Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno

ilustraciones, diagramas, fotografías a blanco y negro

Autores:
Tirano Vanegas, Joaquin Enrique
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84607
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84607
https://repositorio.unal.edu.co/
Palabra clave:
Nanoestructuras
Microestructura
Catalizadores
Fotocatalisis
Nanostructures
Microstructure
Catalysts
Photocatalysis
Fotoelectrodo
Materiales nanoestructurados
Nanoparticulas
Nanoparticulas de níquel
Nanotubos TiO2
Nanoparticles
Nanostructured materials
Nickel nanoparticles
TiO2 nanotubes
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_e2199a11aff5e085956ade82f1a3b0ab
oai_identifier_str oai:repositorio.unal.edu.co:unal/84607
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
dc.title.translated.eng.fl_str_mv Study of the photocatalytic activity of nanoestructured and modified TiO2 electrocatalyst for hydrogen production
title Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
spellingShingle Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
Nanoestructuras
Microestructura
Catalizadores
Fotocatalisis
Nanostructures
Microstructure
Catalysts
Photocatalysis
Fotoelectrodo
Materiales nanoestructurados
Nanoparticulas
Nanoparticulas de níquel
Nanotubos TiO2
Nanoparticles
Nanostructured materials
Nickel nanoparticles
TiO2 nanotubes
title_short Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
title_full Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
title_fullStr Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
title_full_unstemmed Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
title_sort Estudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogeno
dc.creator.fl_str_mv Tirano Vanegas, Joaquin Enrique
dc.contributor.advisor.none.fl_str_mv Zea Ramirez, Hugo Ricardo
dc.contributor.author.none.fl_str_mv Tirano Vanegas, Joaquin Enrique
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.subject.lemb.spa.fl_str_mv Nanoestructuras
Microestructura
Catalizadores
Fotocatalisis
topic Nanoestructuras
Microestructura
Catalizadores
Fotocatalisis
Nanostructures
Microstructure
Catalysts
Photocatalysis
Fotoelectrodo
Materiales nanoestructurados
Nanoparticulas
Nanoparticulas de níquel
Nanotubos TiO2
Nanoparticles
Nanostructured materials
Nickel nanoparticles
TiO2 nanotubes
dc.subject.lemb.eng.fl_str_mv Nanostructures
Microstructure
Catalysts
Photocatalysis
dc.subject.proposal.spa.fl_str_mv Fotoelectrodo
Materiales nanoestructurados
Nanoparticulas
Nanoparticulas de níquel
Nanotubos TiO2
dc.subject.proposal.eng.fl_str_mv Nanoparticles
Nanostructured materials
Nickel nanoparticles
TiO2 nanotubes
description ilustraciones, diagramas, fotografías a blanco y negro
publishDate 2022
dc.date.issued.none.fl_str_mv 2022-11-18
dc.date.accessioned.none.fl_str_mv 2023-08-29T13:33:41Z
dc.date.available.none.fl_str_mv 2023-08-29T13:33:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84607
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84607
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.references.spa.fl_str_mv A. A. Al-Swayih, “The electrochemical behavior of titanium improved by nanotubular oxide formed by anodization for biomaterial applications: A review,” Orient. J. Chem., vol. 32, no. 6, pp. 2841–2856, 2016.
A. Apolinário et al., “The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: A detailed study of the growth mechanism,” J. Mater. Chem. A, vol. 2, no. 24, pp. 9067–9078, 2014.
A. F. Cipriano, C. Miller, and H. Liu, “Anodic growth and biomedical applications of TiO2 nanotubes,” J. Biomed. Nanotechnol., vol. 10, no. 10, pp. 2977–3003, 2014.
A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.
A. G. Kontos et al., “Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes,” Chem. Phys. Lett., vol. 490, no. 1–3, pp. 58–62, 2010.
A. G. Kontos et al., “Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology,” Nanotechnology, vol. 20, p. 045603, 2009.
A. Hameed, M. A. Gondal, and Z. H. Yamani, “Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: Role of 3d-orbitals,” Catal. Commun., vol. 5, no. 11, pp. 715–719, 2004.
A. Kudo, “Development of photocatalyst materials for water splitting,” Int. J. Hydrogen Energy, vol. 31, no. 2, pp. 197–202, 2006.
A. Matsuda, S. Sreekantan, and W. Krengvirat, “Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation,” J. Asian Ceram. Soc., vol. 1, no. 3, pp. 203–219, 2013.
A. Pozio, “Effect of Low Cobalt Loading on TiO2 Nanotube Arrays for Water-Splitting,” Int. J. Electrochem., no. NOVEMBER 2014, pp. 1–7, 2014.
A. Pozio, “Effect of Tantalum Doping on TiO<sub>2</sub> Nanotube Arrays for Water-Splitting,” Mod. Res. Catal., vol. 04, no. 01, pp. 1–12, 2015.
A. Pozio, A. Masci, and M. Pasquali, “Nickel-TiO2 nanotube anode for photo-electrolysers,” Sol. Energy, vol. 136, pp. 590–596, 2016.
A. Sharma, R. . Karn, and S. . Pandiyan, “Synthesis of TiO2 nanoparticles by ultrasonic assisted sol-gel method,” J. Basic Appl. Eng. Res., vol. 1, no. 9, pp. 1–5, 2014.
A. Torchani, S. Saadaoui, R. Gharbi, and M. Fathallah, “Sensitized solar cells based on natural dyes,” Curr. Appl. Phys., vol. 15, no. 3, pp. 307–312, 2015.
A. Valota et al., “Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes,” Electrochim. Acta, vol. 54, no. 18, pp. 4321–4327, 2009.
B. Chen, J. Hou, and K. Lu, “Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors,” Langmuir, vol. 29, no. 19, pp. 5911–5919, 2013.
B. Chong et al., “Formation Mechanism of Gaps and Ribs Around Anodic TiO2 Nanotubes and Method to Avoid Formation of Ribs,” J. Electrochem. Soc., vol. 162, no. 4, pp. H244–H250, 2015.
B. Chong et al., “Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions,” Nanotechnology, vol. 26, no. 14, 2015.
B. Wielage, G. Alisch, T. Lampke, and D. Nickel, “Anodizing – a key for surface treatment of aluminium,” Key Eng. Mater., vol. 384, pp. 263–281, 2008.
C. A. Grimes and G. K. Mor, TiO2 nanotube arrays Synthesis Properties and Applications. Springer US, 2009.
C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays. 2009.
C. Adán, J. Marugán, E. Sánchez, C. Pablos, and R. Van Grieken, “Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes,” Electrochim. Acta, vol. 191, pp. 521–529, 2016.
C. C. Chen and S. J. Hsieh, “Evaluation of fluorine ion concentration in TiO2 NT anodization process,” J. Electrochem. Soc., vol. 157, no. 6, pp. 125–130, 2010.
C. C. Nguyen, N. N. Vu, and T.-O. Do, “Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications,” J. Mater. Chem. A, vol. 3, no. 36, pp. 18345–18359, 2015.
C. J. Chen, C. H. Liao, K. C. Hsu, Y. T. Wu, and J. C. S. Wu, “P-N junction mechanism on improved NiO/TiO2 photocatalyst,” Catal. Commun., vol. 12, no. 14, pp. 1307–1310, 2011.
C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte,” J. Phys. Chem. B, vol. 109, no. 33, pp. 15754–15759, 2005.
C. Song, “Overview of Hydrogen Production Options for Hydrogen Energy Development , Fuel-Cell Fuel Processing and Mitigation of CO2 Emissions,” in Proceedings of 20th international Pittsburgh coal conference. Hydrogen from coal., 2003, vol. paper 40-3, pp. 1–15.
D. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res., vol. 16, no. 12, pp. 3331–3334, 2001.
D. Khudhair et al., “Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations,” Mater. Sci. Eng. C, vol. 59, pp. 1125–1142, 2016.
D. Kowalski et al., “Self-organization of TiO2 nanotubes in mono-, di- and tri-ethylene glycol electrolytes,” Electrochim. Acta, vol. 204, pp. 287–293, 2015.
D. Kowalski, J. Mallet, J. Michel, and M. Molinari, “Low electric field strength self-organization of anodic TiO2 nanotubes in diethylene glycol electrolyte,” J. Mater. Chem. A, vol. 3, no. 12, pp. 6655–6661, 2015.
D. P. Opra, S. V. Gnedenkov, and S. L. Sinebryukhov, “Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review,” J. Power Sources, vol. 442, no. July, p. 227225, 2019.
D. Regonini, a. Satka, D. W. E. Allsopp, a. Jaroenworaluck, R. Stevens, and C. R. Bowen, “Anodised Titania Nanotubes Prepared in a Glycerol/NaF Electrolyte,” J. Nanosci. Nanotechnol., vol. 9, no. 7, pp. 4410–4416, 2009.
D. Regonini, A. Satka, A. Jaroenworaluck, D. W. E. Allsopp, C. R. Bowen, and R. Stevens, “Factors influencing surface morphology of anodized TiO 2 nanotubes,” Electrochim. Acta, vol. 74, pp. 244–253, 2012.
D. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes,” Mater. Sci. Eng. R Reports, vol. 74, no. 12, pp. 377–406, 2013.
D. Sinha, D. De, D. Goswami, A. Mondal, and A. Ayaz, “ZnO and TiO2 Nanostructured Dye sensitized Solar Photovoltaic Cell,” Mater. Today Proc., vol. 11, pp. 782–788, 2019.
D. Yu, D. Yu, J. Dai, Y. Zhang, and F. Wang, “Growth of Cu2O / TiO2 heterojunction and its photoelectrochemical properties,” Mater. Lett., vol. 263, pp. 1–4, 2020.
E. A. Baranova, A. Cally, A. Allagui, S. Ntais, and R. Wüthrich, “Nickel particles with increased catalytic activity towards hydrogen evolution reaction,” Comptes Rendus Chim., vol. 16, no. 1, pp. 28–33, 2013.
E. Kusrini and A. S. Afrozi, “Photocatalytic Reforming of Glycerol-Water Over Nitrogen- and Nickel-Doped Titanium Dioxide Nanoparticles,” no. 06, pp. 47–53, 2012.
E. Marceau, M. Che, J. Čejka, and A. Zukal, “Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM-41 and Ni/Al-MCM-41 Catalysts,” ChemCatChem, vol. 2, no. 4, pp. 413–422, 2010.
E. Samuel, B. Joshi, M. Kim, M. T. Swihart, and S. S. Yoon, “Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting,” Nano Energy, vol. 72, no. January, p. 104648, 2020.
F. Fresno, R. Portela, S. Suárez, and J. M. Coronado, “Photocatalytic materials: recent achievements and near future trends,” J. Mater. Chem. A, vol. 2, no. 9, p. 2863, 2014.
