Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo

Ilustraciones

Autores:
Pineda Vargas, Mónica Patricia
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80068
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80068
https://repositorio.unal.edu.co/
Palabra clave:
600 - Tecnología (Ciencias aplicadas)
Aprendizaje profundo
Deep learning
Recuperación de información
Information retrieval
Information processing
Procesamiento de la información
Recuperación de información
Bioasq
Document retrieval
Metric learning
Question answering
Biomedical domain
Ontología
Dominio biomédico
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e206fe8fa0e1b853c1e981da64c0b737
oai_identifier_str oai:repositorio.unal.edu.co:unal/80068
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
dc.title.translated.eng.fl_str_mv System for biomedical document retrieval based on deep learning
title Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
spellingShingle Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
600 - Tecnología (Ciencias aplicadas)
Aprendizaje profundo
Deep learning
Recuperación de información
Information retrieval
Information processing
Procesamiento de la información
Recuperación de información
Bioasq
Document retrieval
Metric learning
Question answering
Biomedical domain
Ontología
Dominio biomédico
title_short Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
title_full Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
title_fullStr Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
title_full_unstemmed Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
title_sort Sistema para la búsqueda de documentos biomédicos basado en aprendizaje profundo
dc.creator.fl_str_mv Pineda Vargas, Mónica Patricia
dc.contributor.advisor.none.fl_str_mv González Osorio, Fabio Augusto
dc.contributor.author.none.fl_str_mv Pineda Vargas, Mónica Patricia
dc.contributor.researchgroup.spa.fl_str_mv MindLab
dc.subject.ddc.spa.fl_str_mv 600 - Tecnología (Ciencias aplicadas)
topic 600 - Tecnología (Ciencias aplicadas)
Aprendizaje profundo
Deep learning
Recuperación de información
Information retrieval
Information processing
Procesamiento de la información
Recuperación de información
Bioasq
Document retrieval
Metric learning
Question answering
Biomedical domain
Ontología
Dominio biomédico
dc.subject.other.none.fl_str_mv Aprendizaje profundo
Deep learning
dc.subject.lemb.none.fl_str_mv Recuperación de información
Information retrieval
Information processing
Procesamiento de la información
dc.subject.proposal.none.fl_str_mv Recuperación de información
Bioasq
dc.subject.proposal.eng.fl_str_mv Document retrieval
Metric learning
Question answering
Biomedical domain
dc.subject.proposal.spa.fl_str_mv Ontología
Dominio biomédico
description Ilustraciones
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-09-01T18:19:30Z
dc.date.available.none.fl_str_mv 2021-09-01T18:19:30Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80068
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80068
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [noa, 2016] (2016). PubMed celebrates its 20th anniversary!
[Amati and Van Rijsbergen, 2002] Amati, G. and Van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems (TOIS), 20(4):357–389.
[Athenikos and Han, 2010] Athenikos, S. J. and Han, H. (2010). Biomedical question answering: A survey. Computer methods and programs in biomedicine, 99(1):1–24.
[Bauer and Berleant, 2012] Bauer, M. A. and Berleant, D. (2012). Usability survey of biomedical question answering systems. Human Genomics, 6(1):17.
[Beam et al., 2018] Beam, A. L., Kompa, B., Fried, I., Palmer, N. P., Shi, X., Cai, T., and Kohane, I. S. (2018). Clinical concept embeddings learned from massive sources of medical data. arXiv preprint arXiv:1804.01486.
[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI.
[Bengio et al., 2006] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, pages 153–160. MIT Press.
[Berger and Lafferty, 1999] Berger, A. and Lafferty, J. (1999). Information retrieval as statistical translation. 22nd int’l ACM. In SIGIR Conference on Research and Development in Information Retrieval, Berkeley.
[Bonadiman et al., 2019] Bonadiman, D., Kumar, A., and Mittal, A. (2019). Large scale question paraphrase retrieval with smoothed deep metric learning. arXiv preprint arXiv:1905.12786.
[Brokos et al., 2018a] Brokos, G., Liosis, P., McDonald, R., Pappas, D., and Androutsopoulos, I. (2018a). AUEB at BioASQ 6: Document and snippet retrieval.
[Brokos et al., 2018b] Brokos, G.-I., Liosis, P., McDonald, R., Pappas, D., and Androutsopoulos, I. (2018b). Aueb at bioasq 6: Document and snippet retrieval. arXiv preprint arXiv:1809.06366.
[Brown et al., 1988] Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., Jelinek, F., Mercer, R., and Roossin, P. (1988). A statistical approach to language translation.
