Robust Brown-Forsythe and Robust Modified Brown-Forsythe ANOVA Tests Under Heteroscedasticity for Contaminated Weibull Distribution
In this study, robust Brown-Forsythe and robust Modified Brown-Forsythe ANOVA tests are proposed to take into consideration heteroscedastic and non-normality data sets with outliers. The non-normal data is assumed to be a two parameters Weibull distribution. Robust proposed tests are obtained by usi...
- Autores:
-
Karagöz, Derya
Saraçbasi, Tülay
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/66520
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/66520
http://bdigital.unal.edu.co/67548/
- Palabra clave:
- 51 Matemáticas / Mathematics
31 Colecciones de estadística general / Statistics
Brown-Forsythe
Modified Brown-Forsythe
ANOVA
Weibull Distribution
ANOVA
Brown-Forsythe
Brown-Forsythe modificado
Distribución Weibull.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | In this study, robust Brown-Forsythe and robust Modified Brown-Forsythe ANOVA tests are proposed to take into consideration heteroscedastic and non-normality data sets with outliers. The non-normal data is assumed to be a two parameters Weibull distribution. Robust proposed tests are obtained by using robust mean and variance estimators based on median/ MAD and median/Qn methods instead of maximum likelihood. The behaviors of the robust proposed and classical ANOVA tests are examined by simulation study. The results shows that the proposed robust tests have good performance especially in the presence of heteroscedasticity and contamination. |
---|