F. M. B. Hassan et al., “Formation of Self-Ordered TiO2 Nanotubes by Electrochemical Anodization of Titanium in 2-Propanol/NH4F,” J. Electrochem. Soc., vol. 156, p. K227, 2009.
F. Safizadeh, E. Ghali, and G. Houlachi, “Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review,” Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 256–274, 2015.
G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Anodic growth of TiO2 nanopore arrays at various temperatures,” Electrochim. Acta, vol. 104, pp. 526–535, 2013.
G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Fabrication of nanoporous TiO2 by electrochemical anodization,” Electrochim. Acta, vol. 55, no. 14, pp. 4359–4367, 2010.
G. J. Cao, B. Cui, W. Q. Wang, G. Z. Tang, Y. C. Feng, and L. P. Wang, “Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization,” Oral Oncol., vol. 50, no. 10, pp. 2581–2587, 2014.
G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett., vol. 38, no. 1, pp. 1–7, 2011.
G. Liu, K. Du, and K. Wang, “Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization,” Appl. Surf. Sci., vol. 388, pp. 313–320, 2016.
G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1625–1637, 2007.
G. S. Pozan, M. Isleyen, and S. Gokcen, “Transition metal coated TiO2 nanoparticles: Synthesis, characterization and their photocatalytic activity,” Appl. Catal. B Environ., vol. 140–141, pp. 537–545, 2013.
G. Thomas, “Overview of Storage Development DOE Hydrogen Program,” Proc. 2000 U.S. DOE Hydrog. Progr. Rev., pp. 56–69, 2000.
H. C. Liang, X. Z. Li, and J. Nowotny, “Photocatalytical Properties of TiO2 Nanotubes,” Solid State Phenom., vol. 162, pp. 295–328, 2010.
H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “A new benchmark for TiO2 nanotube array growth by anodization,” J. Phys. Chem. C, vol. 111, no. 20, pp. 7235–7241, 2007.
H. F. Mataré and E. Kostiner, “Defect Electronics in Semiconductors,” J. Electrochem. Soc., vol. 119, no. 8, p. 257C, 1972.
H. Kmentova et al., “Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication,” Catal. Today, vol. 287, pp. 130–136, 2017.
H. Liu et al., “Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes,” Surf. Coatings Technol., vol. 359, no. August 2018, pp. 468–475, 2019.
H. M. Y. Choquette, L. Brossard, A. Lasia, “Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite Coated Electrode by AC Impedance Technique.,” J. Electrochem. Soc., vol. 137, no. 6, pp. 1723–1730, 1990.
H. Omidvar, S. Goodarzi, A. Seif, and A. R. Azadmehr, “Influence of anodization parameters on the morphology of TiO2 nanotube arrays,” Superlattices Microstruct., vol. 50, no. 1, pp. 26–39, 2011.
H. Phattepur, G. B. Siddaiah, and N. Ganganagappa, “Synthesis and characterisation of mesoporous TiO2 nanoparticles by novel surfactant assisted sol-gel method for the degradation of organic compounds,” Period. Polytech. Chem. Eng., vol. 63, no. 1, pp. 85–95, 2019.
H. Sopha, A. Jäger, P. Knotek, K. Tesar, M. Jarosova, and J. M. Macak, “Self-organized Anodic TiO2 Nanotube Layers : Influence of the Ti substrate on Nanotube Growth and Dimensions,” Electrochim. Acta, vol. 190, pp. 744–752, 2016.
H. Sopha, L. Hromadko, K. Nechvilova, and J. M. Macak, “Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes,” J. Electroanal. Chem., vol. 759, pp. 122–128, 2015.
H. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Räder, L. Taveira, and P. Schmuki, “Characterization of electronic properties of TiO2 nanotube films,” Corros. Sci., vol. 49, no. 1, pp. 203–210, 2007.
H. Zhang et al., “Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering,” Int. J. Hydrogen Energy, vol. 45, no. 35, pp. 18057–18065, 2020.
I. Ganesh et al., “Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications,” Sci. World J., vol. 2012, pp. 13–20, 2012.
I. H. Tseng, J. C. S. Wu, and H. Y. Chou, “Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction,” J. Catal., vol. 221, no. 2, pp. 432–440, 2004.
J. E. Houser and K. R. Hebert, “The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films.,” Nat. Mater., vol. 8, no. 5, pp. 415–420, 2009.
J. E. Yoo and P. Schmuki, “Critical factors in the anodic formation of extremely ordered titania nanocavities,” J. Electrochem. Soc., vol. 166, no. 11, pp. C3389–C3398, 2019.
J. Joy, J. Mathew, and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4804–4817, 2018.
J. M. Macak et al., “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., vol. 11, no. 1–2, pp. 3–18, 2007.
J. M. Macák, H. Tsuchiya, and P. Schmuki, “High-aspect-ratio TiO2 nanotubes by anodization of titanium,” Angew. Chemie - Int. Ed., vol. 44, no. 14, pp. 2100–2102, 2005.
J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes,” Angew. Chemie - Int. Ed., vol. 44, no. 45, pp. 7463–7465, 2005.
J. M. Macak, K. Sirotna, and P. Schmuki, “Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes,” Electrochim. Acta, vol. 50, no. 18, pp. 3679–3684, 2005.
J. M. Ogden, “Hydrogen: The Fuel of the Future?,” Phys. Today, vol. 55, no. 4, pp. 69–75, 2002.
J. R. Bartels, M. B. Pate, and N. K. Olson, “An economic survey of hydrogen production from conventional and alternative energy sources,” Int. J. Hydrogen Energy, vol. 35, no. 16, pp. 8371–8384, 2010.
J. V. Pasikhani, N. Gilani, and A. E. Pirbazari, “The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays,” Nano-Structures and Nano-Objects, vol. 8, pp. 7–14, 2016.
J. W. Schultze, M. M. Lohrengel, and D. Ross, “Nucleation and growth of anodic oxide films,” Electrochim. Acta, vol. 28, no. 7, pp. 973–984, 1983.
J. Wan, X. Yan, J. Ding, M. Wang, and K. Hu, “Self-organized highly ordered TiO2 nanotubes in organic aqueous system,” Mater. Charact., vol. 60, no. 12, pp. 1534–1540, 2009.
J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, “Photocatalysis fundamentals and surface modification of TiO2 nanomaterials,” Cuihua Xuebao/Chinese J. Catal., vol. 36, no. 12, pp. 2049–2070, 2015.
J. Xue, Q. Shen, F. Yang, W. Liang, and X. Liu, “Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays,” J. Alloys Compd., vol. 607, pp. 163–168, 2014.
J. Yahalom and J. Zahavi, “Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti,” Electrochim. Acta, vol. 15, no. 9, pp. 1429–1435, 1970.
J. Yang et al., “Morphology defects guided pore initiation during the formation of porous anodic alumina,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2285–2291, 2014.
J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, “Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate,” Nouv. J. Chim., vol. 4, no. 11, pp. 623–627, 1980.
K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, “Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst,” J. Chem. Soc. Chem. Commun., pp. 543–544, 1980.
K. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, “A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications,” J. Bio- Tribo-Corrosion, vol. 1, no. 4, pp. 1–22, 2015.
K. Lee, W. S. Nam, and G. Y. Han, “Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study,” Int. J. Hydrogen Energy, vol. 29, no. 13, pp. 1343–1347, 2004.
K. Lu, Z. Tian, and J. A. Geldmeier, “Polishing effect on anodic titania nanotube formation,” Electrochim. Acta, vol. 56, no. 17, pp. 6014–6020, 2011.
K. Nielsch, J. Choi, K. Schwirn, and R. B. Wehrspohn, “Self-ordering Regimes of Porous Alumina : The 10 % Porosity Rule,” Nano Lett., vol. 2, no. 7, pp. 677–680, 2002.
K. S. Lin, H. W. Cheng, W. R. Chen, and C. F. Wu, “Synthesis, characterization, and adsorption kinetics of titania nanotubes for basic dye wastewater treatment,” Adsorption, vol. 16, no. 1–2, pp. 47–56, 2010.
K. S. Raja, M. Misra, and K. Paramguru, “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium,” Electrochim. Acta, vol. 51, no. 1, pp. 154–165, 2005.
K. S. Raja, T. Gandhi, and M. Misra, “Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes,” Electrochem. commun., vol. 9, no. 5, pp. 1069–1076, 2007.
K. Shankar et al., “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, 2007.
K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, and G. D. Sulka, “Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties,” Electrochim. Acta, vol. 180, pp. 801–810, 2015.
L. C. Sim, K. W. Ng, S. Ibrahim, and P. Saravanan, “Preparation of improved p-n junction NiO/TiO2 nanotubes for solar-energy-driven light photocatalysis,” Int. J. Photoenergy, vol. 2013, 2013.
L. G. Devi, N. Kottam, S. G. Kumar, and K. E. Rajashekhar, “Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light,” Cent. Eur. J. Chem., vol. 8, no. 1, pp. 142–148, 2010.
L. Tsui and G. Zangari, “Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion,” J. Electrochem. Soc. , vol. 161, no. 7, pp. D3066–D3077, 2014.
L. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, “Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH 4)2SO4 electrolytes,” J. Electrochem. Soc., vol. 152, no. 10, pp. 405–410, 2005.
L. Yang, D. He, Q. Cai, and C. A. Grimes, “Fabrication and catalytic properties of Co - Ag - Pt nanoparticle-decorated titania nanotube arrays,” J. Phys. Chem. C, vol. 111, no. 23, pp. 8214–8217, 2007.
L. Yin, S. Ji, G. Liu, G. Xu, and C. Ye, “Understanding the growth behavior of titania nanotubes,” Electrochem. commun., vol. 13, no. 5, pp. 454–457, 2011.
M. A. A. Taib, K. A. Razak, M. Jaafar, and Z. Lockman, “Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte,” Mater. Des., vol. 128, no. January, pp. 195–205, 2017.
M. A. V. Zwilling E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach,” Electrochim. Acta, vol. 45, pp. 921–929, 1999.
M. Anpo, M. Takeuchi, K. Ikeue, and S. Dohshi, “Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation . The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti / zeolite catalysts,” Curr. Opin. Solid State Mater. Sci., vol. 6, pp. 381–388, 2002.
M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, “The Preparation and Characterization of Highly Efficient Titanium Oxide-Ba,” Annu. Rev. Mater. Res., vol. 35, no. 1, pp. 1–27, 2005.
M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” Int. J. Hydrogen Energy, vol. 33, no. 15, pp. 4013–4029, 2008.
M. H. Seo, D. J. Kim, and J. S. Kim, “The effects of pH and temperature on Ni-Fe-P alloy electrodeposition from a sulfamate bath and the material properties of the deposits,” Thin Solid Films, vol. 489, no. 1–2, pp. 122–129, 2005.