[Brown et al., 1991] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1991). A statistical approach to sense disambiguation in machine translation.
[Cao et al., 2008] Cao, G., Nie, J.-Y., Gao, J., and Robertson, S. (2008). Selecting good expansion terms for pseudo-relevance feedback. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 243–250.
[Chen et al., 2005] Chen, L., Liu, H., and Friedman, C. (2005). Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics, 21(2):248–256.
[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
[Gao et al., 2014] Gao, J., Pantel, P., Gamon, M., He, X., and Deng, L. (2014). Modeling interestingness with deep neural networks.
[Goeuriot et al., 2015] Goeuriot, L., Kelly, L., Suominen, H., Hanlen, L., Neveol, A., Grouin, C., Palotti, J., and Zuccon, G. (2015). Overview of the clef ehealth evaluation lab 2015. In International Conference of the Cross-Language Evaluation Forum for European Languages, pages 429–443. Springer.
[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press. [Gormley and Tong, 2015] Gormley, C. and Tong, Z. (2015).
[Gormley and Tong, 2015] Gormley, C. and Tong, Z. (2015). Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. . O’Reilly Media, Inc.”.
[Guo et al., 2016] Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pages 55–64. ACM.
[Hiemstra, 2001] Hiemstra, D. (2001). Using language models for information retrieval. Taaluitgeverij Neslia Paniculata.
[Hosein et al., 2019] Hosein, S., Andor, D., and McDonald, R. (2019). Measuring domain portability and errorpropagation in biomedical qa.
[Hu et al., 2014] Hu, B., Lu, Z., Li, H., and Chen, Q. (2014). Convolutional neural network architectures for matching natural language sentences. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27, pages 2042–2050. Curran Associates, Inc.
[Huang et al., 2013] Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pages 2333–2338. ACM.
[Hui et al., 2017] Hui, K., Yates, A., Berberich, K., and de Melo, G. (2017). PACRR: A Position-Aware neural IR model for relevance matching.
[Jin et al., 2018] Jin, Q., Dhingra, B., Cohen, W., and Lu, X. (2018). AttentionMeSH: Simple, effective and interpretable automatic MeSH indexer.
[Jin et al., 2017] Jin, Z.-X., Zhang, B.-W., Fang, F., Zhang, L.-L., and Yin, X.-C. (2017). A multi-strategy query processing approach for biomedical question answering: USTB PRIR at BioASQ 2017 task 5B.
[Joachims et al., 2017] Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2017). Accurately interpreting clickthrough data as implicit feedback. In ACM SIGIR Forum, volume 51, pages 4–11. Acm New York, NY, USA.
[Krauthammer and Nenadic, 2004] Krauthammer, M. and Nenadic, G. (2004). Term identification in the biomedical literature. Journal of biomedical informatics, 37(6):512–526.
[Kusner et al., 2015] Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015). From word embeddings to document distances. In International Conference on Machine Learning, pages 957–966.
[Kuzi et al., 2016] Kuzi, S., Shtok, A., and Kurland, O. (2016). Query expansion using word embeddings. In Proceedings of the 25th ACM international on conference on information and knowledge management, pages 1929–1932. ACM.
[Le and Mikolov, 2017] Le, Q. V. and Mikolov, T. (2017). Distributed representations of sentences and documents, may 2014. Retrieved March, 16.
[Lee et al., 2009] Lee, C.-J., Chen, R.-C., Kao, S.-H., and Cheng, P.-J. (2009). A term dependency-based approach for query terms ranking. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1267–1276.
[Lee et al., 2020] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.
[Lin et al., 2011] Lin, Y., Lin, H., Jin, S., and Ye, Z. (2011). Social annotation in query expansion: a machine learning approach. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 405–414.
[Lu and Li, 2013] Lu, Z. and Li, H. (2013). A deep architecture for matching short texts. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 26, pages 1367–1375. Curran Associates, Inc.
[Marr, 2018] Marr, B. (2018). How much data do we create every day? the mind-blowing stats everyone should read. In Forbes.
[Metzler and Bruce Croft, 2005] Metzler, D. and Bruce Croft, W. (2005). A markov random field model for term dependencies.
[Mikolov et al., 2014] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2014). word2vec.
[Mitra et al., 2017] Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to match using local and distributed representations of text for web search. In Proceedings of the 26th International Conference on World Wide Web, pages 1291–1299. International World Wide Web Conferences Steering Committee.
[Mohan et al., 2017] Mohan, S., Fiorini, N., Kim, S., and Lu, Z. (2017). Deep learning for biomedical information retrieval: Learning textual relevance from click logs.
