Wolfson, and M. M. Romo, Fundamentos de f´ısica. Addison Wesley, 2011.W. Doherty and R. Joos, “The pin diode circuit designersˆa€™ handbook,” Microsemi Corporation, vol. 1, pp. 1–137, 1998. [123] I. Yun, Photodiodes: From Fundamentals to Applications. BoD–Books on Demand, 2012.J. Graeme, Photodiode amplifiers: op amp solutions. McGraw-Hill, Inc., 1995.G. P. Agrawal, Fiber-optic communication systems. John Wiley & Sons, 2012, vol. 222.R. M. Gagliardi and S. Karp, “Optical communications,” New York, 1976.M. Petit, L. Michez, J.-M. Raimundo, and P. Dumas, “Electrical and optical measurements of the bandgap energy of a light-emitting diode,” Physics Education, vol. 51, no. 2, p. 025003, 2016.A. Einstein and F. A. Davis, The principle of relativity. Courier Corporation, 2013.N. Chi, LED-based visible light Communications. Springer, 2018.E. F. Schubert, Light-Emitting Diodes. Cambridge University Press, 2006.J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.S. M. Berman, D. S. Greenhouse, I. L. Bailey, R. D. Clear, and T. W. Raasch, “Human electroretinogram responses to video displays, fluorescent lighting, and other high frequency sources.” Optometry and vision science: official publication of the American Academy of Optometry, vol. 68, no. 8, pp. 645–662, 1991.K. Lee and H. Park, “Modulations for visible light communications with dimming control,” IEEE photonics technology letters, vol. 23, no. 16, pp. 1136–1138, 2011.H.-J. Jang, J.-H. Choi, Z. Ghassemlooy, and C. G. Lee, “Pwm-based ppm format for dimming control in visible light communication system,” in 2012 8th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP). IEEE, 2012, pp. 1–5.F. Knobloch, “Noncoherent dimming frequency shift on-off keying scheme for low data rate optical street lighting communication,” ICTON 2015, p. Mo.B2.5, 2015.C.-S. A. Gong, Y.-C. Lee, J.-L. Lai, C.-H. Yu, L. R. Huang, and C.-Y. Yang, “The highefficiency led driver for visible light communication applications,” Scientific reports, vol. 6, p. 30991, 2016.B. Aydin and C¸ . Duman, “Comparison of ook-rz and 4-ppm performances in li-fi systems using led arrays,” Optics & Laser Technology, vol. 153, p. 108247, 2022.A. Pradana, N. Ahmadi, T. Adiono, W. A. Cahyadi, and Y.-H. Chung, “Vlc physical layer design based on pulse position modulation (ppm) for stable illumination,” in 2015 international symposium on intelligent signal processing and communication systems (ISPACS). IEEE, 2015, pp. 368–373.J. R. Barry, Wireless infrared communications. Springer Science & Business Media, 2012, vol. 280.S. N. Ismail and M. H. Salih, “A review of visible light communication (vlc) technology,” in AIP Conference Proceedings, vol. 2213, no. 1. AIP Publishing LLC, 2020, p. 020289.D.-s. Shiu and J. M. Kahn, “Differential pulse-position modulation for power-efficient optical communication,” IEEE transactions on communications, vol. 47, no. 8, pp. 1201–1210, 1999.V. Dixit and A. Kumar, “Performance analysis of l-ppm modulated nlos-vlc system with perfect and imperfect csi,” Journal of Optics, vol. 23, no. 1, p. 015702, 2020.G. Lee and G. Schroeder, “Optical pulse position modulation with multiple positions per pulsewidth,” IEEE Transactions on Communications, vol. 25, no. 3, pp. 360–364, 1977.C. N. Georghiades, “Modulation and coding for throughput-efficient optical systems,” IEEE Transactions on Information Theory, vol. 40, no. 5, pp. 1313–1326, 1994.X. Liu, S. Chandrasekhar, T. Wood, R. Tkach, P. Winzer, E. Burrows, and A. Chraplyvy, “M-ary pulse-position modulation and frequency-shift keying with additional polarization/phase modulation for high-sensitivity optical transmission,” Optics Express, vol. 19, no. 26, pp. B868–B881, 2011.Y. Akaiwa, “Digital modulation/demodulation for mobile radio communication,” 2015.L. Litwin, “An introduction to multicarrier modulation,” IEEE potentials, vol. 19, no. 2, pp. 36–38, 2000.A. A. Hajomer, X. Yang, and W. Hu, “Secure ofdm transmission precoded by chaotic discrete hartley transform,” IEEE Photonics Journal, vol. 10, no. 2, pp. 1–9, 2017.I. Mapfumo, Performance of asymmetrically clipped optical OFDM and DC-biased optical OFDM based on fast Fourier transform/discrete Hartley transform for powerline communication-visible light communication systems under impulsive noise. University of Johannesburg (South Africa), 2020.A. Goldsmith, Wireless communications. Cambridge university press, 2005.G. Cossu, W. Ali, R. Corsini, and E. Ciaramella, “Gigabit-class optical wireless communication system at indoor distances (1.5 – 4 m),” Opt. Express, vol. 23, no. 12, pp. 15 700–15 705, Jun 2015.K. Liang, C.