M. Haskul, A. T. Ülgen, and A. Döner, “Fabrication and characterization of Ni modified TiO2 electrode as anode material for direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 4860–4874, 2020.
M. Hideki and F. Kenji, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina.,” Science (80-. )., vol. 268, no. 5216, pp. 1466–1468, 1995.
M. Khatamian, M. Saket Oskoui, M. Haghighi, and M. Darbandi, “Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS-TiO2/metalosilicate composites,” Int. J. energy Res., vol. 38, no. 13, pp. 1712–1726, 2014.
M. Levent, D. J. Gunn, and M. A. El-Bousiffi, “Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor,” Int. J. Hydrogen Energy, vol. 28, no. 9, pp. 945–959, 2003.
M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, “Hydrogen Production by Water Electrolysis : A Review of Alkaline Water Electrolysis , PEM Water Electrolysis and High Temperature Water Electrolysis,” Int. J. Eng. Adv. Technol., vol. 4, no. 3, pp. 80–93, 2015.
M. Michalska-Domańska, P. Nyga, and M. Czerwiński, “Ethanol-based electrolyte for nanotubular anodic TiO2 formation,” Corros. Sci., vol. 134, no. February, pp. 99–102, 2018.
M. Motola et al., “Comparison of photoelectrochemical performance of anodic single- and double-walled TiO2 nanotube layers,” Electrochem. commun., vol. 97, no. July, pp. 1–5, 2018.
M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev., vol. 11, no. 3, pp. 401–425, 2007.
M. Paulose et al., “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” J. Phys. Chem. B, vol. 110, no. 33, pp. 16179–16184, 2006.
M. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, and C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays,” J. Photochem. Photobiol. A Chem., vol. 178, no. 1, pp. 8–15, 2006.
M. Popczyk, J. Kubisztal, and A. Budniok, “Structure and electrochemical characterization of electrolytic Ni+Mo+Si composite coatings in an alkaline solution,” Electrochim. Acta, vol. 51, no. 27, pp. 6140–6144, 2006.
M. T. Islam et al., “Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water,” Sci. Total Environ., vol. 704, p. 135406, 2020.
M. V Someswararao, D. Pradeep, R. S. Dubey, and P. S. V Subbarao, “Experimental Investigation of Electrospun Titania Nanofibers : An Applied Voltage Influence,” Mater. Today Proc., vol. 18, pp. 384–388, 2019.
M. Wu, T. Duan, Y. Chen, Q. Wen, Y. Wang, and H. Xin, “Surface modification of TiO2 nanotube arrays with metal copper particle for high efficient photocatalytic reduction of Cr(VI),” Desalin. Water Treat., vol. 57, no. 23, pp. 10790–10801, 2016.
M. Yu et al., “Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories,” Electrochem. commun., vol. 87, no. December 2017, pp. 76–80, 2018.
M. Zulfiqar, S. Chowdhury, and A. A. Omar, “Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for Orange II removal,” Sep. Sci. Technol., vol. 53, no. 9, pp. 1412–1422, 2018.
N. A. Kyeremateng, C. Lebouin, P. Knauth, and T. Djenizian, “The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: composite anode materials for Li-ion micro batteries,” Electrochim. Acta, vol. 88, pp. 814–820, 2012.
N. B. Kondrikov, P. L. Titov, S. A. Schegoleva, and M. A. Khorin, “Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes,” Phys. Procedia, vol. 86, no. June 2015, pp. 37–43, 2017.
N. K. Allam, K. Shankar, and C. A. Grimes, “A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing **,” Adv. Mater., vol. 20, pp. 3942–3946, 2008.
N. Vaenas, T. Stergiopoulos, A. G. Kontos, V. Likodimos, and P. Falaras, “Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells,” Electrochim. Acta, vol. 113, pp. 490–496, 2013.
O. Robinson Aguirre and E. Félix Echeverría, “Effects of fluoride source on the characteristics of titanium dioxide nanotubes,” Appl. Surf. Sci., vol. 445, pp. 308–319, 2018.
Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: A system simulation approach,” Int. J. Hydrogen Energy, vol. 28, no. 1, pp. 21–33, 2003.
P. Acevedo-Peña and I. González, “ TiO 2 Nanotubes Formed in Aqueous Media: Relationship between Morphology, Electrochemical Properties and Photoelectrochemical Performance for Water Oxidation ,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.
P. Acevedo-Peña and I. Gonźalez, “TiO2 nanotubes formed in aqueous media: Relationship between morphology, electrochemical properties and photoelectrochemical performance for water oxidation,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.
P. Acevedo-Peña and I. González, “TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: Effect of the electric field and deposition time,” J. Solid State Electrochem., vol. 17, no. 2, pp. 519–526, 2013.
P. C. Hallenbeck and J. R. Benemann, “Biological hydrogen production; Fundamentals and limiting processes,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1185–1193, 2002.
P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angew. Chemie - Int. Ed., vol. 50, no. 13, pp. 2904–2939, 2011.
Q. Cai, L. Yang, and Y. Yu, “Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization,” Thin Solid Films, vol. 515, no. 4, pp. 1802–1806, 2006.
R. A. R. Monteiro, F. V. S. Lopes, R. A. R. Boaventura, A. M. T. Silva, and V. J. P. Vilar, “Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications,” Environ. Sci. Pollut. Res., vol. 22, no. 2, pp. 810–819, 2014.
R. García-Valverde, C. Miguel, R. Martínez-Béjar, and A. Urbina, “Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5352–5362, 2008.
R. Kothari, D. Buddhi, and R. L. Sawhney, “Comparison of environmental and economic aspects of various hydrogen production methods,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 553–563, 2008.
R. M. Navarro, M. C. Sánchez-Sánchez, M. C. Alvarez-Galvan, F. del Valle, and J. L. G. Fierro, “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy Environ. Sci., vol. 2, no. 1, pp. 35–54, 2009.
R. Marschall, “Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity,” Adv. Funct. Mater., vol. 24, no. 17, pp. 2421–2440, 2014.
R. S. Hyam and D. Choi, “Effects of titanium foil thickness on TiO2 nanostructures synthesized by anodization,” RSC Adv., vol. 3, no. 19, pp. 7057–7063, 2013.
R. Sánchez-Tovar, K. Lee, J. García-Antón, and P. Schmuki, “Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions,” Electrochem. commun., vol. 26, no. 1, pp. 1–4, 2013.
R. Sharma, K. Arnoult, K. Hart, M. Mughal, and R. Engelken, “Photoelectrochemical characterization of titania photoanodes fabricated using varying anodization parameters,” IEEE Ind. Appl. Soc. - 51st Annu. Meet. IAS 2015, Conf. Rec., pp. 1–7, 2015.
R. Singh and S. Dutta, “A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts,” Fuel, vol. 220, no. July 2017, pp. 607–620, 2018.
S. B. Patil, P. S. Basavarajappa, N. Ganganagappa, M. S. Jyothi, A. V. Raghu, and K. R. Reddy, “Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification,” Int. J. Hydrogen Energy, vol. 44, no. 26, pp. 13022–13039, 2019.
S. Chen, Q. Chen, M. Gao, S. Yan, R. Jin, and X. Zhu, “Morphology evolution of TiO2 nanotubes by a slow anodization in mixed electrolytes,” Surf. Coatings Technol., vol. 321, pp. 257–264, 2017.
S. G. Lee, S. Lee, and H. I. Lee, “Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger,” Appl. Catal. A Gen., vol. 207, no. 1–2, pp. 173–181, 2001.
S. Gupta, N. Patel, A. Miotello, and D. C. Kothari, “Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction,” J. Power Sources, vol. 279, pp. 620–625, 2015.
S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires,” Nano Lett., vol. 12, pp. 26–32, 2012.
S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, “A flow model of porous anodic film growth on aluminium,” Electrochim. Acta, vol. 52, no. 2, pp. 681–687, 2006.
S. Karthik et al., “Highly-ordered TiO2 nanotube arrays up to 220µm in length: use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, p. 65707, 2007.
S. Liang et al., “Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters,” J. Phys. Chem. C, vol. 116, no. 16, p. 120405164648006, 2012.
S. Meher Kotay and D. Das, “Biohydrogen as a renewable energy resource-Prospects and potentials,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 258–263, 2008.
S. Ozkan, A. Mazare, and P. Schmuki, “Critical parameters and factors in the formation of spaced TiO 2 nanotubes by self-organizing anodization,” Electrochim. Acta, vol. 268, pp. 435–447, 2018.
S. Ozkan, N. T. Nguyen, A. Mazare, I. Cerri, and P. Schmuki, “Controlled spacing of self-organized anodic TiO2 nanotubes,” Electrochem. commun., vol. 69, pp. 76–79, 2016.
S. Ozkan, N. T. Nguyen, A. Mazare, R. Hahn, I. Cerri, and P. Schmuki, “Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales,” Electrochem. commun., vol. 77, pp. 98–102, 2017.
S. P. Albu, I. Paramasivam, P. Schmuki, N. Taccardi, and K. R. Hebert, “Oxide Growth Efficiencies and Self-Organization of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 159, no. 8, pp. H697–H703, 2012.
S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, “Self‐organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth,” Isr. J. Chem., vol. 50, pp. 453–467, 2010.
S. Sato and J. M. White, “Photocatalytic Production of Hydrogen from Water and Texas Lignite by Use of a Platinized Titania Catalyst,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, no. 4, pp. 542–544, 1980.
S. Shen et al., “Titanium dioxide nanostructures for photoelectrochemical applications,” Prog. Mater. Sci., vol. 98, no. July, pp. 299–385, 2018.
S. Sircar, W. E. Waldron, M. B. Rao, and M. Anand, “Hydrogen production by hybrid SMR-PSA-SSF membrane system,” Sep. Purif. Technol., vol. 17, no. 1, pp. 11–20, 1999.
S. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong, and A. R. Mohamed, “Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization,” J. Alloys Compd., vol. 485, no. 1–2, pp. 478–483, 2009.
S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, vol. 93–95, pp. 877–884, 2004.
S. Z. Chu, K. Wada, S. Inoue, S. ichi Todoroki, Y. K. Takahashi, and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition,” Chem. Mater., vol. 14, no. 11, pp. 4595–4602, 2002.
S. Zhao et al., “A mathematical model for initiation and growth of anodic titania nanotube embryos under compact oxide layer,” Electrochem. commun., vol. 91, no. May, pp. 60–65, 2018.
S.-I. In, Y. Hou, B. L. Abrams, P. C. K. Vesborg, and I. Chorkendorff, “Controlled Directional Growth of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 157, no. 5, pp. E69–E74, 2010.
T. H. E. J. Of et al., “Recent Advances in the Use of TiO 2 Nanotube and Nanowire Arrays for Oxidative photoelectrochemistry,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6327–6359, 2009.