[Neumann et al., 2019] Neumann, M., King, D., Beltagy, I., and Ammar, W. (2019). Scispacy: Fast and robust models for biomedical natural language processing. arXiv preprint arXiv:1902.07669.
[Nogueira and Cho, 2019] Nogueira, R. and Cho, K. (2019). Passage re-ranking with bert. arXiv preprint arXiv:1901.04085. [of Health, ] of Health, N. I. Pubmed baseline repository.
[Palangi et al., 2014] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward, R. (2014). Semantic modelling with Long-Short-Term memory for information retrieval.
[Palangi et al., 2015] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward, R. (2015). Deep sentence embedding using long Short-Term memory networks: Analysis and application to information retrieval.
[Pang et al., 2016] Pang, L., Lan, Y., Guo, J., Xu, J., and Cheng, X. (2016). A study of MatchPyramid models on ad-hoc retrieval.
[Pappas et al., 2019] Pappas, D., McDonald, R., Brokos, G.-I., and Androutsopoulos, I. (2019). Aueb at bioasq 7: document and snippet retrieval. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 607–623. Springer.
[Pineda-Vargas et al., 2019] Pineda-Vargas, M., Rosso-Mateus, A., González, F. A., and Montes-y Gómez, M. (2019). A mixed information source approach for biomedical question answering: Mindlab at bioasq 7b. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 595–606. Springer.
[Ponte and Bruce Croft, 1998] Ponte, J. M. and Bruce Croft, W. (1998). A language modeling approach to information retrieval.
[Rajpurkar et al., 2018] Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822.
[Ranzato et al., 2006] Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In Proceedings of the 19th International Conference on Neural Information Processing Systems, pages 1137–1144. MIT Press.
[Roberts et al., 2017] Roberts, K., Demner-Fushman, D., Voorhees, E. M., Hersh, W. R., Bedrick, S., Lazar, A. J., and Pant, S. (2017). Overview of the trec 2017 precision medicine track. TREC, Gaithersburg, MD.
[Robertson and Zaragoza, 2009] Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389.
[Robertson et al., 1995] Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M., et al. (1995). Okapi at trec-3. Nist Special Publication Sp, 109:109.
[Rosso-Mateus Andrés, 2020] Rosso-Mateus Andrés, Manuel Montes-y-Gómez, F. A. G. (2020). A deep metric learning method for biomedical passage retrieval.
[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International journal of computer vision, 40(2):99– 121.
[Salakhutdinov and Hinton, 2009] Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing.
[Sankhavara and Majumder, ] Sankhavara, J. and Majumder, P. Biomedical information retrieval.
[Singhal et al., 2017] Singhal, A., Buckley, C., and Mitra, M. (2017). Pivoted document length normalization. In Acm sigir forum, volume 51, pages 176–184. ACM New York, NY, USA.
[Soldaini and Goharian, 2016] Soldaini, L. and Goharian, N. (2016). Quickumls: a fast, unsupervised approach for medical concept extraction. In MedIR workshop, sigir, pages 1–4.
[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958.
[Tai et al., 2015] Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from Tree-Structured long Short-Term memory networks.
[Tsatsaronis et al., 2015a] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artieres, T., Ngomo, A.-C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015a). An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics, 16(1):138.
[Tsatsaronis et al., 2015b] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artieres, T., Ngomo, A.- C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015b). An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.
[Tsatsaronis et al., 2015c] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., et al. (2015c). An overview of the bioasq large-scale biomedical semantic indexing and question answering competition. BMC bioinformatics, 16(1):138.
[Tunstall-Pedoe, 2010] Tunstall-Pedoe, W. (2010). True knowledge: Open-domain question answering using structured knowledge and inference. AI Magazine, 31(3):80–92.
[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30:5998–6008.
[Vulic and Moens, 2015] Vulic, I. and Moens, M.-F. (2015). Monolingual and Cross-Lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 363–372. ACM.
[Wan and Peng, 2005] Wan, X. and Peng, Y. (2005). The earth mover’s distance as a semantic measure for document similarity. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 301–302. ACM.
[Wolf et al., 2020] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020). Huggingface’s transformers: State-of-the-art natural language processing.
[Xu et al., 2016] Xu, B., Lin, H., and Lin, Y. (2016). Assessment of learning to rank methods for query expansion. Journal of the Association for Information Science and Technology, 67(6):1345–1357.