-W. Chow, and Y. Liu, “Rgb visible light communication using mobilephone camera and multi-input multi-output,” Opt. Express, vol. 24, no. 9, pp. 9383–9388, May 2016.C.-W. Chow, R.-J. Shiu, Y.-C. Liu, Y. Liu, and C.-H. Yeh, “Non-flickering 100 m rgb visible light communication transmission based on a cmos image sensor,” Opt. Express, vol. 26, no. 6, pp. 7079–7084, Mar 2018.P. Luo, M. Zhang, Z. Ghassemlooy, H. Le Minh, H. Tsai, X. Tang, L. C. Png, and D. Han, “Experimental demonstration of rgb led-based optical camera communications,” IEEE Photonics Journal, vol. 7, no. 5, pp. 1–12, 2015.M. S. Moreolo, R. Mu˜noz, and G. Junyent, “Novel power efficient optical ofdm based on hartley transform for intensity-modulated direct-detection systems,” Journal of lightwave Technology, vol. 28, no. 5, pp. 798–805, 2010.R. N. Bracewell, “Discrete hartley transform,” JOSA, vol. 73, no. 12, pp. 1832–1835, 1983.X. Li, R. Mardling, and J. Armstrong, “Channel capacity of im/dd optical communication systems and of aco-ofdm,” in 2007 IEEE International Conference on Communications. IEEE, 2007, pp. 2128–2133.Z. Wang, Q. Wang, W. Huang, and Z. Xu, Visible light communications: modulation and signal processing. John Wiley & Sons, 2017.J. Tang and L. Zhang, “Efficient real-fourier domain-based color shift keying ofdm implemented with hartley transform for visible light communication system,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring). IEEE, 2017, pp. 1–5.Y. Cao, X. Zhou, J. Sun, W. Zhang, and C.-X. Wang, “Optical spatial modulation with dht-based ofdm in visible light communication systems,” in 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017, pp. 1–5.J. R. B. J. M. Kahn, “Wireless infrared communications,” Proceedings of the IEEE, vol. 85, no. 2, pp. 265–298, 1997.Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical wireless communications system and channel modelling with Matlab. CRC press, 2019. [163] R. Mesleh, H. Elgala, and H. Haas, “Optical spatial modulation,” Journal of Optical Communications and Networking, vol. 3, no. 3, pp. 234–244, 2011.L. R. M. Castor, R. Natale, J. A. L. Silva, and M. E. V. Segatto, “Experimental investigation of broadband power line communication modems for onshore oil gas industry: A preliminary analysis,” in 18th IEEE International Symposium on Power Line Communications and Its Applications, 2014, pp. 244–248.L. G. Baltar, F. Schaich, M. Renfors, and J. A. Nossek, “Computational complexity analysis of advanced physical layers based on multicarrier modulation,” in 2011 Future Network & Mobile Summit. IEEE, 2011, pp. 1–8.J. L. H. Rios, N. G. Gonzalez, and J. C. G. ´Alvarez, “Experimental validation of inverse m-ppm modulation for dimming control and data transmission in visible light communications,” IEEE Latin America Transactions, vol. 19, no. 02, pp. 280–287, 2021.S. Hranilovic and F. R. Kschischang, “Optical intensity-modulated direct detection channels: signal space and lattice codes,” IEEE Transactions on Information Theory, vol. 49, no. 6, pp. 1385–1399, 2003.S. Hranilovic, “On the design of bandwidth efficient signalling for indoor wireless optical channels,” International Journal of Communication Systems, vol. 18, no. 3, pp. 205–228, 2005.P. Fahamuel, J. Thompson, and H. Haas, “Study, analysis and application of optical ofdm, single carrier (sc) and mimo in intensity modulation direct detection (im/dd),” 2013.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83193/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL79383020.2022.pdf79383020.2022.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf12497625https://repositorio.unal.edu.co/bitstream/unal/83193/4/79383020.2022.pdf3fd6958bf0e099922f4ef3006a325285MD54THUMBNAIL79383020.2022.pdf.jpg79383020.2022.pdf.jpgGenerated Thumbnailimage/jpeg5804https://repositorio.unal.edu.co/bitstream/unal/83193/5/79383020.2022.pdf.jpga81b3e1e0acd234488c3d087d2010b2bMD55unal/83193oai:repositorio.unal.edu.co:unal/831932023-08-13 23:04:03.059Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=