T. Teka, “Current State Of Doped-TiO2 Photocatalysts And Synthesis Methods To Prepare TiO2 Films : A Review,” Int. J. Technol. Enhanc. Emerg. Eng. Res., vol. 3, no. 01, pp. 14–18, 2015.
U. K. Chime, F. I. Ezema, and J. Marques-hueso, “Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization,” Opt. - Int. J. Light Electron Opt., vol. 174, no. August, pp. 558–562, 2018.
V. Vega et al., “Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28682–28692, 2015.
W. C. Lattin and V. P. Utgikar, “Transition to hydrogen economy in the United States: A 2006 status report,” Int. J. Hydrogen Energy, vol. 32, no. 15 SPEC. ISS., pp. 3230–3237, 2007.
W. Li et al., “Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes,” Electrochim. Acta, vol. 160, pp. 57–63, 2015.
W. Zhu, G. Wang, X. Hong, X. Shen, D. Li, and X. Xie, “Metal nanoparticle chains embedded in TiO2 nanotubes prepared by one-step electrodeposition,” Electrochim. Acta, vol. 55, no. 2, pp. 480–484, 2009.
X. Bai, L. Ma, Z. Dai, and H. Shi, “Electrochemical synthesis of p-Cu2O / n-TiO2 heterojunction electrode with enhanced photoelectrocatalytic activity,” Mater. Sci. Semicond. Process., vol. 74, pp. 319–328, 2018.
X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-Based Photocatalytic Hydrogen Generation,” Chem. Rev., vol. 110, no. 11, pp. 6503–6570, 2010.
X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen, “Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts,” Catal. Today, vol. 225, pp. 64–73, 2014.
X. M. Zhong et al., “Fabrication and Formation Mechanism of Triple-Layered TiO2 Nanotubes,” J. Electrochem. Soc., vol. 160, no. 10, pp. E125–E129, 2013.
X. Xiao, K. Ouyang, R. Liu, and J. Liang, “Anatase type titania nanotube arrays direct fabricated by anodization without annealing,” Appl. Surf. Sci., vol. 255, no. 6, pp. 3659–3663, 2009.
X. Zhou, N. T. Nguyen, S. Özkan, and P. Schmuki, “Anodic TiO2 nanotube layers: Why does self-organized growth occur - A mini review,” Electrochem. commun., vol. 46, pp. 157–162, 2014.
Y. Fu and A. Mo, “A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications,” Nanoscale Res. Lett., vol. 13, 2018.
Y. Kado, R. Hahn, and P. Schmuki, “Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere,” J. Electroanal. Chem., vol. 662, no. 1, pp. 25–29, 2011.
Y. L. Pang, S. Lim, H. C. Ong, and W. T. Chong, “A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts,” Appl. Catal. A Gen., vol. 481, pp. 127–142, 2014.
Y. Lai, H. Zhuang, L. Sun, Z. Chen, and C. Lin, “Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance,” Electrochim. Acta, vol. 54, no. 26, pp. 6536–6542, 2009.
Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc., vol. 153, no. 7, pp. 123–127, 2006.
Y. Li, G. Lu, and S. Li, “Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy,” Chemosphere, vol. 52, no. 5, pp. 843–850, 2003.
Y. Sun, G. Wang, and K. Yan, “TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell,” Int. J. Hydrogen Energy, vol. 36, no. 24, pp. 15502–15508, 2011.
Y. Wang et al., “Simulation and separation of anodizing current-time curves, morphology evolution of TiO2 nanotubes anodized at various temperatures,” J. Electrochem. Soc., vol. 161, no. 14, pp. H891–H895, 2014.
Y. Yang, X. Wang, and L. Li, “Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 149, no. 1, pp. 58–62, 2008.
Y. Zhang et al., “Quantitative relationship between nanotube length and anodizing current during constant current anodization.,” Electrochim. Acta, vol. 180, pp. 147–154, 2015.
Y. Zhang, “Electronic structures of impurities and point defects in semiconductors,” Chinese Phys. B, vol. 27, no. 11, 2018.
Y. Zhang, H. Fan, X. Ding, Q. Yan, L. Wang, and W. Ma, “Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations,” Electrochim. Acta, vol. 176, pp. 1083–1091, 2015.
Z. B. Xie and D. J. Blackwood, “Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol,” Electrochim. Acta, vol. 56, no. 2, pp. 905–912, 2010.
Z. Ghorannevis, T. Hoseinzadeh, M. Ghoranneviss, A. H. Sari, and M. K. Salem, “Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method,” J. Theor. Appl. Phys., no. 11, pp. 243–248, 2017.
Z. Liu, B. Pesic, K. S. Raja, R. R. Rangaraju, and M. Misra, “Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3250–3257, 2009.
Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, and J. Wang, “A Novel Approach to Well-Aligned TiO2 Nanotube Arrays and Their Enhanced Photocatalytic Performances,” AIChE J., vol. 59, no. 6, pp. 2134–2144, 2013.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 178 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84607/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84607/4/79614908.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84607/5/79614908.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0b70a520796d15f2d748472491a32acc
c4ab43e9bc560bead213f674eebfe3e6
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090207131074560
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zea Ramirez, Hugo Ricardoe584f21ed47d96fb3b42f8367e9d73d5Tirano Vanegas, Joaquin Enrique781a226a61d04414572bfff67a2c2a50Grupo de Investigación en Materiales, Catálisis y Medio Ambiente2023-08-29T13:33:41Z2023-08-29T13:33:41Z2022-11-18https://repositorio.unal.edu.co/handle/unal/84607Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías a blanco y negroilustraciones, diagramas, fotografías a blanco y negroSe obtuvieron nanotubos de TiO2 dopados con níquel, con un notorio desempeño fotocatalítico, gran área superficial y con dimensiones y características controladas, mediante anodización electroquímica. Los resultados complementan el estado del arte de la síntesis de este tipo de nanoestructuras, establece relaciones entre las características morfológicas obtenidas y las variables de síntesis. Estas relaciones permiten establecer zonas de síntesis donde se puede controlar la morfología de los nanotubos. Se discuten los resultados de tratamientos que modifican la estructura cristalina de los nanotubos y su superficie. Se discute el efecto del tratamiento térmico sobre la evolución de la fase anatasa del rutilo en los nanotubos de TiO2. Se establece un protocolo para modificar superficialmente los nanotubos de TiO2 con nanopartículas de níquel, mediante electrodepositación. Para cada tratamiento se realiza una caracterización morfológica, cristalina y elemental de las muestras. Se efectúa la caracterización electroquímica de los fotoelectrodos sintetizados y los efectos de las morfologías de las nanoestructuras sobre su comportamiento fotoelectroquímico. Los análisis revelan el comportamiento eléctrico de las nanoestructuras sintetizadas dentro de una celda fotoelectroquímica, así como el tipo de semiconductor y el rol del níquel en la recombinación de cargas fotogeneradas. Se revisan los circuitos equivalentes que representan el comportamiento de nanotubos modificados con níquel en la producción fotoelectroquímica de hidrógeno. (Texto tomado de la fuente)Nickel-doped TiO2 nanotubes with remarkable photocatalytic performance, large surface area, and controlled dimensions and characteristics were obtained by electrochemical anodization. The results complement the state of the art of the synthesis of this type of nanostructure, establishing relationships between the morphological characteristics obtained and the synthesis variables. These relationships allow for the establishment of synthesis zones where the morphology of the nanotubes can be controlled. The results of treatments that modify the crystalline structure of the nanotubes and their surface are discussed. The effect of thermal treatment on the evolution of the anatase phase in TiO2 nanotubes is also discussed. A protocol is established to superficially modify TiO2 nanotubes with nickel nanoparticles, by using electrodeposition. For each treatment, a morphological, crystalline, and elemental characterization of the samples is carried out. The electrochemical characterization of the synthesized photoelectrodes and the effects of the morphologies of the nanostructures on their photoelectrochemical behavior are also carried out. The analyses reveal the electrical behavior of the nanostructures synthesized within a photoelectrochemical cell, as well as the type of semiconductor and the role of nickel in the recombination of photogenerated charges. Equivalent circuits representing the behavior of nickel-modified nanotubes in the photoelectrochemical production of hydrogen are also reviewed.DoctoradoDoctor en Ingeniería - Ingeniería QuímicaDesarrollo de electrocatalizadores modificados178 páginasapplication/pdfEstudio de la actividad fotocatalitica de electrocatalizadores de TiO2 nanoestructurados y modificados en la produccion de hidrogenoStudy of the photocatalytic activity of nanoestructured and modified TiO2 electrocatalyst for hydrogen productionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería QuímicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáA. A. Al-Swayih, “The electrochemical behavior of titanium improved by nanotubular oxide formed by anodization for biomaterial applications: A review,” Orient. J. Chem., vol. 32, no. 6, pp. 2841–2856, 2016.A. Apolinário et al., “The role of the Ti surface roughness in the self-ordering of TiO2 nanotubes: A detailed study of