[Xu et al., 2015] Xu, B., Lin, H., Lin, Y., Ma, Y., Yang, L., Wang, J., and Yang, Z. (2015). Learning to rank for biomedical information retrieval. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 464–469. IEEE.
[Yih et al., 2011] Yih, W.-T., Toutanova, K., Platt, J. C., and Meek, C. (2011). Learning discriminative projections for text similarity measures. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 247–256. Association for Computational Linguistics.
[Yilmaz et al., 2019] Yilmaz, Z. A., Yang, W., Zhang, H., and Lin, J. (2019). Cross-domain modeling of sentence-level evidence for document retrieval. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3481–3487.
[Yoon et al., 2019] Yoon, W., Lee, J., Kim, D., Jeong, M., and Kang, J. (2019). Pre-trained language model for biomedical question answering. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 727–740. Springer.
[Yu et al., 2009] Yu, H., Kim, T., Oh, J., Ko, I., and Kim, S. (2009). Refmed: relevance feedback retrieval system fo pubmed. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 2099–2100.
[Zadeh, 2006] Zadeh, L. A. (2006). From search engines to question answering systems—the problems of world knowledge, relevance, deduction and precisiation. Capturing Intelligence, 1:163–210.
[Zhai and Lafferty, 2001] Zhai, C. and Lafferty, J. (2001). A study of smoothing methods for language models applied to ad hoc information retrieval.
[Zheng and Yu, 2016] Zheng, J. and Yu, H. (2016). Methods for linking ehr notes to education materials. Information Retrieval Journal, 19(1-2):174–188.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 53 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y Computación
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería de Sistemas e Industrial
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80068/4/1018453509.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/80068/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80068/6/1018453509.2021.pdf.jpg
bitstream.checksum.fl_str_mv 852517c3c18d79ccec2674f158517a06
cccfe52f796b7c63423298c2d3365fc6
5fe52e19c19d2e37abdbe1a8fc758558
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089406864162816
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2González Osorio, Fabio Augusto35912f60905ba6e179208c70e6024e80Pineda Vargas, Mónica Patriciaa7eeab75ea6fc78eec16fd60e5db8fd0MindLab2021-09-01T18:19:30Z2021-09-01T18:19:30Z2020https://repositorio.unal.edu.co/handle/unal/80068Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesThis dissertation explored the use of strategies based on deep learning to address the information retrieval task in the biomedical domain. We implemented a system composed of three main phases. First, the Recovery Phase, where for a given question we aimed to extract a subset of the most relevant documents out of indexed documents. We obtained the best result using the DFR (Divergence From Randomness) algorithm with the model base I (f) (Inverse term frequency model), the posterior effect L (an information gain model based on Laplace's law of succession) and used H2 normalization (frequency is inversely related to length). The second phase seeked to filter the aforementioned subset of the most relevant documents using deep learning strategies. The use of Word Mover's Distance and Document Centroid was proposed as a baseline and they were compared with two models based on BERT. Here we obtained the best result out of the pre-trained BERT model for Question Answering, which allowed filtering documents that do not contain sufficient evidence to answer the associated question. In the last phase of the system, two document reordering strategies were explored. The first one is based on reordering the documents by passages that combine two types of representation for pairs (of the type question, passage) using textual representation and conceptual representation. This, to take advantage of the use of knowledge generated by experts in ontologies, for example. The second strategy was based on Metric Learning, we used a network of three inputs (question, answer +, answer−) and again took advantage of the use of structured information from biomedical concepts that were extracted from QuickUMLS [Soldaini and Goharian, 2016]. The proposed systems were evaluated using the test sets presented at the BioASQ 2019 competition and were compared against the best solution to a given task in each of the sets. We concluded that the system that obtains the best results for MAP (Mean Average Precision) is the one made up of DFR for initial retrieval, BERT for QA for document filtering