the growth mechanism,” J. Mater. Chem. A, vol. 2, no. 24, pp. 9067–9078, 2014.A. F. Cipriano, C. Miller, and H. Liu, “Anodic growth and biomedical applications of TiO2 nanotubes,” J. Biomed. Nanotechnol., vol. 10, no. 10, pp. 2977–3003, 2014.A. Fujishima and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, vol. 238, pp. 37–38, 1972.A. G. Kontos et al., “Photocatalytic degradation of gas pollutants on self-assembled titania nanotubes,” Chem. Phys. Lett., vol. 490, no. 1–3, pp. 58–62, 2010.A. G. Kontos et al., “Photo-induced effects on self-organized TiO2 nanotube arrays: the influence of surface morphology,” Nanotechnology, vol. 20, p. 045603, 2009.A. Hameed, M. A. Gondal, and Z. H. Yamani, “Effect of transition metal doping on photocatalytic activity of WO3 for water splitting under laser illumination: Role of 3d-orbitals,” Catal. Commun., vol. 5, no. 11, pp. 715–719, 2004.A. Kudo, “Development of photocatalyst materials for water splitting,” Int. J. Hydrogen Energy, vol. 31, no. 2, pp. 197–202, 2006.A. Matsuda, S. Sreekantan, and W. Krengvirat, “Well-aligned TiO2 nanotube arrays for energy-related applications under solar irradiation,” J. Asian Ceram. Soc., vol. 1, no. 3, pp. 203–219, 2013.A. Pozio, “Effect of Low Cobalt Loading on TiO2 Nanotube Arrays for Water-Splitting,” Int. J. Electrochem., no. NOVEMBER 2014, pp. 1–7, 2014.A. Pozio, “Effect of Tantalum Doping on TiO<sub>2</sub> Nanotube Arrays for Water-Splitting,” Mod. Res. Catal., vol. 04, no. 01, pp. 1–12, 2015.A. Pozio, A. Masci, and M. Pasquali, “Nickel-TiO2 nanotube anode for photo-electrolysers,” Sol. Energy, vol. 136, pp. 590–596, 2016.A. Sharma, R. . Karn, and S. . Pandiyan, “Synthesis of TiO2 nanoparticles by ultrasonic assisted sol-gel method,” J. Basic Appl. Eng. Res., vol. 1, no. 9, pp. 1–5, 2014.A. Torchani, S. Saadaoui, R. Gharbi, and M. Fathallah, “Sensitized solar cells based on natural dyes,” Curr. Appl. Phys., vol. 15, no. 3, pp. 307–312, 2015.A. Valota et al., “Influence of water content on nanotubular anodic titania formed in fluoride/glycerol electrolytes,” Electrochim. Acta, vol. 54, no. 18, pp. 4321–4327, 2009.B. Chen, J. Hou, and K. Lu, “Formation Mechanism of TiO2 Nanotubes and Their Applications in Photoelectrochemical Water Splitting and Supercapacitors,” Langmuir, vol. 29, no. 19, pp. 5911–5919, 2013.B. Chong et al., “Formation Mechanism of Gaps and Ribs Around Anodic TiO2 Nanotubes and Method to Avoid Formation of Ribs,” J. Electrochem. Soc., vol. 162, no. 4, pp. H244–H250, 2015.B. Chong et al., “Theoretical derivation of anodizing current and comparison between fitted curves and measured curves under different conditions,” Nanotechnology, vol. 26, no. 14, 2015.B. Wielage, G. Alisch, T. Lampke, and D. Nickel, “Anodizing – a key for surface treatment of aluminium,” Key Eng. Mater., vol. 384, pp. 263–281, 2008.C. A. Grimes and G. K. Mor, TiO2 nanotube arrays Synthesis Properties and Applications. Springer US, 2009.C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays. 2009.C. Adán, J. Marugán, E. Sánchez, C. Pablos, and R. Van Grieken, “Understanding the effect of morphology on the photocatalytic activity of TiO2 nanotube array electrodes,” Electrochim. Acta, vol. 191, pp. 521–529, 2016.C. C. Chen and S. J. Hsieh, “Evaluation of fluorine ion concentration in TiO2 NT anodization process,” J. Electrochem. Soc., vol. 157, no. 6, pp. 125–130, 2010.C. C. Nguyen, N. N. Vu, and T.-O. Do, “Recent advances in the development of sunlight-driven hollow structure photocatalysts and their applications,” J. Mater. Chem. A, vol. 3, no. 36, pp. 18345–18359, 2015.C. J. Chen, C. H. Liao, K. C. Hsu, Y. T. Wu, and J. C. S. Wu, “P-N junction mechanism on improved NiO/TiO2 photocatalyst,” Catal. Commun., vol. 12, no. 14, pp. 1307–1310, 2011.C. Ruan, M. Paulose, O. K. Varghese, G. K. Mor, and C. A. Grimes, “Fabrication of Highly Ordered TiO2 Nanotube Arrays Using an Organic Electrolyte,” J. Phys. Chem. B, vol. 109, no. 33, pp. 15754–15759, 2005.C. Song, “Overview of Hydrogen Production Options for Hydrogen Energy Development , Fuel-Cell Fuel Processing and Mitigation of CO2 Emissions,” in Proceedings of 20th international Pittsburgh coal conference. Hydrogen from coal., 2003, vol. paper 40-3, pp. 1–15.D. Gong et al., “Titanium oxide nanotube arrays prepared by anodic oxidation,” J. Mater. Res., vol. 16, no. 12, pp. 3331–3334, 2001.D. Khudhair et al., “Anodization parameters influencing the morphology and electrical properties of TiO2 nanotubes for living cell interfacing and investigations,” Mater. Sci. Eng. C, vol. 59, pp. 1125–1142, 2016.D. Kowalski et al., “Self-organization of TiO2 nanotubes in mono-, di- and tri-ethylene glycol electrolytes,” Electrochim. Acta, vol. 204, pp. 287–293, 2015.D. Kowalski, J. Mallet, J. Michel, and M. Molinari, “Low electric field strength self-organization of anodic TiO2 nanotubes in diethylene glycol electrolyte,” J. Mater. Chem. A, vol. 3, no. 12, pp. 6655–6661, 2015.D. P. Opra, S. V. Gnedenkov, and S. L. Sinebryukhov, “Recent efforts in design of TiO2(B) anodes for high-rate lithium-ion batteries: A review,” J. Power Sources, vol. 442, no. July, p. 227225, 2019.D. Regonini, a. Satka, D. W. E. Allsopp, a. Jaroenworaluck, R. Stevens, and C. R. Bowen, “Anodised Titania Nanotubes Prepared in a Glycerol/NaF Electrolyte,” J. Nanosci. Nanotechnol., vol. 9, no. 7, pp. 4410–4416, 2009.D. Regonini, A. Satka, A. Jaroenworaluck, D. W. E. Allsopp, C. R. Bowen, and R. Stevens, “Factors influencing surface morphology of anodized TiO 2 nanotubes,” Electrochim. Acta, vol. 74, pp. 244–253, 2012.D. Regonini, C. R. Bowen, A. Jaroenworaluck, and R. Stevens, “A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes,” Mater. Sci. Eng. R Reports, vol. 74, no. 12, pp. 377–406, 2013.D. Sinha, D. De, D. Goswami, A. Mondal, and A. Ayaz, “ZnO and TiO2 Nanostructured Dye sensitized Solar Photovoltaic Cell,” Mater. Today Proc., vol. 11, pp. 782–788, 2019.D. Yu, D. Yu, J. Dai, Y. Zhang, and F. Wang, “Growth of Cu2O / TiO2 heterojunction and its photoelectrochemical properties,” Mater. Lett., vol. 263, pp. 1–4, 2020.E. A. Baranova, A. Cally, A. Allagui, S. Ntais, and R. Wüthrich, “Nickel particles with increased catalytic activity towards hydrogen evolution reaction,” Comptes Rendus Chim., vol. 16, no. 1, pp. 28–33, 2013.E. Kusrini and A. S. Afrozi, “Photocatalytic Reforming of Glycerol-Water Over Nitrogen- and Nickel-Doped Titanium Dioxide Nanoparticles,” no. 06, pp. 47–53, 2012.E. Marceau, M. Che, J. Čejka, and A. Zukal, “Nickel(II) Nitrate vs. Acetate: Influence of the Precursor on the Structure and Reducibility of Ni/MCM-41 and Ni/Al-MCM-41 Catalysts,” ChemCatChem, vol. 2, no. 4, pp. 413–422, 2010.E. Samuel, B. Joshi, M. Kim, M. T. Swihart, and S. S. Yoon, “Morphology engineering of photoelectrodes for efficient photoelectrochemical water splitting,” Nano Energy, vol. 72, no. January, p. 104648, 2020.F. Fresno, R. Portela, S. Suárez, and J. M. Coronado, “Photocatalytic materials: recent achievements and near future trends,” J. Mater. Chem. A, vol. 2, no. 9, p. 2863, 2014.F. M. B. Hassan et al., “Formation of Self-Ordered TiO2 Nanotubes by Electrochemical Anodization of Titanium in 2-Propanol/NH4F,” J. Electrochem. Soc., vol. 156, p. K227, 2009.F. Safizadeh, E. Ghali, and G. Houlachi, “Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions - A Review,” Int. J. Hydrogen Energy, vol. 40, no. 1, pp. 256–274, 2015.G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Anodic growth of TiO2 nanopore arrays at various temperatures,” Electrochim. Acta, vol. 104, pp. 526–535, 2013.G. D. Sulka, J. Kapusta-Kołodziej, A. Brzózka, and M. Jaskuła, “Fabrication of nanoporous TiO2 by electrochemical anodization,” Electrochim. Acta, vol. 55, no. 14, pp. 4359–4367, 2010.G. J. Cao, B. Cui, W. Q. Wang, G. Z. Tang, Y. C. Feng, and L. P. Wang, “Fabrication and photodegradation properties of TiO2 nanotubes on porous Ti by anodization,” Oral Oncol., vol. 50, no. 10, pp. 2581–2587, 2014.G. Kopp and J. L. Lean, “A new, lower value of total solar irradiance: Evidence and climate significance,” Geophys. Res. Lett., vol. 38, no. 1, pp. 1–7, 2011.G. Liu, K. Du, and K. Wang, “Surface wettability of TiO2 nanotube arrays prepared by electrochemical anodization,” Appl. Surf. Sci., vol. 388, pp. 313–320, 2016.G. Marbán and T. Valdés-Solís, “Towards the hydrogen economy?,” Int. J. Hydrogen Energy, vol. 32, no. 12, pp. 1625–1637, 2007.G. S. Pozan, M. Isleyen, and S. Gokcen, “Transition metal coated TiO2 nanoparticles: Synthesis, characterization and their photocatalytic activity,” Appl. Catal. B Environ., vol. 140–141, pp. 537–545, 2013.G. Thomas, “Overview of Storage Development DOE Hydrogen Program,” Proc. 2000 U.S. DOE Hydrog. Progr. Rev., pp. 56–69, 2000.H. C. Liang, X. Z. Li, and J. Nowotny, “Photocatalytical Properties of TiO2 Nanotubes,” Solid State Phenom., vol. 162, pp. 295–328, 2010.H. E. Prakasam, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, “A new benchmark for TiO2 nanotube array growth by anodization,” J. Phys. Chem. C, vol. 111, no. 20, pp. 7235–7241, 2007.H. F. Mataré and E. Kostiner, “Defect Electronics in Semiconductors,” J. Electrochem. Soc., vol. 119, no. 8, p. 257C, 1972.H. Kmentova et al., “Photoelectrochemical and structural