and Metric Learning using conceptual information for reordering.En este trabajo se explora el uso de estrategias basadas en aprendizaje profundo para la tarea de recuperación de información en el dominio biomédico. Se propone un sistema compuesto por tres fases principales: Fase de recuperación, en donde se busca extraer de un conjunto de documentos indexados, un subconjunto de los documentos más relevantes dada una pregunta, obteniendo como mejor resultado el algoritmo DFR (Divergence from Randomness) con el modelo base I(f) (Modelo de frecuencia de término inverso), efecto posterior L (Modelo de ganancia de información basado en la ley de sucesión de Laplace) y normalización H2 (La frecuencia está inversamente relacionada con la longitud). La segunda fase busca filtrar el subconjunto de documentos más relevantes usando estrategias con aprendizaje profundo. Se propone como línea base el uso de Word Mover's Distance y Document Centroid y se comparan con dos modelos basados en BERT obteniendo como mejor resultado el modelo de BERT pre-entrenado para Question Answering que permite filtrar los documentos que no contienen evidencia suficiente para responder la pregunta asociada. En la última fase del sistema se exploran dos estrategias de reordenamiento de documentos, la primera de ellas basada en reordenamiento por pasajes que combina dos tipos de representación para los pares (pregunta, pasaje) usando representación textual y representación conceptual buscando aprovechar el uso del conocimiento generado por expertos como las ontologías. La segunda estrategia está basada en Metric Learning usando una red de tres entradas $(pregunta, respuesta+, respuesta-)$ y aprovechando nuevamente el uso de información estructurada proveniente de los conceptos biomédicos extraídos de QuickUMLS. Los sistemas propuestos se evaluaron usando los conjuntos de test presentados por la competencia BioASQ 2019 y fueron comparados contra la mejor solución de la competencia en cada conjunto. Se concluye que el sistema que obtiene mejores resultados para MAP (Mean Average Precision) es el compuestos por DFR para la recuperación inicial, BERT for QA para el filtrado de documentos y Metric Learning usando información conceptual para el reordenamiento. (Texto tomado de la fuente).MaestríaMagíster en Ingeniería de Sistemas y ComputaciónRecuperación de informaciónxv, 53 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería de Sistemas y ComputaciónDepartamento de Ingeniería de Sistemas e IndustrialFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá600 - Tecnología (Ciencias aplicadas)Aprendizaje profundoDeep learningRecuperación de informaciónInformation retrievalInformation processingProcesamiento de la informaciónRecuperación de informaciónBioasqDocument retrievalMetric learningQuestion answeringBiomedical domainOntologíaDominio biomédicoSistema para la búsqueda de documentos biomédicos basado en aprendizaje profundoSystem for biomedical document retrieval based on deep learningTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[noa, 2016] (2016). PubMed celebrates its 20th anniversary![Amati and Van Rijsbergen, 2002] Amati, G. and Van Rijsbergen, C. J. (2002). Probabilistic models of information retrieval based on measuring the divergence from randomness. ACM Transactions on Information Systems (TOIS), 20(4):357–389.[Athenikos and Han, 2010] Athenikos, S. J. and Han, H. (2010). Biomedical question answering: A survey. Computer methods and programs in biomedicine, 99(1):1–24.[Bauer and Berleant, 2012] Bauer, M. A. and Berleant, D. (2012). Usability survey of biomedical question answering systems. Human Genomics, 6(1):17.[Beam et al., 2018] Beam, A. L., Kompa, B., Fried, I., Palmer, N. P., Shi, X., Cai, T., and Kohane, I. S. (2018). Clinical concept embeddings learned from massive sources of medical data. arXiv preprint arXiv:1804.01486.[Bengio, 2009] Bengio, Y. (2009). Learning deep architectures for AI.[Bengio et al., 2006] Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2006). Greedy layer-wise training of deep networks. In Proceedings of the 19th International Conference on Neural Information Processing Systems, pages 153–160. MIT Press.[Berger and Lafferty, 1999] Berger, A. and Lafferty, J. (1999). Information retrieval as statistical translation. 22nd int’l ACM. In SIGIR Conference on Research and Development in Information Retrieval, Berkeley.[Bonadiman et al., 2019] Bonadiman, D., Kumar, A., and Mittal, A. (2019). Large scale question paraphrase retrieval with smoothed deep metric learning. arXiv preprint arXiv:1905.12786.[Brokos et al., 2018a] Brokos, G., Liosis, P., McDonald, R., Pappas, D., and Androutsopoulos, I. (2018a). AUEB at BioASQ 6: Document and snippet retrieval.[Brokos et al., 2018b] Brokos, G.-I., Liosis, P., McDonald, R., Pappas, D., and Androutsopoulos, I. (2018b). Aueb at bioasq 6: Document and snippet retrieval. arXiv preprint arXiv:1809.06366.[Brown et al., 1988] Brown, P., Cocke, J., Della Pietra, S., Della Pietra, V., Jelinek, F., Mercer, R., and Roossin, P. (1988). A statistical approach to language translation.[Brown et al., 1991] Brown, P. F., Della Pietra, S. A., Della Pietra, V. J., and Mercer, R. L. (1991). A statistical approach to sense disambiguation in machine translation.[Cao et al., 2008] Cao, G., Nie, J.-Y., Gao, J., and Robertson, S. (2008). Selecting good expansion terms for pseudo-relevance feedback. In Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval, pages 243–250.[Chen et al., 2005] Chen, L., Liu, H., and Friedman, C. (2005). Gene name ambiguity of eukaryotic nomenclatures. Bioinformatics, 21(2):248–256.[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.[Gao et al., 2014] Gao, J., Pantel, P., Gamon, M., He, X., and Deng, L. (2014). Modeling interestingness with deep neural networks.[Goeuriot et al., 2015] Goeuriot, L., Kelly, L., Suominen, H., Hanlen, L., Neveol, A., Grouin, C., Palotti, J., and Zuccon, G. (2015). Overview of the clef ehealth evaluation lab 2015. In International Conference of the Cross-Language Evaluation Forum for European Languages, pages 429–443. Springer.[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT Press. [Gormley and Tong, 2015] Gormley, C. and Tong, Z. (2015).[Gormley and Tong, 2015] Gormley, C. and Tong, Z. (2015). Elasticsearch: The Definitive Guide: A Distributed Real-Time Search and Analytics Engine. . O’Reilly Media, Inc.”.[Guo et al., 2016] Guo, J., Fan, Y., Ai, Q., and Croft, W. B. (2016). A deep relevance matching model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, pages 55–64. ACM.[Hiemstra, 2001] Hiemstra, D. (2001). Using language models for information retrieval. Taaluitgeverij Neslia Paniculata.[Hosein et al., 2019] Hosein, S., Andor, D., and McDonald, R. (2019). Measuring domain portability and errorpropagation in biomedical qa.[Hu et al., 2014] Hu, B., Lu, Z., Li, H., and Chen, Q. (2014). Convolutional neural network architectures for matching natural language sentences. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N. D., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 27, pages 2042–2050. Curran Associates, Inc.[Huang et al., 2013] Huang, P.-S., He, X., Gao, J., Deng, L., Acero, A., and Heck, L. (2013). Learning deep structured semantic models for web search using clickthrough data. In Proceedings of the 22nd ACM international conference on Conference on information & knowledge management, pages 2333–2338. ACM.[Hui et al., 2017] Hui, K., Yates, A., Berberich, K., and de Melo, G. (2017). PACRR: A Position-Aware neural IR model for relevance matching.[Jin et al., 2018] Jin, Q., Dhingra, B., Cohen, W., and Lu, X. (2018). AttentionMeSH: Simple, effective and interpretable automatic MeSH indexer.[Jin et al., 2017] Jin, Z.-X., Zhang, B.-W., Fang, F., Zhang, L.-L., and Yin, X.-C. (2017). A multi-strategy query processing approach for biomedical question answering: USTB PRIR at BioASQ 2017 task 5B.[Joachims et al., 2017] Joachims, T., Granka, L., Pan, B., Hembrooke, H., and Gay, G. (2017). Accurately interpreting clickthrough data as implicit feedback. In ACM SIGIR Forum, volume 51, pages 4–11. Acm New York, NY, USA.[Krauthammer and Nenadic, 2004] Krauthammer, M. and Nenadic, G. (2004). Term identification in the biomedical literature. Journal of biomedical informatics, 37(6):512–526.[Kusner et al., 2015] Kusner, M., Sun, Y., Kolkin, N., and Weinberger, K. (2015). From word embeddings to document distances. In International Conference on Machine Learning, pages 957–966.[Kuzi et al., 2016] Kuzi, S., Shtok, A., and Kurland, O. (2016). Query expansion using word embeddings. In Proceedings of the 25th ACM international on conference on information and knowledge management, pages 1929–1932. ACM.[Le and Mikolov, 2017] Le, Q. V. and Mikolov, T. (2017). Distributed representations of sentences and documents, may 2014. Retrieved March, 16.[Lee et al., 2009] Lee, C.-J., Chen, R.-C., Kao, S.-H., and Cheng, P.-J. (2009). A term dependency-based approach for query terms ranking. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 1267–1276.[Lee et al., 2020] Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., and Kang, J. (2020). Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240.