properties of TiO2 nanotubes and nanorods grown on FTO substrate: Comparative study between electrochemical anodization and hydrothermal method used for the nanostructures fabrication,” Catal. Today, vol. 287, pp. 130–136, 2017.H. Liu et al., “Cytocompatibility and antibacterial property of N+ ions implanted TiO2 nanotubes,” Surf. Coatings Technol., vol. 359, no. August 2018, pp. 468–475, 2019.H. M. Y. Choquette, L. Brossard, A. Lasia, “Study of the Kinetics of Hydrogen Evolution Reaction on Raney Nickel Composite Coated Electrode by AC Impedance Technique.,” J. Electrochem. Soc., vol. 137, no. 6, pp. 1723–1730, 1990.H. Omidvar, S. Goodarzi, A. Seif, and A. R. Azadmehr, “Influence of anodization parameters on the morphology of TiO2 nanotube arrays,” Superlattices Microstruct., vol. 50, no. 1, pp. 26–39, 2011.H. Phattepur, G. B. Siddaiah, and N. Ganganagappa, “Synthesis and characterisation of mesoporous TiO2 nanoparticles by novel surfactant assisted sol-gel method for the degradation of organic compounds,” Period. Polytech. Chem. Eng., vol. 63, no. 1, pp. 85–95, 2019.H. Sopha, A. Jäger, P. Knotek, K. Tesar, M. Jarosova, and J. M. Macak, “Self-organized Anodic TiO2 Nanotube Layers : Influence of the Ti substrate on Nanotube Growth and Dimensions,” Electrochim. Acta, vol. 190, pp. 744–752, 2016.H. Sopha, L. Hromadko, K. Nechvilova, and J. M. Macak, “Effect of electrolyte age and potential changes on the morphology of TiO2 nanotubes,” J. Electroanal. Chem., vol. 759, pp. 122–128, 2015.H. Tsuchiya, J. M. Macak, A. Ghicov, A. S. Räder, L. Taveira, and P. Schmuki, “Characterization of electronic properties of TiO2 nanotube films,” Corros. Sci., vol. 49, no. 1, pp. 203–210, 2007.H. Zhang et al., “Extending the detection range and response of TiO2 based hydrogen sensors by surface defect engineering,” Int. J. Hydrogen Energy, vol. 45, no. 35, pp. 18057–18065, 2020.I. Ganesh et al., “Preparation and characterization of Ni-doped TiO2 materials for photocurrent and photocatalytic applications,” Sci. World J., vol. 2012, pp. 13–20, 2012.I. H. Tseng, J. C. S. Wu, and H. Y. Chou, “Effects of sol-gel procedures on the photocatalysis of Cu/TiO2 in CO2 photoreduction,” J. Catal., vol. 221, no. 2, pp. 432–440, 2004.J. E. Houser and K. R. Hebert, “The role of viscous flow of oxide in the growth of self-ordered porous anodic alumina films.,” Nat. Mater., vol. 8, no. 5, pp. 415–420, 2009.J. E. Yoo and P. Schmuki, “Critical factors in the anodic formation of extremely ordered titania nanocavities,” J. Electrochem. Soc., vol. 166, no. 11, pp. C3389–C3398, 2019.J. Joy, J. Mathew, and S. C. George, “Nanomaterials for photoelectrochemical water splitting – review,” Int. J. Hydrogen Energy, vol. 43, no. 10, pp. 4804–4817, 2018.J. M. Macak et al., “TiO2 nanotubes: Self-organized electrochemical formation, properties and applications,” Curr. Opin. Solid State Mater. Sci., vol. 11, no. 1–2, pp. 3–18, 2007.J. M. Macák, H. Tsuchiya, and P. Schmuki, “High-aspect-ratio TiO2 nanotubes by anodization of titanium,” Angew. Chemie - Int. Ed., vol. 44, no. 14, pp. 2100–2102, 2005.J. M. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, “Smooth anodic TiO2 nanotubes,” Angew. Chemie - Int. Ed., vol. 44, no. 45, pp. 7463–7465, 2005.J. M. Macak, K. Sirotna, and P. Schmuki, “Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes,” Electrochim. Acta, vol. 50, no. 18, pp. 3679–3684, 2005.J. M. Ogden, “Hydrogen: The Fuel of the Future?,” Phys. Today, vol. 55, no. 4, pp. 69–75, 2002.J. R. Bartels, M. B. Pate, and N. K. Olson, “An economic survey of hydrogen production from conventional and alternative energy sources,” Int. J. Hydrogen Energy, vol. 35, no. 16, pp. 8371–8384, 2010.J. V. Pasikhani, N. Gilani, and A. E. Pirbazari, “The effect of the anodization voltage on the geometrical characteristics and photocatalytic activity of TiO2 nanotube arrays,” Nano-Structures and Nano-Objects, vol. 8, pp. 7–14, 2016.J. W. Schultze, M. M. Lohrengel, and D. Ross, “Nucleation and growth of anodic oxide films,” Electrochim. Acta, vol. 28, no. 7, pp. 973–984, 1983.J. Wan, X. Yan, J. Ding, M. Wang, and K. Hu, “Self-organized highly ordered TiO2 nanotubes in organic aqueous system,” Mater. Charact., vol. 60, no. 12, pp. 1534–1540, 2009.J. Wen, X. Li, W. Liu, Y. Fang, J. Xie, and Y. Xu, “Photocatalysis fundamentals and surface modification of TiO2 nanomaterials,” Cuihua Xuebao/Chinese J. Catal., vol. 36, no. 12, pp. 2049–2070, 2015.J. Xue, Q. Shen, F. Yang, W. Liang, and X. Liu, “Investigation on the influence of pH on structure and photoelectrochemical properties of CdSe electrolytically deposited into TiO2 nanotube arrays,” J. Alloys Compd., vol. 607, pp. 163–168, 2014.J. Yahalom and J. Zahavi, “Electrolytic breakdown crystallization of anodic oxide films on A1, Ta and Ti,” Electrochim. Acta, vol. 15, no. 9, pp. 1429–1435, 1970.J. Yang et al., “Morphology defects guided pore initiation during the formation of porous anodic alumina,” ACS Appl. Mater. Interfaces, vol. 6, no. 4, pp. 2285–2291, 2014.J.-M. Lehn, J.-P. Sauvage, and R. Ziessel, “Photochemical water splitting continuous generation of hydrogen and oxygen by irradiation of aqueous suspensions of metal loaded strontium titanate,” Nouv. J. Chim., vol. 4, no. 11, pp. 623–627, 1980.K. Domen, S. Naito, M. Soma, T. Onishi, and K. Tamaru, “Photocatalytic decomposition of water vapour on an NiO–SrTiO3 catalyst,” J. Chem. Soc. Chem. Commun., pp. 543–544, 1980.K. Indira, U. K. Mudali, T. Nishimura, and N. Rajendran, “A Review on TiO2 Nanotubes: Influence of Anodization Parameters, Formation Mechanism, Properties, Corrosion Behavior, and Biomedical Applications,” J. Bio- Tribo-Corrosion, vol. 1, no. 4, pp. 1–22, 2015.K. Lee, W. S. Nam, and G. Y. Han, “Photocatalytic water-splitting in alkaline solution using redox mediator. 1: Parameter study,” Int. J. Hydrogen Energy, vol. 29, no. 13, pp. 1343–1347, 2004.K. Lu, Z. Tian, and J. A. Geldmeier, “Polishing effect on anodic titania nanotube formation,” Electrochim. Acta, vol. 56, no. 17, pp. 6014–6020, 2011.K. Nielsch, J. Choi, K. Schwirn, and R. B. Wehrspohn, “Self-ordering Regimes of Porous Alumina : The 10 % Porosity Rule,” Nano Lett., vol. 2, no. 7, pp. 677–680, 2002.K. S. Lin, H. W. Cheng, W. R. Chen, and C. F. Wu, “Synthesis, characterization, and adsorption kinetics of titania nanotubes for basic dye wastewater treatment,” Adsorption, vol. 16, no. 1–2, pp. 47–56, 2010.K. S. Raja, M. Misra, and K. Paramguru, “Formation of self-ordered nano-tubular structure of anodic oxide layer on titanium,” Electrochim. Acta, vol. 51, no. 1, pp. 154–165, 2005.K. S. Raja, T. Gandhi, and M. Misra, “Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes,” Electrochem. commun., vol. 9, no. 5, pp. 1069–1076, 2007.K. Shankar et al., “Highly-ordered TiO2 nanotube arrays up to 220 μm in length: Use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, 2007.K. Syrek, J. Kapusta-Kołodziej, M. Jarosz, and G. D. Sulka, “Effect of electrolyte agitation on anodic titanium dioxide (ATO) growth and its photoelectrochemical properties,” Electrochim. Acta, vol. 180, pp. 801–810, 2015.L. C. Sim, K. W. Ng, S. Ibrahim, and P. Saravanan, “Preparation of improved p-n junction NiO/TiO2 nanotubes for solar-energy-driven light photocatalysis,” Int. J. Photoenergy, vol. 2013, 2013.L. G. Devi, N. Kottam, S. G. Kumar, and K. E. Rajashekhar, “Preparation, characterization and enhanced photocatalytic activity of Ni2+ doped titania under solar light,” Cent. Eur. J. Chem., vol. 8, no. 1, pp. 142–148, 2010.L. Tsui and G. Zangari, “Titania Nanotubes by Electrochemical Anodization for Solar Energy Conversion,” J. Electrochem. Soc. , vol. 161, no. 7, pp. D3066–D3077, 2014.L. V. Taveira, J. M. Macák, H. Tsuchiya, L. F. P. Dick, and P. Schmuki, “Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH 4)2SO4 electrolytes,” J. Electrochem. Soc., vol. 152, no. 10, pp. 405–410, 2005.L. Yang, D. He, Q. Cai, and C. A. Grimes, “Fabrication and catalytic properties of Co - Ag - Pt nanoparticle-decorated titania nanotube arrays,” J. Phys. Chem. C, vol. 111, no. 23, pp. 8214–8217, 2007.L. Yin, S. Ji, G. Liu, G. Xu, and C. Ye, “Understanding the growth behavior of titania nanotubes,” Electrochem. commun., vol. 13, no. 5, pp. 454–457, 2011.M. A. A. Taib, K. A. Razak, M. Jaafar, and Z. Lockman, “Initial growth study of TiO2 nanotube arrays anodised in KOH/fluoride/ethylene glycol electrolyte,” Mater. Des., vol. 128, no. January, pp. 195–205, 2017.M. A. V. Zwilling E. Darque-Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach,” Electrochim. Acta, vol. 45, pp. 921–929, 1999.M. Anpo, M. Takeuchi, K. Ikeue, and S. Dohshi, “Design and development of titanium oxide photocatalysts operating under visible and UV light irradiation . The applications of metal ion-implantation techniques to semiconducting TiO2 and Ti / zeolite catalysts,” Curr. Opin. Solid State Mater. Sci., vol. 6, pp. 381–388, 2002.M. Anpo, S. Dohshi, M. Kitano, Y. Hu, M. Takeuchi, and M. Matsuoka, “The Preparation and Characterization of Highly Efficient Titanium Oxide-Ba,” Annu. Rev. Mater. Res., vol. 35, no. 1, pp. 1–27, 2005.M. Balat, “Potential importance of hydrogen as a future solution to environmental and transportation problems,” Int. J. Hydrogen Energy, vol. 33, no. 15, pp. 4013–4029, 2008.M. H. Seo, D. J. Kim, and J. S. Kim, “The effects of pH and temperature on Ni-Fe-P alloy electrodeposition from a sulfamate bath and the material properties of the deposits,” Thin Solid Films, vol. 489, no. 1–2, pp. 122–129, 2005.M. Haskul, A. T. Ülgen, and A. Döner, “Fabrication and characterization of Ni modified TiO2 electrode as anode material for direct methanol fuel cell,” Int. J. Hydrogen Energy, vol. 45, no. 7, pp. 4860–4874, 2020.M. Hideki and F. Kenji, “Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina.,” Science (80-. )., vol. 268, no. 5216, pp. 1466–1468, 1995.M. Khatamian, M. Saket Oskoui, M. Haghighi, and M. Darbandi, “Visible-light response photocatalytic water splitting over CdS/TiO2 and CdS-TiO2/metalosilicate composites,” Int. J. energy Res., vol. 38, no. 13, pp. 1712–1726, 2014.M. Levent, D. J. Gunn, and M. A. El-Bousiffi, “Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor,” Int. J. Hydrogen Energy, vol. 28, no. 9, pp. 945–959, 2003.M. M. Rashid, M. K. Al Mesfer, H. Naseem, and M. Danish, “Hydrogen Production by Water Electrolysis : A Review of Alkaline Water Electrolysis , PEM Water Electrolysis and High Temperature Water Electrolysis,” Int. J. Eng. Adv. Technol., vol. 4, no. 3, pp. 80–93, 2015.M. Michalska-Domańska, P. Nyga, and M. Czerwiński, “Ethanol-based electrolyte for nanotubular anodic TiO2 formation,” Corros. Sci., vol. 134, no. February, pp. 99–102, 2018.M. Motola et al., “Comparison of photoelectrochemical performance of anodic single- and double-walled TiO2 nanotube layers,” Electrochem. commun., vol. 97, no. July, pp. 1–5, 2018.M. Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, “A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production,” Renew. Sustain. Energy Rev., vol. 11, no. 3, pp. 401–425, 2007.M. Paulose et al., “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” J. Phys. Chem. B, vol. 110, no. 33, pp. 16179–16184, 2006.M. Paulose, G. K. Mor, O. K. Varghese, K. Shankar, and C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays,” J. Photochem. Photobiol. A Chem., vol. 178, no. 1, pp. 8–15, 2006.M. Popczyk, J. Kubisztal, and A. Budniok, “Structure and electrochemical characterization of electrolytic Ni+Mo+Si composite coatings in an alkaline solution,” Electrochim. Acta, vol. 51, no. 27, pp. 6140–6144, 2006.M. T. Islam et al., “Development of photocatalytic paint based on TiO2 and photopolymer resin for the degradation of organic pollutants in water,” Sci. Total Environ., vol. 704, p. 135406, 2020.M. V Someswararao, D. Pradeep, R. S. Dubey, and P. S. V Subbarao, “Experimental Investigation of Electrospun Titania Nanofibers : An Applied Voltage Influence,” Mater. Today Proc., vol. 18, pp. 384–388, 2019.M. Wu, T. Duan, Y. Chen, Q. Wen, Y. Wang, and H. Xin, “Surface modification of TiO2 nanotube arrays with metal copper particle for high efficient photocatalytic reduction of Cr(VI),” Desalin. Water Treat., vol. 57, no. 23, pp. 10790–10801, 2016.M. Yu et al., “Studies of oxide growth location on anodization of Al and Ti provide evidence against the field-assisted dissolution and field-assisted ejection theories,” Electrochem. commun., vol. 87, no. December 2017, pp. 76–80, 2018.M. Zulfiqar, S. Chowdhury, and A. A. Omar, “Hydrothermal synthesis of multiwalled TiO2 nanotubes and its photocatalytic activities for Orange II removal,” Sep. Sci. Technol., vol. 53, no. 9, pp. 1412–1422, 2018.N. A. Kyeremateng, C. Lebouin, P. Knauth, and T. Djenizian, “The electrochemical behaviour of TiO2 nanotubes with Co3O4 or NiO submicron particles: composite anode materials for Li-ion micro batteries,” Electrochim. Acta, vol. 88, pp. 814–820, 2012.N. B. Kondrikov, P. L. Titov, S. A. Schegoleva, and M. A. Khorin, “Influence of Formation Conditions on the Level of Arrays Ordering of Anodic Titanium Oxide Nanotubes,” Phys. Procedia, vol. 86, no. June 2015, pp. 37–43, 2017.N. K. Allam, K. Shankar, and C. A. Grimes, “A General Method for the Anodic Formation of Crystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing **,” Adv. Mater., vol. 20, pp. 3942–3946, 2008.N. Vaenas, T. Stergiopoulos, A. G. Kontos, V. Likodimos, and P. Falaras, “Influence of controlled-charge anodization processes on the morphology of TiO2 nanotubes and their efficiency in dye-sensitized solar cells,” Electrochim. Acta, vol. 113, pp. 490–496, 2013.O. Robinson Aguirre and E. Félix Echeverría, “Effects of fluoride source on the characteristics of titanium dioxide nanotubes,” Appl. Surf. Sci., vol. 445, pp. 308–319, 2018.Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: A system simulation approach,” Int. J. Hydrogen Energy, vol. 28, no. 1, pp. 21–33, 2003.P. Acevedo-Peña and I. González, “ TiO 2 Nanotubes Formed in Aqueous Media: Relationship between Morphology, Electrochemical Properties and Photoelectrochemical Performance for Water Oxidation ,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.P. Acevedo-Peña and I. Gonźalez, “TiO2 nanotubes formed in aqueous media: Relationship between morphology, electrochemical properties and photoelectrochemical performance for water oxidation,” J. Electrochem. Soc., vol. 160, no. 8, pp. H452–H458, 2013.P. Acevedo-Peña and I. González, “TiO2 photoanodes prepared by cathodic electrophoretic deposition in 2-propanol: Effect of the electric field and deposition time,” J. Solid State Electrochem., vol. 17, no. 2, pp. 519–526, 2013.P. C. Hallenbeck and J. R. Benemann, “Biological hydrogen production; Fundamentals and limiting processes,” Int. J. Hydrogen Energy, vol. 27, no. 11–12, pp. 1185–1193, 2002.P. Roy, S. Berger, and P. Schmuki, “TiO2 nanotubes: Synthesis and applications,” Angew. Chemie - Int. Ed., vol. 50, no. 13, pp. 2904–2939, 2011.Q. Cai, L. Yang, and Y. Yu, “Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization,” Thin Solid Films, vol. 515, no. 4, pp. 1802–1806, 2006.R. A. R. Monteiro, F. V. S. Lopes, R. A. R. Boaventura, A. M. T. Silva, and V. J. P. Vilar, “Synthesis and characterization of N-modified titania nanotubes for photocatalytic applications,” Environ. Sci. Pollut. Res., vol. 22, no. 2, pp. 810–819, 2014.R. García-Valverde, C. Miguel, R. Martínez-Béjar, and A. Urbina, “Optimized photovoltaic generator-water electrolyser coupling through a controlled DC-DC converter,” Int. J. Hydrogen Energy, vol. 33, no. 20, pp. 5352–5362, 2008.R. Kothari, D. Buddhi, and R. L. Sawhney, “Comparison of environmental and economic aspects of various hydrogen production methods,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 553–563, 2008.R. M. Navarro, M. C. Sánchez-Sánchez, M. C. Alvarez-Galvan, F. del Valle, and J. L. G. Fierro, “Hydrogen production from renewable sources: biomass and photocatalytic opportunities,” Energy Environ. Sci., vol. 2, no. 1, pp. 35–54, 2009.R. Marschall, “Semiconductor composites: Strategies for enhancing charge carrier separation to improve photocatalytic activity,” Adv. Funct. Mater., vol. 24, no. 17, pp. 2421–2440, 2014.R. S. Hyam and D. Choi, “Effects of titanium foil thickness on TiO2 nanostructures synthesized by anodization,” RSC Adv., vol. 3, no. 19, pp. 7057–7063, 2013.R. Sánchez-Tovar, K. Lee, J. García-Antón, and P. Schmuki, “Formation of anodic TiO2 nanotube or nanosponge morphology determined by the electrolyte hydrodynamic conditions,” Electrochem. commun., vol. 26, no. 1, pp. 1–4, 2013.R. Sharma, K. Arnoult, K. Hart, M. Mughal, and R. Engelken, “Photoelectrochemical characterization of titania photoanodes fabricated using varying anodization parameters,” IEEE Ind. Appl. Soc. - 51st Annu. Meet. IAS 2015, Conf. Rec., pp. 1–7, 2015.R. Singh and S. Dutta, “A review on H2 production through photocatalytic reactions using TiO2/TiO2-assisted catalysts,” Fuel, vol. 220, no. July 2017, pp. 607–620, 2018.S. B. Patil, P. S. Basavarajappa, N. Ganganagappa, M. S. Jyothi, A. V. Raghu, and K. R. Reddy, “Recent advances in non-metals-doped TiO2 nanostructured photocatalysts for visible-light driven hydrogen production, CO2 reduction and air purification,” Int. J. Hydrogen Energy, vol. 44, no. 26, pp. 13022–13039, 2019.S. Chen, Q. Chen, M. Gao, S. Yan, R. Jin, and X. Zhu, “Morphology evolution of TiO2 nanotubes by a slow anodization in mixed electrolytes,” Surf. Coatings Technol., vol. 321, pp. 257–264, 2017.S. G. Lee, S. Lee, and H. I. Lee, “Photocatalytic production of hydrogen from aqueous solution containing CN- as a hole scavenger,” Appl. Catal. A Gen., vol. 207, no. 1–2, pp. 173–181, 2001.S. Gupta, N. Patel, A. Miotello, and D. C. Kothari, “Cobalt-Boride: An efficient and robust electrocatalyst for Hydrogen Evolution Reaction,” J. Power Sources, vol. 279, pp. 620–625, 2015.S. Hoang, S. Guo, N. T. Hahn, A. J. Bard, and C. B. Mullins, “Visible Light Driven Photoelectrochemical Water Oxidation on Nitrogen-Modified TiO2 Nanowires,” Nano Lett., vol. 12, pp. 26–32, 2012.S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, “A flow model of porous anodic film growth on aluminium,” Electrochim. Acta, vol. 52, no. 2, pp. 681–687, 2006.S. Karthik et al., “Highly-ordered TiO2 nanotube arrays up to 220µm in length: use in water photoelectrolysis and dye-sensitized solar cells,” Nanotechnology, vol. 18, no. 6, p. 65707, 2007.S. Liang et al., “Improving Photoelectrochemical Water