[Lin et al., 2011] Lin, Y., Lin, H., Jin, S., and Ye, Z. (2011). Social annotation in query expansion: a machine learning approach. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 405–414.[Lu and Li, 2013] Lu, Z. and Li, H. (2013). A deep architecture for matching short texts. In Burges, C. J. C., Bottou, L., Welling, M., Ghahramani, Z., and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems 26, pages 1367–1375. Curran Associates, Inc.[Marr, 2018] Marr, B. (2018). How much data do we create every day? the mind-blowing stats everyone should read. In Forbes.[Metzler and Bruce Croft, 2005] Metzler, D. and Bruce Croft, W. (2005). A markov random field model for term dependencies.[Mikolov et al., 2014] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2014). word2vec.[Mitra et al., 2017] Mitra, B., Diaz, F., and Craswell, N. (2017). Learning to match using local and distributed representations of text for web search. In Proceedings of the 26th International Conference on World Wide Web, pages 1291–1299. International World Wide Web Conferences Steering Committee.[Mohan et al., 2017] Mohan, S., Fiorini, N., Kim, S., and Lu, Z. (2017). Deep learning for biomedical information retrieval: Learning textual relevance from click logs.[Neumann et al., 2019] Neumann, M., King, D., Beltagy, I., and Ammar, W. (2019). Scispacy: Fast and robust models for biomedical natural language processing. arXiv preprint arXiv:1902.07669.[Nogueira and Cho, 2019] Nogueira, R. and Cho, K. (2019). Passage re-ranking with bert. arXiv preprint arXiv:1901.04085. [of Health, ] of Health, N. I. Pubmed baseline repository.[Palangi et al., 2014] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward, R. (2014). Semantic modelling with Long-Short-Term memory for information retrieval.[Palangi et al., 2015] Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., and Ward, R. (2015). Deep sentence embedding using long Short-Term memory networks: Analysis and application to information retrieval.[Pang et al., 2016] Pang, L., Lan, Y., Guo, J., Xu, J., and Cheng, X. (2016). A study of MatchPyramid models on ad-hoc retrieval.[Pappas et al., 2019] Pappas, D., McDonald, R., Brokos, G.-I., and Androutsopoulos, I. (2019). Aueb at bioasq 7: document and snippet retrieval. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 607–623. Springer.[Pineda-Vargas et al., 2019] Pineda-Vargas, M., Rosso-Mateus, A., González, F. A., and Montes-y Gómez, M. (2019). A mixed information source approach for biomedical question answering: Mindlab at bioasq 7b. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 595–606. Springer.[Ponte and Bruce Croft, 1998] Ponte, J. M. and Bruce Croft, W. (1998). A language modeling approach to information retrieval.[Rajpurkar et al., 2018] Rajpurkar, P., Jia, R., and Liang, P. (2018). Know what you don’t know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822.[Ranzato et al., 2006] Ranzato, M., Poultney, C., Chopra, S., and LeCun, Y. (2006). Efficient learning of sparse representations with an energy-based model. In Proceedings of the 19th International Conference on Neural Information Processing Systems, pages 1137–1144. MIT Press.[Roberts et al., 2017] Roberts, K., Demner-Fushman, D., Voorhees, E. M., Hersh, W. R., Bedrick, S., Lazar, A. J., and Pant, S. (2017). Overview of the trec 2017 precision medicine track. TREC, Gaithersburg, MD.[Robertson and Zaragoza, 2009] Robertson, S. and Zaragoza, H. (2009). The probabilistic relevance framework: BM25 and beyond. Foundations and Trends® in Information Retrieval, 3(4):333–389.[Robertson et al., 1995] Robertson, S. E., Walker, S., Jones, S., Hancock-Beaulieu, M. M., Gatford, M., et al. (1995). Okapi at trec-3. Nist Special Publication Sp, 109:109.[Rosso-Mateus Andrés, 2020] Rosso-Mateus Andrés, Manuel Montes-y-Gómez, F. A. G. (2020). A deep metric learning method for biomedical passage retrieval.[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. J. (2000). The earth mover’s distance as a metric for image retrieval. International journal of computer vision, 40(2):99– 121.[Salakhutdinov and Hinton, 2009] Salakhutdinov, R. and Hinton, G. (2009). Semantic hashing.[Sankhavara and Majumder, ] Sankhavara, J. and Majumder, P. Biomedical information retrieval.[Singhal et al., 2017] Singhal, A., Buckley, C., and Mitra, M. (2017). Pivoted document length normalization. In Acm sigir forum, volume 51, pages 176–184. ACM New York, NY, USA.[Soldaini and Goharian, 2016] Soldaini, L. and Goharian, N. (2016). Quickumls: a fast, unsupervised approach for medical concept extraction. In MedIR workshop, sigir, pages 1–4.