Splitting Activity of TiO2 Nanotube Arrays by Tuning Geometrical Parameters,” J. Phys. Chem. C, vol. 116, no. 16, p. 120405164648006, 2012.S. Meher Kotay and D. Das, “Biohydrogen as a renewable energy resource-Prospects and potentials,” Int. J. Hydrogen Energy, vol. 33, no. 1, pp. 258–263, 2008.S. Ozkan, A. Mazare, and P. Schmuki, “Critical parameters and factors in the formation of spaced TiO 2 nanotubes by self-organizing anodization,” Electrochim. Acta, vol. 268, pp. 435–447, 2018.S. Ozkan, N. T. Nguyen, A. Mazare, I. Cerri, and P. Schmuki, “Controlled spacing of self-organized anodic TiO2 nanotubes,” Electrochem. commun., vol. 69, pp. 76–79, 2016.S. Ozkan, N. T. Nguyen, A. Mazare, R. Hahn, I. Cerri, and P. Schmuki, “Fast growth of TiO2 nanotube arrays with controlled tube spacing based on a self-ordering process at two different scales,” Electrochem. commun., vol. 77, pp. 98–102, 2017.S. P. Albu, I. Paramasivam, P. Schmuki, N. Taccardi, and K. R. Hebert, “Oxide Growth Efficiencies and Self-Organization of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 159, no. 8, pp. H697–H703, 2012.S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, “Self‐organized TiO2 Nanotube Arrays: Critical Effects on Morphology and Growth,” Isr. J. Chem., vol. 50, pp. 453–467, 2010.S. Sato and J. M. White, “Photocatalytic Production of Hydrogen from Water and Texas Lignite by Use of a Platinized Titania Catalyst,” Ind. Eng. Chem. Prod. Res. Dev., vol. 19, no. 4, pp. 542–544, 1980.S. Shen et al., “Titanium dioxide nanostructures for photoelectrochemical applications,” Prog. Mater. Sci., vol. 98, no. July, pp. 299–385, 2018.S. Sircar, W. E. Waldron, M. B. Rao, and M. Anand, “Hydrogen production by hybrid SMR-PSA-SSF membrane system,” Sep. Purif. Technol., vol. 17, no. 1, pp. 11–20, 1999.S. Sreekantan, Z. Lockman, R. Hazan, M. Tasbihi, L. K. Tong, and A. R. Mohamed, “Influence of electrolyte pH on TiO2 nanotube formation by Ti anodization,” J. Alloys Compd., vol. 485, no. 1–2, pp. 478–483, 2009.S. X. Liu, Z. P. Qu, X. W. Han, and C. L. Sun, “A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide,” Catal. Today, vol. 93–95, pp. 877–884, 2004.S. Z. Chu, K. Wada, S. Inoue, S. ichi Todoroki, Y. K. Takahashi, and K. Hono, “Fabrication and characteristics of ordered Ni nanostructures on glass by anodization and direct current electrodeposition,” Chem. Mater., vol. 14, no. 11, pp. 4595–4602, 2002.S. Zhao et al., “A mathematical model for initiation and growth of anodic titania nanotube embryos under compact oxide layer,” Electrochem. commun., vol. 91, no. May, pp. 60–65, 2018.S.-I. In, Y. Hou, B. L. Abrams, P. C. K. Vesborg, and I. Chorkendorff, “Controlled Directional Growth of TiO2 Nanotubes,” J. Electrochem. Soc., vol. 157, no. 5, pp. E69–E74, 2010.T. H. E. J. Of et al., “Recent Advances in the Use of TiO 2 Nanotube and Nanowire Arrays for Oxidative photoelectrochemistry,” J. Phys. Chem. C, vol. 113, no. 16, pp. 6327–6359, 2009.T. Teka, “Current State Of Doped-TiO2 Photocatalysts And Synthesis Methods To Prepare TiO2 Films : A Review,” Int. J. Technol. Enhanc. Emerg. Eng. Res., vol. 3, no. 01, pp. 14–18, 2015.U. K. Chime, F. I. Ezema, and J. Marques-hueso, “Porosity and hole diameter tuning on nanoporous anodic aluminium oxide membranes by one-step anodization,” Opt. - Int. J. Light Electron Opt., vol. 174, no. August, pp. 558–562, 2018.V. Vega et al., “Unveiling the Hard Anodization Regime of Aluminum: Insight into Nanopores Self-Organization and Growth Mechanism,” ACS Appl. Mater. Interfaces, vol. 7, no. 51, pp. 28682–28692, 2015.W. C. Lattin and V. P. Utgikar, “Transition to hydrogen economy in the United States: A 2006 status report,” Int. J. Hydrogen Energy, vol. 32, no. 15 SPEC. ISS., pp. 3230–3237, 2007.W. Li et al., “Enhancing photoelectrochemical water splitting by aluminum-doped plate-like WO3 electrodes,” Electrochim. Acta, vol. 160, pp. 57–63, 2015.W. Zhu, G. Wang, X. Hong, X. Shen, D. Li, and X. Xie, “Metal nanoparticle chains embedded in TiO2 nanotubes prepared by one-step electrodeposition,” Electrochim. Acta, vol. 55, no. 2, pp. 480–484, 2009.X. Bai, L. Ma, Z. Dai, and H. Shi, “Electrochemical synthesis of p-Cu2O / n-TiO2 heterojunction electrode with enhanced photoelectrocatalytic activity,” Mater. Sci. Semicond. Process., vol. 74, pp. 319–328, 2018.X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-Based Photocatalytic Hydrogen Generation,” Chem. Rev., vol. 110, no. 11, pp. 6503–6570, 2010.X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen, “Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts,” Catal. Today, vol. 225, pp. 64–73, 2014.X. M. Zhong et al., “Fabrication and Formation Mechanism of Triple-Layered TiO2 Nanotubes,” J. Electrochem. Soc., vol. 160, no. 10, pp. E125–E129, 2013.X. Xiao, K. Ouyang, R. Liu, and J. Liang, “Anatase type titania nanotube arrays direct fabricated by anodization without annealing,” Appl. Surf. Sci., vol. 255, no. 6, pp. 3659–3663, 2009.X. Zhou, N. T. Nguyen, S. Özkan, and P. Schmuki, “Anodic TiO2 nanotube layers: Why does self-organized growth occur - A mini review,” Electrochem. commun., vol. 46, pp. 157–162, 2014.Y. Fu and A. Mo, “A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications,” Nanoscale Res. Lett., vol. 13, 2018.Y. Kado, R. Hahn, and P. Schmuki, “Surface modification of TiO2 nanotubes by low temperature thermal treatment in C2H2 atmosphere,” J. Electroanal. Chem., vol. 662, no. 1, pp. 25–29, 2011.Y. L. Pang, S. Lim, H. C. Ong, and W. T. Chong, “A critical review on the recent progress of synthesizing techniques and fabrication of TiO2-based nanotubes photocatalysts,” Appl. Catal. A Gen., vol. 481, pp. 127–142, 2014.Y. Lai, H. Zhuang, L. Sun, Z. Chen, and C. Lin, “Self-organized TiO2 nanotubes in mixed organic-inorganic electrolytes and their photoelectrochemical performance,” Electrochim. Acta, vol. 54, no. 26, pp. 6536–6542, 2009.Y. Lai, L. Sun, Y. Chen, H. Zhuang, C. Lin, and J. W. Chin, “Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity,” J. Electrochem. Soc., vol. 153, no. 7, pp. 123–127, 2006.Y. Li, G. Lu, and S. Li, “Photocatalytic production of hydrogen in single component and mixture systems of electron donors and monitoring adsorption of donors by in situ infrared spectroscopy,” Chemosphere, vol. 52, no. 5, pp. 843–850, 2003.Y. Sun, G. Wang, and K. Yan, “TiO2 nanotubes for hydrogen generation by photocatalytic water splitting in a two-compartment photoelectrochemical cell,” Int. J. Hydrogen Energy, vol. 36, no. 24, pp. 15502–15508, 2011.Y. Wang et al., “Simulation and separation of anodizing current-time curves, morphology evolution of TiO2 nanotubes anodized at various temperatures,” J. Electrochem. Soc., vol. 161, no. 14, pp. H891–H895, 2014.Y. Yang, X. Wang, and L. Li, “Synthesis and growth mechanism of graded TiO2 nanotube arrays by two-step anodization,” Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., vol. 149, no. 1, pp. 58–62, 2008.Y. Zhang et al., “Quantitative relationship between nanotube length and anodizing current during constant current anodization.,” Electrochim. Acta, vol. 180, pp. 147–154, 2015.Y. Zhang, “Electronic structures of impurities and point defects in semiconductors,” Chinese Phys. B, vol. 27, no. 11, 2018.Y. Zhang, H. Fan, X. Ding, Q. Yan, L. Wang, and W. Ma, “Simulation of anodizing current-time curves and morphology evolution of TiO2 nanotubes anodized in electrolytes with different NH4F concentrations,” Electrochim. Acta, vol. 176, pp. 1083–1091, 2015.Z. B. Xie and D. J. Blackwood, “Effects of anodization parameters on the formation of titania nanotubes in ethylene glycol,” Electrochim. Acta, vol. 56, no. 2, pp. 905–912, 2010.Z. Ghorannevis, T. Hoseinzadeh, M. Ghoranneviss, A. H. Sari, and M. K. Salem, “Effects of various applied voltages on physical properties of TiO2 nanotubes by anodization method,” J. Theor. Appl. Phys., no. 11, pp. 243–248, 2017.Z. Liu, B. Pesic, K. S. Raja, R. R. Rangaraju, and M. Misra, “Hydrogen generation under sunlight by self ordered TiO2 nanotube arrays,” Int. J. Hydrogen Energy, vol. 34, no. 8, pp. 3250–3257, 2009.Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, and J. Wang, “A Novel Approach to Well-Aligned TiO2 Nanotube Arrays and Their Enhanced Photocatalytic Performances,” AIChE J., vol. 59, no. 6, pp. 2134–2144, 2013.NanoestructurasMicroestructuraCatalizadoresFotocatalisisNanostructuresMicrostructureCatalystsPhotocatalysisFotoelectrodoMateriales nanoestructuradosNanoparticulasNanoparticulas de níquelNanotubos TiO2NanoparticlesNanostructured materialsNickel nanoparticlesTiO2 nanotubesColciencias convocatoria 617LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84607/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL79614908.2022.pdf79614908.2022.pdfTesis de Doctorado en Ingeniería - Ingeniería Químicaapplication/pdf8480279https://repositorio.unal.edu.co/bitstream/unal/84607/4/79614908.2022.pdf0b70a520796d15f2d748472491a32accMD54THUMBNAIL79614908.2022.pdf.jpg79614908.2022.pdf.jpgGenerated Thumbnailimage/jpeg5723https://repositorio.unal.edu.co/bitstream/unal/84607/5/79614908.2022.pdf.jpgc4ab43e9bc560bead213f674eebfe3e6MD55unal/84607oai:repositorio.unal.edu.co:unal/846072023-08-29 23:04:14.568Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=