[Srivastava et al., 2014] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1):1929–1958.[Tai et al., 2015] Tai, K. S., Socher, R., and Manning, C. D. (2015). Improved semantic representations from Tree-Structured long Short-Term memory networks.[Tsatsaronis et al., 2015a] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artieres, T., Ngomo, A.-C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015a). An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition. BMC Bioinformatics, 16(1):138.[Tsatsaronis et al., 2015b] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., Almirantis, Y., Pavlopoulos, J., Baskiotis, N., Gallinari, P., Artieres, T., Ngomo, A.- C. N., Heino, N., Gaussier, E., Barrio-Alvers, L., Schroeder, M., Androutsopoulos, I., and Paliouras, G. (2015b). An overview of the BIOASQ large-scale biomedical semantic indexing and question answering competition.[Tsatsaronis et al., 2015c] Tsatsaronis, G., Balikas, G., Malakasiotis, P., Partalas, I., Zschunke, M., Alvers, M. R., Weissenborn, D., Krithara, A., Petridis, S., Polychronopoulos, D., et al. (2015c). An overview of the bioasq large-scale biomedical semantic indexing and question answering competition. BMC bioinformatics, 16(1):138.[Tunstall-Pedoe, 2010] Tunstall-Pedoe, W. (2010). True knowledge: Open-domain question answering using structured knowledge and inference. AI Magazine, 31(3):80–92.[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30:5998–6008.[Vulic and Moens, 2015] Vulic, I. and Moens, M.-F. (2015). Monolingual and Cross-Lingual information retrieval models based on (bilingual) word embeddings. In Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 363–372. ACM.[Wan and Peng, 2005] Wan, X. and Peng, Y. (2005). The earth mover’s distance as a semantic measure for document similarity. In Proceedings of the 14th ACM international conference on Information and knowledge management, pages 301–302. ACM.[Wolf et al., 2020] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest, Q., and Rush, A. M. (2020). Huggingface’s transformers: State-of-the-art natural language processing.[Xu et al., 2016] Xu, B., Lin, H., and Lin, Y. (2016). Assessment of learning to rank methods for query expansion. Journal of the Association for Information Science and Technology, 67(6):1345–1357.[Xu et al., 2015] Xu, B., Lin, H., Lin, Y., Ma, Y., Yang, L., Wang, J., and Yang, Z. (2015). Learning to rank for biomedical information retrieval. In 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pages 464–469. IEEE.[Yih et al., 2011] Yih, W.-T., Toutanova, K., Platt, J. C., and Meek, C. (2011). Learning discriminative projections for text similarity measures. In Proceedings of the Fifteenth Conference on Computational Natural Language Learning, pages 247–256. Association for Computational Linguistics.[Yilmaz et al., 2019] Yilmaz, Z. A., Yang, W., Zhang, H., and Lin, J. (2019). Cross-domain modeling of sentence-level evidence for document retrieval. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3481–3487.[Yoon et al., 2019] Yoon, W., Lee, J., Kim, D., Jeong, M., and Kang, J. (2019). Pre-trained language model for biomedical question answering. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 727–740. Springer.[Yu et al., 2009] Yu, H., Kim, T., Oh, J., Ko, I., and Kim, S. (2009). Refmed: relevance feedback retrieval system fo pubmed. In Proceedings of the 18th ACM conference on Information and knowledge management, pages 2099–2100.[Zadeh, 2006] Zadeh, L. A. (2006). From search engines to question answering systems—the problems of world knowledge, relevance, deduction and precisiation. Capturing Intelligence, 1:163–210.[Zhai and Lafferty, 2001] Zhai, C. and Lafferty, J. (2001). A study of smoothing methods for language models applied to ad hoc information retrieval.[Zheng and Yu, 2016] Zheng, J. and Yu, H. (2016). Methods for linking ehr notes to education materials. Information Retrieval Journal, 19(1-2):174–188.GeneralORIGINAL1018453509.2021.pdf1018453509.2021.pdfTesis de Maestría en Ingeniería de Sistemas y Computaciónapplication/pdf1934012https://repositorio.unal.edu.co/bitstream/unal/80068/4/1018453509.2021.pdf852517c3c18d79ccec2674f158517a06MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80068/5/license.txtcccfe52f796b7c63423298c2d3365fc6MD55THUMBNAIL1018453509.2021.pdf.jpg1018453509.2021.pdf.jpgGenerated Thumbnailimage/jpeg4553https://repositorio.unal.edu.co/bitstream/unal/80068/6/1018453509.2021.pdf.jpg5fe52e19c19d2e37abdbe1a8fc758558MD56unal/80068oai:repositorio.unal.edu.co:unal/800682024-07-27 00:14:09.262Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==